M. Romagnoli - Scuola Superiore di Sant`Anna

Transcript

M. Romagnoli - Scuola Superiore di Sant`Anna
Design, Fabbricazione e Packaging di
Dispositivi Fotonici Integrati
presso la Scuola Superiore Sant'Anna
Marco Romagnoli
ASI Workshop ‘La Componentistica Nazionale per lo Spazio: Stato dell’arte, Sviluppi e Prospettive’
Roma 18‐20 Gennaio 2016
Facilities: Clean-Room for PIC manufacturing
500‐m2 clean space
60 ‐m2 class 100, 160‐m2 class 1000, 275‐m2 class 10000
70‐m2 25 m2 class 100 , 45m2 class 10000 package facility into TeCIP institute Technology Platforms
o Silicon photonics
o Hybrid Integration
o Glass on silicon
o Advanced packaging
Rete di accesso radio mobile
Flusso canali
Inserimento di canale
Estrazione di canale
Rete configurabile ad anello
Nodo di rete riconfigurabile Dimensione 5x3 mm
Circuito fotonico integrato
Realizzato da:
Scuola Superiore
Sant'Anna
Pag. 11/15
Data Center
Corridoio di un Data Center
Interconnessioni ottiche
10 ‐ 100Gb/s per interconnessione in data center
1 milione di interconnessioni in un super computer
di grandi dimensioni o in un grande data center
Google detiene solo il 3% dei data center mondiali
Realizzato da:
Scuola Superiore Sant'Anna
Travelling wave modulator Nested MZI
Input
Travelling wave phase shifter
Nested MZI for complex
modulation formats
16QAM up to 20Gbd Tunable
coupler
Integrated
50Ω
Output
Photonic Integrated Circuits Design
•Analytical models (synthesis and analysis)
•Mode analysis (Lumerical, Photon Design)
•3D FDTD and FEM photonics simulations (Lumerical, Comsol)
•RF design and simulations (Comsol)
•TCAD design/simulations of doped semiconductors (Lumerical, ISE-TCAD)
•3D Thermal and thermo-mechanical analysis and design (Comsol, Flotherm)
•Ray tracing optical design (Zemax)
•Mask design with foundry PDK
PIC Characterization Equipment
• Edge-coupling/in-line and vertical coupling
characterization setups for PIC with top and
side cameras/microscopes, nanopositioners,
holders, controller, optical and electrical (DC
and RF) probe;
• 200mm wafer EO probe station
• Infrared camera;
• Ultra-short optical pulse source at 10 GHz
• Digital Sampling Oscilloscope at 64 GHz
• Optical Spectrum Analysers
• Electrical Spectrum Analyser at 40 GHz;
• Vector Network Analyser;
• Autocorrelator;
• Pattern generator at 10, 40, 56 GHz;
• Error detector at 10, 40, 56 GHz;
• Signal source analyzer;
• DFBlasers batteries;
• Tuneable laser sources;
• Optical power amplifiers (2W);
• Low-noise optical pre-amplifiers;
• Various electrical components up to 40 GHz;
• Fixed and tuneable optical filters;
Micro‐optics design
Tool USED:
ZEMAX Opticstudio 14.2
ZEMAX Opticstudio 14.2
‐ Geometric Ray tracing
‐ Evaluation of aberration
‐ Optimization
‐ Diffraction analysis for conjugate points
‐ Mono mode optical fiber coupling
‐ Etc… COMSOL
‐ Thermo‐mechanical analysis
FLOTHERM
‐ Thermal analysis (electronics)
‐ fluid‐dynamics
PTC Creo Expr
INTEGRATED PHOTONICS TECHNOLOGY CENTER
AUTHORS: SERGIO DONEDA GIOVAN BATTISTA PREVE
Plan View
Vertical furnace for poly‐Si, Si3N4
Evaporator Lift off
BPTEOS Liquide source PECVD Omega Mori Helicon Plasma Deep Dielectrics etching and Si wg
Filmtek 4000 high accuracy
n,k,tk
Vistec VB6 UHR
Ma6Ba6 Gen3 Front back alignment
Confidential
Field Emissione SEM 13
Technology Platform: Silicon Photonic
Silicon photonics has emerged as a key enabling technology for future high bandwidth
interconnects for servers , data centers and high performance computing systems due to
its potential of offering CMOS compatible wafer scale integrated optical I/O on IC
package and the potential for low cost high volume manufacturing by leveraging the
infrastructure developed for CMOS electronics.
Technology Platform: Silicon Photonics
Device development for:
WDM
Development Surface Grating
Thermo –Optics
Ring resonator structure
Modulators with External Ion implant service RD development for hybrid integrations and “mode adaptor” with different waveguide material device cross-section
420 nm
100 nm
Ion Implant N and P type species 70 nm
130 nm
SOI wafers:
220nm Silicon Layer /3µm BOX layer/Wg Structure 460x220nm SOI supplierSoitec ShinEtsu (will be qualified Q4 2015) INPHOTEC Capability (design dependent) 500 wfs /year
Technology Platform: Glass on Silicon
The use of CVD waveguides Glass on Silicon allows the process compatibility and
component integration necessary to achieve a high level of functionality with multiple
optical functions and hybrid components. Planar Lightguide Circuits (PLC) can be
a cost effective approach for the packaging of complex multiwavelength
system components.
Low n
• Low propagation loss • Extended wavelength range • High coupling efficiency High n
Medium n
AWG Top View and cross section SiO2:Gedoped SiOXNY coupler Ring resonator Si3N4
Technology Platform: Glass on Silicon
SiOXNY
Upper clad conformal oxide
∆n= 7%
wg
Si3N4
∆n= 0.7%
SiO2:Ge
∆n= 2.5%
wg
Lower Clad Oxide
∆n= 35%
SiO2:Ge
Silicon Substrate
n= n
2-n
core
2/2
clad
n
2
core
Material
∆n
Waveguide
Size
Curvature
SiO2:Ge
0.7%
4.5X4.5µm2
7mm
SiO2:Ge
2.5%
2.5X2.5µm2
1.2mm
SiON
7%
2.2X2.2µm2
300µm
Si3N4
35%
submicron
7µm
SOI
41%
Deepsubmicron
3µm
 Capability (design dependent) 1500 wfs /year
Technology Platform: Hybrid Integration
The “Hybrid Integration” Platform aims to develop technologies that can suit the necessity
to integrate different devices and parts together, supporting packaging activities in the
realisation of structures enabling compactness and interoperability. In particular the
Platform will develop the use of micro structured silicon as the SiOB Silicon Optical
Bench.
Optical submount
High accuracy 3D structure Fiber block
Eutectic Alloy metallurgic bonding Technology Platform: Advanced Packaging
Design, development and prototipation packaging line for silicon
photonics and optoelectronics components, sensors, MEMS,MOEMS.
Automation and production up to thousands pieces/year
Automatic die bonder
Finetech
Automatic ball bonder
K&S
Automatic pigtailing/flip chip bench
PI‐miCos
Infrastructure:
Advanced Packaging Lab
CR: Class 100
T°C 21± 1°C
CR: Class 10000
T°C 21± 2°C