Multi-valued contraction mappings in complete metric

Transcript

Multi-valued contraction mappings in complete metric
R ENDICONTI
del
S EMINARIO M ATEMATICO
della
U NIVERSITÀ DI
PADOVA
K IYOSHI I SEKI
Multi-valued contraction mappings in
complete metric spaces
Rendiconti del Seminario Matematico della Università di Padova,
tome 53 (1975), p. 15-19.
<http://www.numdam.org/item?id=RSMUP_1975__53__15_0>
© Rendiconti del Seminario Matematico della Università di Padova, 1975, tous
droits réservés.
L’accès aux archives de la revue « Rendiconti del Seminario Matematico
della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.
php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit
contenir la présente mention de copyright.
Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/
Multi-Valued Contraction
in
Complete
Metric
KIYOSHI ISEKI
Let
of
~,
be
define
(x, d)
we
a
metric space.
Mappings
Spaces.
(*)
For any
B
nonempty subsets A,
Let CB(X) be the set of all nonempty closed and bounded subsets
of X. The space CB(X) is a metric space with respect to the above
defined distance H (see K. Kuratowski [1] p. 214). Then we have
the following theorem which is a generalization of S. Reich result [2]
(or see I. Rus [3]).
THEOREM]. Let (X, d) be a complete metric space, and let
CB(X ) be a nlulti-valued mapping with the following
every x, y
X -
for
E X,
where 0153, (3, y are
point, i. e. there is
(*)
f:
non-negative and 2a --~- 2~ -fa point x such that x E I(x).
Indirizzo dell’A.: Kobe
University,
y
1.
Then f has a
Rokko Nada Kobe,
Giappone.
16
PROOF. Let xo be
a
point
in
X,
and
xl E f (xo).
If
since H is a metric on CB(X). Therefore
then we have
0.
This contains the proof of the case a == f3 = y
we have
Next we suppose 0 2a + 2~3 + y and
=
Let h
By
=
.H( f (xo), f(x1))(p,
the definition of
Therefore there is
Hence
Hence
we
have
a
H,
we
then
we
have
have
point x, of
such that
17
Therefore
If
If
have the first case, then x2
a similar
such that
we
H( f (xl), !(X2)) &#x3E; 0, by
In general, if
all i (i
0, 1,
=
H( f (xi),
... ), H( f (x2),
=
0 for
&#x3E;
0,
which completes the proof.
there is a point X3 of
method,
i, then xi E f (xi).
there is a point Xi+2
If,
some
for
E
satisfying
Hence,
for n &#x3E; m,
is a Cauchy sequence. The completeness of X
This shows that
Let x’ be the limit of
the existence of the limit of
then
implies
Hence, by
the
assumption,
we
have
18
Let
n -
From
00, then
(1 ) implies
12013x2013~&#x3E;0y
we
the
following
relation.
have
which means
This completes the proof.
Let BN(X) be the set of all nonempty bounded subset of X. Then
we have a fixed point theorem.
THEOREM 2. Let (X, d) be a complete mctric space.
is ac
functions which satisfies
for
every x, y
then f has a
If f : X -- BN(X )
in X, where oc, f3, y are non-negative and 2~ -f- 4f3 -funique f ixed point, i. e. for some x’, f (x’ )
Theorem 2 is
is due to an idea
y
1,
-
generalization of S. Reich
by S. Reich [2].
a
result
[2]. The proof
PROOF. If oc = ~
0, then the result is trivial. We suppose
y
0 2a + 4fl + y. Now put p
(2oc + 4fl + 1 )~. Then we have p 1.
Hence there is a single-valued function g : X - X such that g(x) is a
which satisfies
point y in
=
==
=
For such
a
function g,
19
Hence
we
The
1.
For the
+ y
have
assumption 2a -f- 4~ -f- y C 1 implies
By a well known theorem, g has a fixed point x’, i. e.
point x’,
Hence
If
and
.H(z, f (z) ) &#x3E; 0,
which is impossible. Hence
To show z
consider
we
=
x’.
then
have
f(z)
=
~z~.
=
Hence we have z
x’, which shows that
The proof is complete.
f
=
has
a
unique
fixed
point.
REFERENCES
[1] K. KURATOWSKI, Topology, 1, PWN, Warszawa (1966).
[2] S. REICH, Fixed points of contractive functions, Boll. Un. Mat. Ital., (4) 5
(1972), pp. 26-42.
[3] I. A. Rus, Teoria punctului fix II, Univ. « Babes-Bolyai », Cluj (1973).
Manoscritto pervenuto in redazione il 19
marzo
1974.