I lecture - Introduction

Transcript

I lecture - Introduction
Integrated Photonic
Quantum Mechanics
Materials Science
Nano/Bio-photonic
Optoelettronics
Optics
Integrated Photonic - G. Breglio L1
Electronic
1
Applications of Optoelectronic Systems
Solar cells
OLED display
LED
Integrated Photonic - G. Breglio L1
Laser diodes
Flexible OLED
2
Information
Contact:
Giovanni Breglio
[email protected]
081 76 83128
Website:
http://www.docenti.unina.it
E-mail
[email protected]
Ricevimento: martedì ore 12.30 2°piano plaz.na DIET
Didactic Material :
S.O. Kasap, Optoelectronics and Photonics
H. Nishihara, Optical Integrated Circuits
L. Pavesi, Silicon Photonics
Papers, slides
Integrated Photonic - G. Breglio L1
3
Lecture Organization
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Richiami di
di ottica
ottica
Richiami di trasmissione guidata.
Guide planari.
Dispositivi ottici passivi.
Richiami di fibre ottiche.
Componenti a fibre ottiche.
Principi fisici di alterazione delle proprietà ottiche.
Dispositivi ottici attivi integrati.
Gli emettitori LASER.
Fotorivelatori e fotodiodi.
Tecnologie di realizzazione.
Integrated Photonic - G. Breglio L1
4
Typical Optoelectronic System
Light sources
Optical
Source
Transfer for
Medium
of light
the light
through
transmission
the system
Detectors
Detector
Lasers
Laser
Directly
Free
space
through free space
Photodiodes
photodiodes
LEDs
LED
Indirectly
With
lenses
using
and lenses
mirrors& mirrors
Photomultipliers
photomultipliers
Gas discharges
With
Gas
light guides
Waveguide
Photographic film
Filament lamps
wire
optical fibres
Optical
Fibers
CCDs & diode array
arrays
Fluorescent lamps
TV tubes
Human
eye
Natural sources
Source
The eye
Integrated Photonic - G. Breglio L1
5
The Compact Optical Disc
Integrated Photonic - G. Breglio L1
6
Compact Optical Disc Pick-up
Integrated Photonic - G. Breglio L1
7
Compact Optical Disc (CD)
Integrated Photonic - G. Breglio L1
8
Compact Optical Disc Player
‰ Cross-section of a double-layer DVD+R disc
Integrated Photonic - G. Breglio L1
9
Fiber Optic Communication
Integrated Photonic - G. Breglio L1
10
Different connections
Integrated Photonic - G. Breglio L1
11
The Optical Fiber history
Professor Charles Kao who has been recognized as the inventor of fiber optics
is receiving an IEE prize from Professor John Midwinter
(1998 at IEE Savoy Place, London, UK; courtesy of IEE)
Integrated Photonic - G. Breglio L1
12
Optical Communications
TRANSMITTER
+
–
Integrated Photonic - G. Breglio L1
RECEIVER
FIBRE
+
–
13
Optical Networks System
Amplifiers
Modulator
Fiber
Laser
Detector
Input
signal
Integrated Photonic - G. Breglio L1
Output
signal
14
Base Project of an optical link
Transmitter
junction
Fiber
Integrated Photonic - G. Breglio L1
Connector
Fiber
Receiver
15
Standard Single-Mode (SM) Fibre
Fibre
Fibrecore
core
SiO
SiO22++GeO
GeO22
ØØ10
10µµm
m
nn≅≅1.443
1.443
SiO
SiO22Cladding
Cladding
ØØ125
125µµm
m
nn≅≅1.44
1.44
Primary
Primarycoating
coating(soft)
(soft)
ØØ400
400µµm
m
Secondary
Secondarycoating
coating(hard)
(hard)
ØØ11mm
mm
Integrated Photonic - G. Breglio L1
16
attenuation (dB/km)
Fibre (SiO22) losses
1.0
IR limits
scattering
Rayleigh
1.5
UV
losses
OH--pick
0.5
0.16 dB/km
0.2
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
wavelength (µm)
Integrated Photonic - G. Breglio L1
17
Regeneration Unit
shape and time regeneration
Modulation & bit
rate dipendent!
Biasing
Integrated Photonic - G. Breglio L1
Telemetry &
Remote Control
18
In fiber optical amplifier
Er3+-doped
fiber (10 - 20 m)
Signal in
Optical
isolator
Wavelength-selective
coupler
Splice
λ = 1550 nm
Splice
Optical
isolator
Signal out
λ = 1550 nm
Pump laser diode
λ = 980 nm
Integrated Photonic - G. Breglio L1
Termination
19
Erbium-Doped Fiber Amplifier (EDFA)
EDFA gain (dB)
30
20
10
0
-10
1520
1530
1540
1550
1560
1570
wavelength (nm )
Er-doped fiber
PUMP LASER
0.98 µm or 1.48 µm
MUX
Integrated Photonic - G. Breglio L1
FILTER
20
SLAB waveguide theory
Light
Light
n2
Light
Light
n2
n1 > n2
Integrated Photonic - G. Breglio L1
21
Dielectric Filters
0 dB
Incoming
Spectrum
Transmitted
Spectrum
Reflected
Spectrum
30 dB
Layers
Substrate
1535 nm
Integrated Photonic - G. Breglio L1
1555 nm
22
Snell’s
Snell’s law
law and
and TIR
TIR
n1 sinθ1 = n2 sinθ2
C
n2
n1
θ1 θ1
1
1
A
B
rTE =
rTM =
Integrated Photonic - G. Breglio L1
n1 cos θ1 − n22 − n12 sin2 θ1
n1 cos θ1 + n22 − n12 sin2 θ1
n22 cos θ1 − n1 n22 − n12 sin2 θ1
n22 cos θ1 + n1 n22 − n12 sin2 θ1
23
Multimodal Dispersion
High modes
Low modes
Cladding
Light pulse
Core
Intensity
Intensity
Axial
0
t
Integrated Photonic - G. Breglio L1
Spread, ∆ τ
t
24
RIB waveguides
Integrated Photonic - G. Breglio L1
25
Laser
Typical
Typical values:
values:
Power
Power in
in fiber:
fiber:
Max:
Max:
Direct
Direct Modulation
Modulation ::
Integrated Photonic - G. Breglio L1
1-10
mW
1-10
mW
100-300
100-300 mW
mW
1-10
GHz
1-10
GHz
26
Semiconductor Lasers
DIP Type
CAN case
Integrated Photonic - G. Breglio L1
Butterfly Type
Coaxial PKG
27
Integrated DFB-ME
• 10Gb/s module, Ith = 20mA, Pmax = 4mW @80mA , extinction ratio
= 15dB for -2.5V.
Integrated Photonic - G. Breglio L1
28
Passive Components
Integrated Photonic - G. Breglio L1
29
AWG
λ1a λ2a λ3a λ4a
λ1bλ2bλ3b λ4b
λ1c λ2c λ3c λ4c
λ1dλ2dλ3d λ4d
Rows ..
Integrated Photonic - G. Breglio L1
λ1a λ4b λ3c λ2d
λ2a λ1b λ4c λ3d
λ3a λ2b λ1c λ4d
λ4a λ3b λ2c λ1d
.. are transformed in ..
.. columns
30
AWG
AWG Arrayed
Arrayed Waveguide
Waveguide Grating
Grating
Waveguide Array
Free Propagation Regions
Focal plane
Input
output
waveguide
waveguides
transm ission (dB)
0
λ1
-10
λ2
λ3
λ4
-20
-30
-40
1550
1555
1560
1565
1570
1575
wavelength (nm)
Integrated Photonic - G. Breglio L1
31
Integrated Light Modulation
Integrated Photonic - G. Breglio L1
32
Integrated Light Modulation
Based on Mach-Zehnder
DFB laser with external
modulator on the same
chip
Laser
Modulatore
Integrated Photonic - G. Breglio L1
33
Detector and Photodiode
+
Typical
Typical Values:
Values:
Responsivity
Responsivity
Bandwidth
Bandwidth ::
–
~1
~1 mA
mA // mW
mW
1-20
1-20 GHz
GHz
Integrated Photonic - G. Breglio L1
34
Optical Communication Systems
First Generation, ~1975, 0.8 µm
Fiber-MM, Laser GaAs o LED
Second Generation, ~1980, 1.3 µm, fiber MM SM
InGaAsP FP-laser or LED
Third Generation, ~1985, 1.55 µm, SM-fiber
InGaAsP DFB-laser, ~ 1990 Optical Amplifier
Attenuation
Fourth Generation, 1996, 1.55µm
WDM systems
0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
Wavelength (µm)
Integrated Photonic - G. Breglio L1
35
WDM
optical
optical fibre
fibre
+
–
Receiver
optical
Transmitter
Optical
Transmitter
Receiver
Multi wavelength
Multi wavelength
MUX
Integrated Photonic - G. Breglio L1
DMX
36
λ1
NT
λ2
NT
λn-1
NT
λn
Demultiplexer
NT
Multiplexer
Network Terminal
WDM Transmitter system
wavelength
convention
Integrated Photonic - G. Breglio L1
Add and Drop
λ1
NT
λ2
NT
λn-1
NT
λn
NT
Wavelength
Converter
37
Transmission capability
10
# WDM-channels
256
10
64
1
16
0.
1
4
1
0.01
G
b/
G
b/
0
1
G
b/
s
‘99
•
‘98
•
‘97
•
s
G
b/
s
‘00
•
‘05?
•
‘96
s
‘80 ‘83
Tb
/s
‘86
• •0.1 •
1
•
‘89
•
‘98
•10
100
Channel bit rate (Gb/s)
Integrated Photonic - G. Breglio L1
38
Transmission capability
10000
WDM experiments
1000
(10x / 2.5 yrs)
Capability (Gb/s)
5 yrs
100
ETDM
10
1
installed
(10x / 6 yrs)
0,1
0,01
1980
Integrated Photonic - G. Breglio L1
1985
1990
1995
2000
39
Underwater
Underwater Links
Links
Integrated Photonic - G. Breglio L1
40
Wavelength Division Multiplexing
Transmitter
Multi wavelength
Receiver
Multi wavelength
MUX
DMX
ADM
ADM
Detector
Tunable laser
ADM
System
SystemCapability:
Capability:
1996:
16x2.5
1996:
16x2.5Gb/s
Gb/s
40
Gb/s
40 Gb/s
1998:
80x2.5
1998:
80x2.5Gb/s
Gb/s
200
200Gb/s
Gb/s
2000:
40x10
2000:
40x10 Gb/s
Gb/s
0.4
0.4Tb/s
Tb/s
ADM: Add-Drop Multiplexer
OXC: Optical CrossConnect
Integrated Photonic - G. Breglio L1
OXC
ADM
41
4λ 2x2 OXC with switches
1
1
in
out
OXC
2
2
X
X
X
X
Integrated Photonic - G. Breglio L1
Losses on-chip
Crosstalk Inter-channel
Dimensions
< 16 dB
< -20 dB
8x12 mm22
42

Documenti analoghi

Sistemi a Microonde e Ottici-I modulo

Sistemi a Microonde e Ottici-I modulo R.E. Collin, Foundations for microwave Engineering. McGraw-Hill Jordan Balmain, Electromagnetic Waves and Radiating Systems Prentice Hall Electrical engineering series R. Sorrentino, G. Bianch,. In...

Dettagli

M. Romagnoli - Scuola Superiore di Sant`Anna

M. Romagnoli - Scuola Superiore di Sant`Anna Technology Platform: Silicon Photonic Silicon photonics has emerged as a key enabling technology for future high bandwidth interconnects for servers , data centers and high performance computing s...

Dettagli