corso di fisica nucleare - paolo finelli dip. fisica ed astronomia

Transcript

corso di fisica nucleare - paolo finelli dip. fisica ed astronomia
Physics of nuclear bombs
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
1
Physics of nuclear bombs
A nuclear explosion is achieved by the rapid assembly, in a suitable geometry, of NEM with
sufficient nuclear reactivity to initiate and sustain a chain reaction driven by fast neutrons.
For this to happen, on average at least one of the several energetic neutrons released per fission in
the NEM must be “productively” captured, i.e., it must produce another fission following its
capture.
The neutron must be productively captured before it is unproductively captured, loses too much
energy, or escapes from the configuration.
Dependence on the Concentration
of the Fissile Material
In order to produce an explosion, the fast
neutrons from each fission must produce more
fast neutrons in each successive “generation”,
i.e., the neutron multiplication factor k must be > 1.
Such a configuration is said to be “prompt supercritical”.
Any mixture of nuclear-explosive nuclides and other
nuclides that can support a fast-neutron chain reaction
when present in suitable quantity, purity, and geometry
is called nuclear-explosive material (NEM).
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
2
Tamper - neutron reflector
• A reflector surrounding a configuration of fissile
material will reduce the number of neutrons that
escape through its surface. The best neutron reflectors
are light nuclei that have have no propensity to
capture neutrons. The lightest practical material is
Beryllium, the lightest strong metal
•
In a nuclear weapon the envelope has an additional
role: its very inertia delays the expansion of the
reacting materia. The weapon tends to fly to bits as the
reaction proceeds and this tends to stop the reaction,
so the use of a tamper makes for a longer lasting, more
energetic, and more efficient explosion.
The most effective tamper is the one having the highest density (U238)
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
3
Physics of nuclear bombs
The yield of a nuclear weapon is defined (roughly) as the total
energy it releases when it explodes
The energy release is quoted in units of the energy released by a ton of TNT
1 Kiloton (Kt) = 1 thousand tons of TNT
1 Megaton (Mt) = 1 million tons of TNT
For this purpose the energy of 1 kt of TNT is defined as 1012 Calories = 4.2 x 1012 Joules
Fission weapons
• Theoretical maximum yield-to-weight ratio:
8,000 tons = 8 kt TNT from 1 lb. of NEM
(~ 10,000,000 times as much per lb. as TNT)
• Difficult to make weapons larger than few
100 kt (Yields of tested weapons: 1–500 kt)
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
Thermonuclear weapons
• Theoretical maximum yield-to-weight ratio:
25 kt TNT from 1 lb. of fusion material
(~ 3 times as much per lb. as fission weapons)
• But there is no fundamental limit to the size of
a thermonuclear weapon
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
4
5
Gun design
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
6
© unmakingthebomb.com, blog.nuclearsecrecy.com
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
7
© unmakingthebomb.com, blog.nuclearsecrecy.com
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
8
© unmakingthebomb.com, blog.nuclearsecrecy.com
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
9
© unmakingthebomb.com, blog.nuclearsecrecy.com
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
10
© unmakingthebomb.com, blog.nuclearsecrecy.com
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
11
© unmakingthebomb.com, blog.nuclearsecrecy.com
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
12
© unmakingthebomb.com, blog.nuclearsecrecy.com
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
13
© unmakingthebomb.com, blog.nuclearsecrecy.com
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
14
© unmakingthebomb.com, blog.nuclearsecrecy.com
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
Gun design - Little boy
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
15
16
Plutonium
Plutonium is rather brittle at room temperature, and
is difficult to form into desired shapes unless alloyed
with another metal. But common light alloying
metals such as aluminum cannot be used because of
the (a, n) problem; one has to use something heavier.
Los Alamos metallurgists found that by alloying
plutonium with 3 % gallium by weight, they could
avoid the (a, n) problem while also depressing the
melting point of the malleable δ-phase of plutonium
sufficiently that it could be worked at room
temperature.
An advantage of this approach was that since the
lower-density δ-phase transforms to the higherdensity α-phase under compression, one realizes a
gain in the sense that the critical mass of α-phase
plutonium is less than that of the δ-phase material
that one began with, leading to an efficiency
enhancement, significantly helping to achieve
supercriticality
(© Wikipedia and Cameron Reed)
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
17
Implosion design
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
18
Implosion design
Explosive (fast)
detonator
detonation
wave
Explosive (slow)
natural uranium
tamper
initiator
Pu239
core
high explosive
blocks
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
Implosion design - Fat man
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
19
We
doG not
consider
here density:
theof
role
of inelastic scattering,
differential
for
thediffusion
neutron
number
ng bomb core,bomb
the equation
diffusion
theory
of Appendix
provides
sioning
core,
the
theory
Appendix
G pr
situation only indirectly in that it lowers the mean neutron vel
al equation
for
the
neutron
number
density:
Critical
Mass:
Diffusion
Theory
" point with the eff
@N
v
l
v
treatment
simple we
will talso
not!
deal2 at this
ential equation for¼theneut
neutron
number
density:
neut
!
" rN ;
ð n # 1Þ N þ
20
l
v
N vneut @N
lvt vneut
tamper/neutron
reflector. 2
neut ! 2 "
t
neut
rnN#; 1lÞf N þ
ðn # 1Þ N¼
þ
(2.18) r N
¼
3
@t
ð
; core, the diffusion theory(2.18
In
a
spherical
fissioning
bomb
of Ap
lf
3
@t
lf
@t
the following 3
differential equation for the neutron number dens
neut
neut
2
neutron velocity and
the other symbols are as definedt earlier.
the average
neutronUpon
velocity
and
erethevusual
"
neut is
@N other
vneut symbolsltare
vneut !as2defin
spherical
radial coordinate.
assuming
a the
r earlie
ðnare
# 1Þas
Nþ
N ;
¼
he
average
neutron
velocity
and
the
other
symbols
defined
f
e form N(t,
Nt(t)Nr(r), (2.18)
be separated
as
@t
Now,
letr)r¼represent
thecanusual
spherical
radiallf coordinate.3 Upon as
represent
radial
coordinate.
Upon
assuming
$ #
# spherical
$&
$ the %usual
ution
for
r)
N(t,vneut
r)is¼
(2.18)and
can
be separat
Nt
n #N(t,
1
D of
1 @the 2form
@Nr where
the N
average
the other
symbols a
t(t)Nneutron
r(r), velocity
¼
;
(2.19)
þ
r
(t, r) oftthe form
N(t, r)
(2.18)
can spherical
be separated
as
Now,
let rr(r),
represent
the usual
radial coordinate.
t(t)N
@t
@r ¼ N
Nr r 2 @r
# $ solution
% form N(t,#r) ¼ Nt(t)N$r(r),
& (2.18) can b
# for $
N(t, r) of the
D## $1 @# $&2$ @Nr % #
$ 1 #@Nt $ n # %1
d diffusion#
coefficient,
$&
¼
;
þ
r
1 @Nt
n#1
D 1 @1 @N2t 2@Nrn # 1 D 1 @ 2 @Nr
@t
N¼
r ¼@r t ; þ@rN r2 @r r (2.19
þt t r 2 NN
r
t
r @t
lt vneut
@r
t
r
D
¼
;
(2.20)
@r
Nt @t 3
t
Nr r @r
where D
is the so-called diffusion coefficient,
ere
D
is
the
so-called
diffusion
coefficient,
n time that a neutron will travel before causing a fission:
e so-called
diffusion coefficient,
t
r lt vneut
2
lf
D¼
;
: mean time that a neutron
(2.21)
t¼
3
2
l
v
vneut will travel before causing a fission
t
rD ¼ t neut ;
lt vwhere
neut t is the mean time that a neutron
and
willcoefficient
travel before c
Diffusion
3
@N v
lv
ð n # 1Þ N þ
¼
l
3
@t
!
"
rN ;
erage neutron velocity and the other symbols are as defined
esent the usual spherical radial coordinate. Upon assum
of the form N(t, r) ¼ N (t)N (r), (2.18) can be separated
# $ #
%
#
$&
$
@N
n#1
D 1 @
@N
¼
;
þ
r
@t
@r
t
N r @r
D¼
;
(2.20
3
lf
alled
diffusion
coefficient,
:
t¼
where
t
is
the
mean
time
that
a
neutron
will
travel
before
vneut causing a
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
separation
a, but this
will prove Note
a littlethat
more
device
is usedjust
to initiate
the form
chain-reaction.
we conve
could
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ffi constant
21
equation must be
equal),
then
the
solution
for
the
timeThe
first
and
last
terms
in
(2.23)
can
be
combined
(this
where
algebra.
With this
of the
separation
constant,
themor
rad
separation
constant
justdefinition
a, but this
form
will prove
a little
lf lsubsequent
t
constant was
defined as a/t); on dividing (2.23) by D, we fin
:
(2.25)
d¼
(2.19)
appears
as
eutron density
emerges
directly
as
r
subsequent
algebra.
With
this
definition of the separation constant,
3 ð $ a þ n $ 1Þ
s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ffi
#
!
"$
(2.26)
x ¼ : (2.19) appears as
1
1 "
1 $@
#
!
l!f lt "
2 @Nr
d ða=tÞtd ¼
¼ 0;
r(2.25)
n $ 1 : D 1 @ d2 þ2 @N
a
2
r
# r Nr !r @r¼ "
$
w dimensionless
coordinate
If Nt ðtÞ
þ " 2 (2.22)
:@r
¼ No ex according as3 ð $ a þ tn $!1Þ
n $N1r r @r
D 1 @@r 2 @Ntr
a
¼ :
þ
r
where
2
the form
r
@r
t
Nr r @r
t
(2.26)
¼ :at
e neutron
density
t
¼
0.
N
would
be
set
by
whatever
The
first
and
last
terms
in
(2.23)
can
be combined
(this is why
Now define
ax new
dimensionless
coordinate
x
according
as
o
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ffi the s
d
lfind
! constant
"$was
f lt (this is wh
defined
a/t);terms
on
dividing
(2.23)
by
D,
we
The
firstwe
andascould
last
in (2.23)
can
be
combined
e the #
chain-reaction.
Note
that
have
called
the
:
d¼
1
1
@
@N
3ð $
a D,
þ n we
$ 1Þfind
r
r constant was defined
2
to
the
form
as
a/t);
on
dividing
(2.23)
by
#
!
"
$
a, but this
form
a little
convenient
for
¼ $1:
(2.27)
x will prove
(2.26)
x ¼ :more
1
1
1
@
@N
2
r
d
2
@x
N
x
@x
r
#
!
#
!
"
$
¼
0;"$ x according
þdefine
r
Now
a
new
dimensionless
coordinate
h this 1definition
of
the
separation
constant,
the
radial
part
of
2
2
1 @
1 1 @@r 2 @Nr
d
Nr1 r @r
2 @Nr
¼ $1:
(2.27)
x
¼ 0;
þ
r
2
2
2
This
brings
(2.24)
to
the
form
@x
Nr x @x
@r r
d
Nr r @r
ization constant, where
the solution of this differential equation x ¼ d :
# "$ !
"$
#
!
"
where
constant,
of1 this
differential
1constant,
@ the
@Nr equation
be
2
s(2.24)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ffi
nmalization
$ Aside
1 from
Da normalization
1 the@ solution
@N
a
r
This
brings
to
the
form
2
¼
$1:
x
At the surface of the core
(radius R) there will(2.27)
be no “backflow”
d to be
2
¼
þ of this differential
r
:
(2.23)
solution
equation
is
l
l
@x
N
x
@x
fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t the only neutrons
r
s
ffi "that
2
of
neutrons
from
the
outside;
#
!
$ pass
:
d
¼
@r
t
Nr r !@r
t
! " " 2.2 Critical Mass: Diffusion
through the
which
have come
3surface
ð $ of
a the
þ 1ncore
$1lwill
1Þ
lbet those
r
2 @N
Theory
f@
sin
x
¼ $1:
x
sin x
:
d
¼
from a characteristic
distance
λ
from
within
2
@x
@x n $
r$ xa þ
Aside from
of this differential
equation
(2.28)
NrrðrÞ
:constant, the solution
(2.28)
N
ðrÞa¼normalization
¼ x :
3 ðN!
1Þ
"
! "
ms
in
(2.23)
can
be
combined
(this
is
why
the
separation
x
can easily be verified to Now
be define a new dimensionless coordinate
2 lt @N
2 as
lt @N
x
according
Aside from
constant,
N ðRCaÞ normalization
¼$
¼ $the solution of :this
a/t);
on
dividing
(2.23)
by
D,
we
find
3coordinate
3 d @x as
@r RC x according
To
determine
a
critical
radius
R
C, we
RC
Now
define
a
new
dimensionless
can
easily
be
verified
to
be
!
"
ritical radius RC, we need a boundary condition to apply to
r
need
a
boundary
condition
sin
x
✓
◆!
cal
radius#G,
RCthis
, we
need
a
boundary
condition
to
apply
to
2
:
x
¼
in Appendix
takes
the
form
"
!
"$Nr ðrÞ
:
(2.28)
¼
⇥
D⇤
2
sin x radius is
d finds rthat
On applying
this to (2.28),
one
the critical
Serber
R
=
x
1
1
1
@
@N
C
:
Nr:ðrÞ ¼
rthe form
x
¼
2
Appendix
G,
this
takes
1
x
the
transcendental
equation
¼
0;
(2.24)
þ
r
d
2
2 @r
@r FINELLI
dCORSO
N
r
This
brings (2.24) to the form
r
DI
FISICA
NUCLEARE
PAOLO
FISICA ED ASTRONOMIA
- UNIVERSITÀ
DI to
BOLOGNA
To determine a critical radius R , we need aDIP.boundary
condition
to$ apply
x cotðxÞ
þ x=!
1 ¼ 0;
Critical Mass: Diffusion Theory
22
Critical Mass
Quantity
A
ρ
σf
σel
ν
n
λfission
λelastic
λtotal
RC
MC
Unit
g/mol
g/cm3
bn
bn
1022 cm-3
cm
cm
cm
cm
kg
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
235U
239Pu
235,04
18,71
1,235
4,566
2,637
4,794
16,89
4,57
3,6
8,37
45,9
239,05
15,6
1,8
4,394
3,172
3,93
14,14
5,79
4,11
6,346
16,7
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
eNbefore
aDefine
fission,
is,separation
as
in (2.21):
t; rÞ ¼
Nt that
ðtÞ
NdefinedðrÞ
where
tamp ðcausing
the
constant
Nt a to
ðtÞ
and
Nrepresent
ðrÞ
aremean
respectively
the
here
be
d/t
where
t
is
the
time
that
a
r
have
to
add
term
to
(2.32)
that
effect.
escaped
back into the core; indeed, the modern name for a tamper is 23
and asubscripts
tamp
be usedin
liberally
neutron
travel in the of
coreNSuperscripts
before
causing
fission,spherical
that
is, will
as defined
(2.21): here as it will be
;
r
is
the
usual
radial
coordinate.
time-and
space will
dependences
lcore
fiss “reflector”, but I retain tamp
the historical
terminology
here.
This
effect
isboundary
explored
in
t¼
:
(2.34)
necessary
to
join
tamper
physics
to
core
physics
via
suitable
conditions.
v
Upon substituting
this into (2.32) we find, in analogy to (2.19),
r
neutrons
Tamper - neutron reflector
neut
this section; estimating the distance
over which the core expands before criticality
lcore
fiss
as
tEffect
¼the of
: Tamper
(2.34)is difficult to
2.3"
no
longer
holds
in
taken
up
in
next
section.
This
slowing
effect
!
"
!
#
!
"
$
The idea behindtamp
a tamper is to
surround the
fissile core with atamp
vneut
tamp
1
@N
l
v
1
1 @an approximate
@Nr
"
# model
! analytically,
"$
neutbe treated with
t
2
amp
trans
tamper
tamp
but
can
numerical
model, which
material.
1 of 1dense
@
dThis serves two purposes: (i) it reduces
¼
:
(2.33)
r
2 @N
rans vneutshell
r
tamp
tamp
¼ :
r
(2.35)
2 @r in Sect.
2 @r choice
@t
3
@rthe2.2, take a trial solution fo
r
As
was
done
This
renders
(2.33)
as
3 the
@r
r
t
N
N
Nrtamp
is
done
in
Sect.
2.5.
r
critical
mass, and (ii) it slows the inevitable
expansion of
t
tamp
tamp
tamp
tamp
The
discussion
here
parallels
that
in
Sect.
2.2.
Neutrons
that
escape
form
the
core
core,
allowing
more
time
for
fissions
to
occur
until
the
core
N
ð
t;
r
Þ
¼
N
ðtÞ
N
ðrÞ
where
N
ðtÞ
and
N
ð
core
tamp
! with
" !in the
"
#
"
$
t!
t
r
r
oke a core quantity when dealing
diffusion
tamp
tamp
tamp
1
@N
l
v
1
1
@
@N
d neutrons
neut
Define
the
separation
constant
here
to
be
d/t
where
t
is
the
mean
time
that
athetamper
t
2
trans
e separation
constant
however
we
please.
In
principle,
r
density will
dropsdiffuse
to the point
where
criticality
no
longer
holds.
into
the
tamper.
To
describe
the
behavior
of
in
the
;
r
is
usual sph
time-and
space
dependences
of
N
¼
¼
r
:
(2.35)
tamp
tamp
tamp
2
exponential factor a of
Sect. 2.2, but
we will find that 3
@t
@rto
rfission,
@r
t
Ncan
Nr corresponding
initiator
The
reduction
in
critical
mass
occurs
because
the
tamper
will
t
neutron
will
travel
in
the
core
before
causing
a
that
is,
as
defined
in
(2.21):
we
use
(2.18)
without
the
term
production
of
neutrons,
that is, to (2
Upon
substituting
this
into
(2.32)
we
find,
in analogy
that they be equal. This choice of separation constant
some
escaped
neutrons
back
the core;
the
, which
weterm
assumeon
to be
same
eutron reflect
velocity vneut
the
first
thetheright
sideinto
of (2.18);
weindeed,
are assuming
that the tamper is not made
It
may
seem
strange
to
invoke
a
core
quantity
when
dealing
with
diffusion in "
the
core
.
!
"
!
#
!
modernofname
for
a
tamper
is
“reflector”,
tamp
tamp
l
material:
fissconstant
mean
path
1 transport
@N
ltrans
vneut (2.34)
1
1 @
pends on whether
d isfissile
positive,
negative,
or zero;the
theseparation
tamper,
but we
can define
however
we
please.
In principle,
t free
2@
t
¼
:
¼ we will find that tamp 2
r
threshold criticality in analogy to a ¼ 0 in Sect. 2.2.
tamp
v
d
may
be
different
from
the
exponential
factor
a
of
Sect.
2.2,
but
neut N
@t
3
r @r
N
terest will be d $ 0, in which case the solutions have
r
t tamp
! 2 of separation
"
ltransThis
vneutchoice
boundary conditions demand that@N
they
be equal.
constant
tamp
¼ v , which r
Nassume
(2.32)
tamp ; to be the same
we
is advantageous
that the
velocity
Fig. 2.5 Tamped
bomb
core
neut
This choice
rendersin(2.33)
asneutron
@t
3separation constant here to be d/t where t
Define
the
in both materials,
þB
ðd ¼ 0Þcancels out.
neutron
will
travel
in
the
core
before
causing
a
fission,
tha
tamp
!
"
!
"
#
!
"
$
The
solution
of
(2.35)
depends
on
whether
d
is
positive,
negative,
or
zero;
the
(2.36)
% r=d
&
tamp
tamp
number
density
of @and ltrans
the transport
mean free path for
where
Ntamp is the
tamp
e
e&r=d
1
@N
l
v
1
1
@N
d
tÞt
neut
t ðdcorresponds
2
trans
r to a ¼ 0 in Sect. 2.2.
latter
to threshold
criticality
in analogy
þ B choice
>¼
0Þ;
A
r
: the(2.35)
neutrons
in
the
tamper.
v
is
the
average
neutron
speed¼within
tamper,
which
r tamp r
neut tamp
core
2
situations
be dr $ @r
0, in which@rcase the solutions
havelfiss
@t of practical 3interest will
t
Nt Thewe
N
r
will later assume for sake of simplicity to be the same as that
within the
core.
t
¼
:
the
form
of integration (different for the two cases), and where
vneutwe would
We
are
assuming
that
the
tamper
does
not
absorb
neutrons;
otherwise,
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8
It may
seem
core strange to invoke a core quantity when dealing with diffusion in the
have
to
add
a
term
toA (2.32) represent that effect.
ltamp
l
trans fiss
>
no constant
absorption however ðwe
>
dtamp ¼
: can define the
(2.37)
þ
B
d(2.33)
¼please.
0Þ as In principle,
tamper,
but
we
separation
>
This
choice
renders
3 d Superscripts and
< r subscripts tamp
will be used liberally here as ✓
it will be ◆
sin(x/2)
d may be different
from
the
exponential
factor
a &r=d
ofphysics
Sect.
but
we will
find that
(2.36)
N
¼ tamper
%
& 2.2,
tamp
necessary
to
join
physics
to
core
via
suitable
boundary
conditions.
r=d
tamp
tamp
N"
>
e is that the neutron density in the core is described
by
r (r) = #
e
e!
"
!
!
>
ð
d=t
Þt
tamp
tamp
>
boundary conditions demand:that
they
be
equal.
This
choice
of
separation
constant
x
þ B @Nt
ðd > 0lÞ;
e
A
1
1
1 @
2 @N
trans vneut
r
r
¼
r
we
assume
to
be
the
same
is advantageous in that the neutron velocity vtamp
tamp
neut, which
2
@t
3
@
r @r
Nt
Nr
in both
out. FINELLI
CORSOmaterials,
DI
FISICA
PAOLO
DIP.
FISICA
ED ASTRONOMIA
UNIVERSITÀ DI BOLOGNA
where
A NUCLEARE
andcancels
B are- constants
of integration (different
for
the two
cases), and -where
tamp
tamp
Blast of atomic explosion
Stokes, 19 kilotons, Nevada (57)
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
24
Blast of atomic explosion
• Surface Blast:
• Blast — 40-60%
• Thermal radiation — 30-50%
• Ionizing radiation — 5%
• Residual radiation (fallout) — 5-10%
surface destruction of structures through blast
and firestorm, immediate radioactive fallout
• High Altitude Air Blast:
fireball > 100,000 ft (>3000m)
interrupts satellite based communication
through electromagnetic pulse (EMP)
• Low Altitude Air Blast:
fireball < 100,000 ft (without touching ground)
generates shock waves
• Subsurface Blast:
Underwater burst generates surge
Franklin, 4.7 kilotons, Nevada (57)
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
25
26
The fireball
• Radiation release & absorption
• Central temperature: ~10,000,000 K
• Immediate vaporization of all material
• Central pressure: ~3300 atm
in surrounding matter
generates red-glow intense
luminosity.
• Expansion of fireball through
internal pressure
• Fireball rises like hot air balloon
Romeo, 11 megatons, Bikini atoll (54)
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
Fireball expansion
27
temperature
pressure
Qualitative temperature profiles are shown at the left and
pressure profiles at the right of a series of photographs of the
fireball at various intervals after the detonation of a 20 kiloton
weapon.
In the first picture, at 0.1 ms, the temperature is shown to be
uniform within the fireball and to drop abruptly at the exterior, so
that the condition is that of the isothermal sphere.
Subsequently, as the shock front begins to move ahead of the
isothermal sphere, the temperature is no longer uniform, as
indicated by the more gradual fall near the outside of the fireball.
In the isothermal stage, the pressure is uniform throughout and
drops sharply at the outside, but after a short time, when the
shock front has separated from the isothermal sphere, the
pressure near the surface is greater than in the interior of the
fireball.
Within less than 1 ms the steep-fronted shock wave has traveled
some distance ahead of the isothermal region.
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
The shock front development
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
28
29
The Mach Stem
If the explosion occurs above the ground,
when the expanding blast wave strikes
the surface of the earth, it is reflected
off the ground to form a second shock
wave traveling behind the first.
This reflected wave travels faster than the
first, or incident, shock wave since it is
traveling through air already moving at
high speed due to the passage of the
incident wave. The reflected blast wave
merges with the incident shock wave to
form a single wave, known as the Mach
Stem. The overpressure at the front of
the Mach wave is generally about twice
as great as that at the direct blast wave
front.
At first the height of the Mach Stem wave is small, but as the wave front continues to move
outward, the height increases steadily. At the same time, however, the overpressure, like that in the
incident wave, decreases because of the continuous loss of energy and the ever-increasing area of
the advancing front. After about 40 seconds, when the Mach front from a 1-megaton nuclear
weapon is 10 miles from ground zero, the overpressure will have decreased to roughly 1 psi.
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
30
Overpressure
Blast effects are usually measured by the amount of overpressure, the pressure in excess of the
normal atmospheric value, in pounds per square inch (psi).
After 10 seconds, when the fireball of a 1-megaton nuclear weapon has attained its maximum size
(5,700 feet across), the shock front is some 3 miles farther ahead. At 50 seconds after the explosion,
when the fireball is no longer visible, the blast wave has traveled about 12 miles. It is then traveling
at about 784 miles per hour, which is slightly faster than the speed of sound at sea level.
As a general guide, city areas are completely destroyed by overpressures of 5 psi, with heavy
damage extending out at least to the 3 psi contour.
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
31
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
32
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
33
The mushroom
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
34
The mushroom
Oak, 8.9 megatons, Enewetak atoll (58)
• Absorption of cool air
triggers fast toroidal
circulation of hot gases
and causes upward
motion forming the
stem and mushroom.
• Strong upward wind
drags dirt and debris
into the cloud mixing
with radioactive
material
• Cloud rises in height
with ~ 440 ft/s
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
35
The mushroom
the radioactive cloud
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
36
Altitude
Maximum altitude for cloud
rise is reached after ~ 6 min.
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
Airburst
37
3s
20 Kiloton air burst
0.5 s
10 s
1.25 s
30 s
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
SURGE. A cloud which rolls outward from the
bottom of the column produced by a
subsurface explosion. For underwater bursts
the visible surge is, in effect, a cloud of liquid
(water) droplets.
After the water evaporates, an invisible base
surge of small radioactive particles may
persist.
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
38
Airburst
30 s
30 s
0.5 s
10 s
Shock-front
fireball
evolution
Shock-front
rebounce
Surge and
stem
evolution
Double shockfront upwards
motion
1.25 s
3s
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
Mushroom from underwater tests
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
39
Surge & Cloud formation
Cloud development
12 s
Baker, Bikini atoll (1946) 23 kT
Surge development
20 s
100 Kiloton shallow underwater burst
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
40
41
Cloud & fallout
1m
Baker, Bikini atoll (1946) 23 kT
2.5 m
100 Kiloton shallow underwater burst
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
42
Cloud & fallout
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
Destructive Effects
1. Blast damage
2. Thermal damage
3. Radiation damage
4. EM-pulse
43
The generation of a mechanical shock
through sudden increase of pressure
causes mechanical damages
The generation of a heat wave expanding
with the shock causes incineration
Electromagnetic shock leads to breakdown of communication systems
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
The mechanical shock
44
Dynamic pressure is the kinetic energy per
unit volume of a fluid particle
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
45
Blast effects
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
from high static overpressure
t winds.
46
Blast effects
essure
weakens
Damage
from highstructures
static overpressure
and blast winds.
c pressure tears them apart.
Static pressure weakens structures
e/suction
several
seconds
Dynamiclasts
pressure
tears them
apart.
Pressure/suction
several
seconds
ces
many timeslasts
greater
than
the
st hurricane.
Exert forces many times greater than
the strongest hurricane.
ldings suffer moderate to severe
atMost
onlybuildings
5 psi! suffer moderate to severe damage at only 5 psi!
from Burke, Kippenbrock and Young
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
Blast effects on humans
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
47
48
Nuclear firestorms
Fires can result from combustion of dry, flammable debris set loose by the blast or from
electrical short circuits, broken gaslines, etc. These fires can combine to form as terrible
firestorm similar to those accompanying large forest fires. The intense heat of the fire causes
a strong updraft, producing strong inward drawn winds in which fan the flame, take away
oxygen so it is difficult to breath, and destroy everything in their path (Chimney Effect).
Bluestone, 1.27 megatons, Christmas island (62)
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
49
Nuclear Firestorms
Flash Blindness
Caused by temporary bleaching of pigments in eyes
Lasts around 40 min.
Thermal Radiation
Retinal Burns/Scarring
Heat from direct viewing of fireball sears retinas, causing permanent damage.
•
Flash Burns
Temperatures
can
Direct absorption
of thermal energy
intoexceed
skin
100 million degrees C!
Flame Burns (Thousands of times hotter
Caused by contact with burning object
than the surface of the sun)
•
•
Matter immediately around
device is vaporized.
Fires ignited for miles
around epicenter.
Type
1 KT 20 KT
Conflagratio
0.5
n
1
20 MT
MT
2
10
30
3rd Deg.
(skin loss)
0.6
2.5
12
38
2nd Deg.
(blistering)
0.8
3.2
15
44
1st Deg.
(sunburn)
1.1
4.2
19
53
from Burke, Kippenbrock and Young
Range in km
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
Nuclear
Radiation
Radiation damage
50
Can be instantly Fatal
instantly Fatal
Radiation Sickness
vomiting, diarrhea, hair loss,...
on Nausea,
Sickness:
sea, vomiting,
hea
loss, fatigue,
ures, coma
juries occur
explosion
rm danger from
Size of Device
1 20
KT KT
Lethal total dose
(neutrons and 0.8 1.4
gamma rays)
Total dose for
acute radiation
syndrome
1.2 1.8
20
1 MT MT
2.3
4.7
2.9
5.4
Distance in km
from Burke, Kippenbrock and Young
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
ElectroMagnetic Impulse (EMP)
51
Ionizing radiation from the fireball produces
intense currents and electromagnetic fields,
usually referred to as the electromagnetic pulse
(EMP). This pulse is felt over very large distances.
A single high-yield nuclear detonation will create
destructive EMP over hundreds of thousands of
square kilometers beneath where the explosion
occurs.
EMP from high-yield nuclear detonations will
subject electrical grids to voltage surges far
exceeding those caused by lightning. Modern
chips and microprocessors, present in most
communication equipment. TVs, radios,
computers and other electronic equipment are
extremely sensitive to these surges and
immediately get burnt out. Thus all possible
communication links to the outside world are cut
off. Restoring these facilities will be an arduous
(and expensive) task assuming that the
infrastructure required to complete this task
would still exist following a nuclear war.
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
52
The hydrogen bomb
Mike, 10.4 megatons, Enewetak atoll (52)
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
The hydrogen bomb
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
53
54
6Li(n,t)4He
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
First application: booster
D-T fusion can be used to increase (“boost”) the yield of a fission weapon
With an equal mixture of D and T gas into the hollow cavity at the center of the pit made of NEM
At the maximum compression of the pit, the temperature and density conditions in the interior
can exceed the threshold for D+T fusion
The D+T reaction releases only a very small amount of energy, but the resulting burst of 14 MeV
neutrons initiates a new burst of fission reactions, greatly “boosting” the total fission yield of the
weapon
Advantages • Increases the maximum possible fission yield
• Less hard-to-produce Pu or HEU is required for a given yield — the “efficiency” is higher
• Warheads of a given yield can be smaller and lighter
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
55
Stanislaw Ulam
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
Ed Teller
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
56
Andrej Dmitrievič Sacharov
New Sloyka design by Sakharov
Layer Cake: alternate layers of light (liquid deuterium and tritium)
& heavy (235U) nuclear fuel to trigger a fission fusion reaction.
In 1950
As “father” of the Soviet
Hydrogen Bomb
First design study
by Andrei Sakharov
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
Nobel Peace prize (1975)
1989, as regime dissident
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
57
Ulam-Teller design
Staged explosion of fission (primary) bomb and fusion (secondary
bomb). The fission bomb is based on a regular Pu-bomb design (Fat
Man). Fusion device is based on d+d & d+t reaction with on-line 6Li(n,t)
tritium production and n induced fission. The fusion bomb is triggered
by rapid shock driven compression (Ulam) which is enhanced by
radiation pressure (Teller) from released X-ray and γ-ray flux.
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
58
Ulam-Teller design
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
59
60
Ulam-Teller design
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
61
Ulam-Teller design
1) The fission bomb implodes, emitting
X-rays
2) X-rays heat the interior of the bomb
and the tamper, which prevents
premature detonation of the fuel. The
plastic foam between the radiation
casing and secondary part which is
essentially just carbon and hydrogen
becomes completely ionized and
transparent as the X-rays penetrate
3) The heat causes the tamper to
expand and burn away, exerting
pressure inward against the lithioum
deuterate. The lithium deuterate is
squeezed by about 1/30 of its original
diameter, reaches or exceeds 1000
times its original density
4) The compression shock wave initiates
fission in the plutonium rod
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
62
Ulam-Teller design
5) The fissioning rod gives off radiation,
heat and neutrons. Fissionable rod
experience an extremely violent shockwave that will heat it to high
temperatures cause to compress and
doing so increases its density by a
factor of about 4 and cause the rod to
become supercritical
6) The neutrons enter into the lithium
deuterate and generate tritium.
7) The combination of high temperature
and pressure is sufficient for tritiumdeuterium and deuterium-deuterium
fusion reactions to occur, producing
more heat, radiation and neutrons.
8) The neutrons from the fusion
reactions induce fission in the U238
pieces from the tamper and shield.
9) Fission of the tamper and shield
pieces produce even more radiation
and heat
10) The bomb explodes.
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
Operation IVY, MIKE (31/10/1952)
The "Mike" device was essentially a very
large cylindrical thermos flask for holding
the cryogenic deuterium fusion fuel, with
a regular fission bomb (the "primary") at
one end.
The primary was a boosted fission bomb in
a separate space atop the assembly.
The "secondary" fusion stage used liquid
deuterium because this fuel simplified the
experiment.
Running down the center of the flask which
held it was a cylindrical rod of plutonium
(the "sparkplug") to ignite the fusion
reaction. Surrounding this assembly
was a five-ton natural uranium "tamper".
The interior of the tamper was lined with sheets of lead and polyethylene foam, which formed a radiation
channel to conduct X-rays from the primary to secondary.
The entire "Sausage" (as it was nicknamed) assembly measured 80 inches in diameter and 244 inches in
height and weighed about 60 tons and weighed 82 tons.
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
63
Operation IVY, MIKE (31/10/1952)
10.4 Megatons — 577 more powerful than Nagasaki bomb
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
64
65
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
Operation IVY, MIKE (31/10/1952)
Before
The blast created a crater 6,240 feet in diameter and 164 feet deep
stripped the test islands clean of vegetation
the water around the blast site boiled for up to twelve hours afterwards
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
After
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
66
Operation CASTLE, BRAVO (1/3/1954)
15 Megatons, largest US H-bomb, solid fuel, 833 more powerful than Nagasaki bomb
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
67
68
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
Operation CASTLE, BRAVO (1/3/1954)
Castle Bravo was the most powerful nuclear device ever detonated by the
United States, with a yield of 15 megatons. That yield, far exceeding the
expected yield of 4 to 6 megatons, combined with other factors, led to the
most significant accidental radiological contamination ever caused by the
United States. Fallout from the detonation — intended to be a secret test —
poisoned the islanders who had previously inhabited the atoll and returned
there afterwards, as well as the crew of Daigo Fukuryū Maru (“Lucky Dragon
No. 5″), a Japanese fishing boat.
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
69
The Bomb Test Programs
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
70
71
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
72
Nuclear Detonation Timeline "1945-1998"
http://www.youtube.com/watch?v=I9lquok4Pdk
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
73
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
74
Greenhouse operation. First test with
deuterium-tritium fusion via radiation
process, in order to prepare Mike
George, 225 kilotons, Enewetak atoll (51)
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
75
Plumbbob operation. Test for
antinuclear buildings
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
Priscilla, 37 kilotons, Nevada (57)
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
76
Plumbbob operation. Detonation in a hot-air balloon
over Nevada military zone. Biggest bomb exploded
over the U.S. land.
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
Hood, 74 kilotons, Nevada (57)
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
Nuclear proliferation
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
77
78
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
Acheson-Lilienthal Report (1946)
Proposal of an Atomic Development Authority (ADA) in
charge of the control of the whole field of atomic energy,
from mining through manufacturing. Rather than rely on
international inspection teams, the consultants
proposed to control potential problem at the
source, the uranium and thorium mines.
The ADA was supposed to hand out and control
fissionable material for peaceful use of nuclear
energy.
The Acheson-Lilienthal report recognized that with
the fundamentals of atomic energy widely known,
it was impossible to outlaw atomic weapons.
It concluded that "so long as intrinsically dangerous
activities may be carried out by nations, rivalries are
inevitable" and that, therefore, a single international
authority should become the only legal participant in
activities associated with atomic arms.
The report proposed that the US abandon its monopoly
politics on nuclear weapons.
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
Acheson
Lilienthal
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
79
80
The Baruch Plan
B. Baruch
Baruch made two key changes in the Acheson-Lilienthal report that
proved fatal. He insisted that swift and sure penalties greet violations
and that punishment not be subject to a Security Council veto. Such
conditions, Acheson believed, were a prescription for failure.
The Soviet Union, a non-nuclear power, insisted upon retaining its
United Nations veto and argued that the abolition of atomic weapons
should precede the establishment of an international authority.
Negotiations could not proceed fairly, the
Russians maintained, as long as the United
States could use its atomic monopoly to
coerce other nations into accepting its plan.
Gromyko
Andrei Gromyko, the Soviet delegate,
proposed an international convention
prohibiting the possession, production, and
use of nuclear weapons. Only after the
convention was implemented, should
measures be considered to ensure “the strict
observance of the terms and obligations.”
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
81
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
The Russell Einstein Manifesto (1955)
"In view of the fact that in any future
world war nuclear weapons will
certainly be employed, and that such
weapons threaten the continued
existence of mankind, we urge the
governments of the world to realize,
and to acknowledge publicly, that their
purpose cannot be furthered by a world
war, and we urge them, consequently,
to find peaceful means for the
settlement of all matters of dispute
between them."
Max Born, Percy W. Bridgman , Albert Einstein, Leopold Infeld, Frederic Joliot-Curie, Herman J.
Muller, Linus Pauling , Cecil F. Powell, Joseph Rotblat , Bertrand Russell, Hideki Yukawa
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
82
83
J. Foster Dulles
Dwight “Ike” Eisenhower
Massive Retaliation
In the event of an attack from an aggressor, a state would massively retaliate by using a force disproportionate to the size of
the attack. The aim of massive retaliation is to deter another state from initially attacking. For such a strategy to work, it must
be made public knowledge to all possible aggressors. The aggressor also must believe that the state announcing the policy
has the ability to maintain second-strike capability in the event of an attack, likely involving the use of nuclear weapons on a
massive scale.
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
M.A.D.
Mutual Assurance Destruction
Mutually assured destruction, or mutual assured destruction (MAD),
is a doctrine of military strategy and national security policy in
which a full-scale use of high-yield weapons of mass destruction
by two or more opposing sides would cause the complete
annihilation of both the attacker and the defender.
(“Nash equilibrium”)
Robert S. McNamara
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
84
Comprehensive Nuclear-Test-Ban Treaty
Partial Test Ban Treaty (1963)
The treaty banned nuclear tests in the atmosphere, underwater
and in space, but not underground. Neither France nor China
signed the PTBT. However, the treaty was still ratified by the
United States after an 80 to 19 vote in the United States Senate.
The PTBT had no restraining effects on the further development
of nuclear warheads.
Nuclear Non-proliferation Treaty (1968)
Under the NPT, non-nuclear weapon states were prohibited
from, among other things, possessing, manufacturing or
acquiring nuclear weapons or other nuclear explosive devices.
All signatories, including nuclear weapon states, were
committed to the goal of total nuclear disarmament. However,
India, Pakistan and Israel have declined to sign the NPT on
grounds that such a treaty is fundamentally discriminatory as it
place limitations on states that do not have nuclear weapons
while making no efforts to curb weapons development by
declared nuclear weapons states.
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
85
Comprehensive Nuclear-Test-Ban Treaty Organization
The Comprehensive Nuclear-Test-Ban Treaty
Organization (CTBTO) is an international
organization that will be established upon the
entry into force of the Comprehensive NuclearTest-Ban Treaty, a Convention that outlaws nuclear
test explosions.
The organization will be tasked with verifying the
ban on nuclear tests and will operate therefore a
worldwide monitoring system and may conduct
on site inspections.
International Monitoring System (IMS) and Communications infrastructure
The IMS, when completed, will consist of
1) 50 primary and 120 auxiliary seismic monitoring stations.
2) 11 hydro-acoustic stations detecting acoustic waves in the oceans.
3) 60 infra-sound stations using microbarographs (acoustic pressure sensors) to detect very lowfrequency sound waves.
4) 80 radionuclide stations using air samplers to detect radioactive particles released from
atmospheric explosions and/or vented from underground or under-water explosions.
5) 16 radionuclide laboratories for analysis of samples from the radionuclide stations.
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
86
CTBTO: Signatures and Ratifications
$%&$!%!'(%)*+(,,-..-("*/(%*'0&
+(,$%&0&".-1&*"2+3&!%4'&.'45!"
'%&!')*(%6!"-7!'-("
!"#$%&'()!*!"#*(%&"+",%&"-$!
.-(/0."0)
!&%&'!*!.*(/*??*@!"2!%)*?ABC
!&%&'!*!.*(/*??*@!"2!%)*?ABC
!
&-&%/*!&%&)! %$$)1*2*!&%&)!3*<0&*5(2"#!%-&.*!"#*$%&.&"'!'-("*(/*,!'&%-!3*("
'0-.*,!$*#(&.*"('*-,$3)*'0&*&I$%&..-("*(/*!")
&-&%/*!&%&)! %$$)1*2*!&%&)!3*
!
4)45)(*!&%&)!
BDE
FB
(%&"+6"$#*!&%&)!
BGE
EG
!"#$%&-(6*!&%&)!
?A
C
$-$7!"#$%&-(6*!&%&)!
BE
&-&%/*$'45)(*-+*!&%&)!
BHG
8*9'!'&.*:0(.&*%!'-/-+!'-("*-.*%&;2-%&#*/(%*'0&*<%&!')*'(*&"'&%*-"'(*=(%+&>
4)45)(*!&%&)!
BDE
(%&"+6"$#*!&%&)!
BGE
!"#$%&-(6*!&%&)!
?A
$%&$!%!'(%)*+(,,-..-("*/(%*'0&
$-$7!"#$%&-(6*!&%&)!
FF
+(,$%&0&".-1&*"2+3&!%4'&.'45!"
&-&%/*$'45)(*-+*!&%&)!
'%&!')*(%6!"-7!'-("
E
BE
BHG
($-"-("*("*'0&*$!%'*(/*'0&*J%(1-.-("!3*<&+0"-+!3
9&+%&'!%-!'*+("+&%"-"6*'0&*3&6!3*.'!'2.*(/*!")
+(2"'%)K*'&%%-'(%)K*+-')*(%*!%&!*(%*-'.*!2'0(%-'-&.K
(%*+("+&%"-"6*'0&*#&3-,-'!'-("*(/*-'.*/%("'-&%.*(%
5(2"#!%-&.>
FB
EG
C
...8,&5&-8-(#
E
FF
8*9'!'&.*:0(.&*%!'-/-+!'-("*-.*%&;2-%&#*/(%*'0&*<%&!')*'(*&"'&%*-"'(*=(%+&>
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
87
A.B.M.
AntiBallistic Missile
An anti-ballistic missile (ABM) is a surface-to-air missile designed to
counterballistic missiles (see missile defense). They are also used to deliver
nuclear, chemical, biological or conventional warheads in a ballistic flight
trajectory.
The Anti-Ballistic Missile
Treaty (ABM Treaty or
ABMT, 1972) was a treaty
between the United
States and the Soviet
Union on the limitation of
the anti-ballistic missile
(ABM) systems used in
defending areas against
ballistic missile-delivered
nuclear weapons. Under
the terms of the treaty,
each party was limited to
two ABM complexes, each
of which were to be
limited to 100 anti-ballistic
missiles.
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
88
S.D.I. Strategic Defense Initiative
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
89
90
USA - URSS disarmament: chronology
1963: Limited Test Ban Treaty
End of atmospheric testing
“Hotline”
Halt proliferation to other states
1967-1972: SALT I
G. Ford and L. Brezhnev
Set numerical limits on missile launchers (not warheads --> MIRVs)
1972-1979: SALT II
Broader limits than SALT I…but Afghanistan spoiled negotiations
1972: ABM Treaty (AntiBallistic Missile Treaty)
Limited each to two ABM sites (no nationwide defense)
Prohibited sea-, air-, space-based systems
Limit on qualitative improvement
Problematic: “Star Wars”, US pull-out in 2001-2
M. Gorbacev and G. Bush
1972: Nuclear Nonproliferation Treaty
1987: INF treaty
1991: START I Treaty
Negotiated almost 10 years
Reductions in launchers (max. 1,600) and warheads (max. 6,000)
V. Putin and G. Bush Jr.
1993: START II Treaty
Further reductions; never ratified by US Senate and Russian Duma
2002: SORT (Strategic Offensive Reductions Treaty)
Cut warheads to 1,700-2,200 by 2012
© Matt Rosenstein
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
A timeline of conflict, culture, and change
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
91
A timeline of conflict, culture, and change
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
92
A timeline of conflict, culture, and change
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
93
A timeline of conflict, culture, and change
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
94
A timeline of conflict, culture, and change
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
95
A timeline of conflict, culture, and change
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
96
A timeline of conflict, culture, and change
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
97
A timeline of conflict, culture, and change
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
98
A timeline of conflict, culture, and change
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
99
A timeline of conflict, culture, and change
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
100
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
A timeline of conflict, culture, and change
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
101
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
A timeline of conflict, culture, and change
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
102
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
A timeline of conflict, culture, and change
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
103
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
A timeline of conflict, culture, and change
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
104
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
A timeline of conflict, culture, and change
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
105
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
A timeline of conflict, culture, and change
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
106
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
A timeline of conflict, culture, and change
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
107
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
A timeline of conflict, culture, and change
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
108
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
A timeline of conflict, culture, and change
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
109
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
A timeline of conflict, culture, and change
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
110
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
A timeline of conflict, culture, and change
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
111
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
2015
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
112
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
113
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
USA
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
114
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
115
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
116
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
117
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
118
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
119
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
120
USA
Gorbachev and Reagan sign a treaty to ban all medium-range ballistic missiles
(The INF Treaty)
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
121
© Limes
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
Russia
ICBMs: 94
ICBM Launcher Pads: 54
Warheads: ~225
122
Belarus
Ukraine
ICBMs: 258
ICBM Launchers: 176
36
HBs:
~1,984
Warhead:
ICBMs: 115
ICBM Launchers: 104
HBs:
40
Warhead:~1,462
Russia
ICBMs: 1,340
SLBMs: 1,924
87
HBs:
Warheads::~11,296
Kazakhstan
SSBN Base
ICBM Base (Silo)
Mobile ICBM Base
Production Facilities
Non deployed ICBMs
Heavy Bombers
Major Destruction & Dismantlement Site
Chemical Weapons & Support Facility
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
China
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
123
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
France
124
Force de frappe - dissuasion du
faible au fort - by Charles de Gaulle
“Within ten years, we
shall have the means to
kill 80 million Russians. I
truly believe that one
does not light-heartedly
attack people who are
able to kill 80 million
Russians, even if one can
kill 800 million French,
that is if there were 800
million French.”
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
Israel
Vanunu worked at the Machon 2 facility,
where plutonium is produced and bomb
components fabricated, for 9 years before
his increasing involvement in left wing
pro-Palestinian politics led to his
dismissal in 1986. Prior to his departure
he managed to take about 60
photographs covering nearly every part
of Machon 2. He made contact with the
London Sunday Times which flew him to
London and began preparing an
exclusive news story. Unfortunately for
Vanunu, the Israeli government had
found out about his activities and the
Mossad arranged to kidnap him and
bring him back to Israel for trial. He was
successfully lured into a trap by a female
Israeli agent named Cheryl Bentov
operating under the name of "Cindy". His
sudden disappearance before the
publication of the Sunday Times story
was mysterious at the time. The story was
finally published several days later on 5
October 1986. A few months later
Vanunu's status as a prisoner of the Israeli
government was confirmed when it was
revealed that he would stand trial.
125
© www.nuclearweaponarchive.org/
Mordechai Vanunu
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
Israel
Mordechai Vanunu
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
Vanunu worked at the Machon 2 facility, where
plutonium is produced and bomb components
fabricated, for 9 years before his increasing
involvement in left wing pro-Palestinian politics
led to his dismissal in 1986. Prior to his
departure he managed to take about 60
photographs covering nearly every part of
Machon 2. He made contact with the London
Sunday Times which flew him to London and
began preparing an exclusive news story.
Unfortunately for Vanunu, the Israeli
government had found out about his activities
and the Mossad arranged to kidnap him (via
Rome) and bring him back to Israel for trial. He
was successfully lured into a trap by a female
Israeli agent named Cheryl Bentov operating
under the name of "Cindy". His sudden
disappearance before the publication of the
Sunday Times story was mysterious at the time.
The story was finally published several days
later on 5 October 1986. A few months later
Vanunu's status as a prisoner of the Israeli
government was confirmed when it was
revealed that he would stand trial. He was
sentenced as a spy to 18 years in prison. He
wrote «I’m Your Spy» early during the first 11
1/2 years he was held in strict isolation. He was
released, with restrictions not to leave the
country or talk with foreigners. He has been
rearrested in 2007 and 2010 for violating his
release terms.
126
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
Israel
I Am Your Spy
127
I am the clerk, the technician, the mechanic, the driver. They said, Do this, do that, don't look left or right, don't read the text. Don't look at the whole machine. You are only responsible for this one bolt. For this one rubber-stamp. This is your only concern. Don't bother with what is above you. Don't try to think for us. Go on, drive. Keep going. On, on.
So they thought, the big ones, the smart ones, the futurologists. There is nothing to fear. Not to worry. Everything's ticking just fine. Our little clerk is a diligent worker. He's a simple mechanic. He's a little man. Little men's ears don't hear, their eyes don't see. We have heads, they don't.
Answer them, said he to himself, said the little man, the man with a head of his own. Who is in charge? Who knows where this train is going? Where is their head? I too have a head. Why do I see the whole engine, Why do I see the precipice-- is there a driver on this train?
The clerk driver technician mechanic looked up. He stepped back and saw -- what a monster. Can't believe it. Rubbed his eyes and -- yes, it's there all right. I'm all right. I do see the monster. I'm part of the system. I signed this form. Only now I am reading the rest of it.
This bolt is part of a bomb. This bolt is me. How did I fail to see, and how do the others go on fitting bolts. Who else knows? Who has seen? Who has heard? -- The emperor really is naked. I see him. Why me? It's not for me. It's too big.
Rise and cry out. Rise and tell the people. You can. I, the bolt, the technician, mechanic? -- Yes, you. You are the secret agent of the people. You are the eyes of the nation. Agent-spy, tell us what you've seen. Tell us what the insiders, the clever ones, have hidden from us. Without you, there is only the precipice. Only catastrophe.
I have no choice. I'm a little man, a citizen, one of the people, but I'll do what I have to. I've heard the voice of my conscience and there's nowhere to hide. The world is small, small for Big Brother. I'm on your mission. I'm doing my duty. Take it from me.
Come and see for yourselves. Lighten my burden. Stop the train. Get off the train. The next stop -- nuclear disaster. The next book, the next machine. No. There is no such thing.
Mordechai Vanunu
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
-1987, Ashkelon Prison
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
Israel
128
Terms of Release
1. he shall not be able to have contacts with
citizens of other countries but Israel
2. his telephone and Internet use shall be
monitored
3. he shall not own cellular phones
4. he shall not approach or enter embassies
and consulates
5. he shall not come within 500 meters of any
international border crossing
6. he shall not visit any port of entry and
airport
7. he shall not leave the State of Israel
Mordechai Vanunu
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
129
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
130
I. Gandhi
India
123-134 Lim QS bomba patil-sarkar:patil-sarkar
20-06-2012
11:40
Pagina 127
Smiling Buddha Test Crater
L’INDIA NON FA PIÙ DA SOLA
L’INDIA NUCLEARE
Gilgit
A QUALCUNO PIACE ATOMICA
CINA
PA K I S TA N
4 x700 Mw
HARYANA
Delhi
RAJASTHAN
Rawatbhata
Kakrapar
UTTAR PRADESH
Bhopal
BIHAR
JHARKHAND
2 x700 Mw
CH
HA
TTI
SG
AR
H
I N D I A
6 x1.000 Mw
BHUTAN
Lucknow
MADHYA PRADESH
2 x700 Mw 2 x220 Mw
N E PA L
2 x220 Mw
Jaipur
2 x700 Mw 1 x100 Mw
1 x200 Mw
4x220 Mw
Mithi Virdi
SIKKIM
Narora
MAHARASHTRA
IL PROGRAMMA NUCLEARE INDIANO IN 3 STADI
ARUNACHAL
PRADESH
ASSAM
MEGHALAYA
NAGALAND
PHWR
MANIPUR
Kolkata
MIZORAM
BENGALA (Calcutta)
OCC.
TRIPURA
Haripur
6 x1.000 Mw
Produzione di
corrente elettrica
Combustibile
di uranio
M YA N M A R
Pu
ORISSA
Tarapur
Mumbai (Bombay)
2 x160 Mw
4 x540 Mw
Hyderabad
6 x1.650 Mw
Jatapur
ANDHRA
PRADESH
Panaji
KA
ATA
RN
Kaiga
4 x220 Mw
ISOLE
LACCADIVE
Kavaratti
Golfo del Bengala
Th
Pu
Th
FBR
Produzione di
corrente elettrica
KA
GOA
Mare
Arabico
Kovada
6 x1.000 Mw
ISOLE
ANDAMANE
Chennai (Madras)
Port Blair
2x220 Mw
KERALA
OCEANO INDIANO
Kudankulam
2 x1.000 Mw
223 U
TAMIL NADU
ISOLE
NICOBARE
4 x1.000 Mw
SRI
LANKA
Th
Stati indiani
che ospitano
centrali nucleari
233 U
Reattore nucleare
autofertilizzante
Reattori nucleari
Attivi
In costruzione
Progetti lanciati
nel 2010
Progetti proposti
Impianti di
arricchimento
Fonte: Npcil; Global Fissile Material Report 2010.
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
An Indian greeting card for Diwali from
1998, celebrating India’s nuclear tests.
© http://tasveerghar.net
223 U
Th
Produzione di
corrente elettrica
223 U
Materiale in eccesso
per uso militare
© Limes
Fonte: T.Woddi,W. Charleton, P. Nelson, India’s Nuclear Fuel Cycle: Unravelling the US-Indian Nuclear Accord, San Rafael Ca. 2009, Morgan and Cla
DIP.
FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
Pakistan
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
131
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
Pakistan
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
132
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
133
LA COREA ATOMICA
North Korea
IMPIANTI NUCLEARI
P’yongyang:
Laboratori per il processamento
di materiale nucleare
T’aech’on:
Costruzione di un reattore atomico
Yongbyon:
Un vecchio reattore nucleare è stato
rimesso in funzione nel 2003 e sembra
che abbia prodotto tra le quattro
e le sei bombe
Sinp’o:
Sito di reattori; attività interrotte
nel 2003
Basi militari
Aeree
Navali
Esercito
Usa
CINA
NORD
HAMGYONG
CH‘ONGJIN
Rang
Hyesan
YANGGANG
P’UNGGYE-YOK
YONG-CHO RI
Kanggye
MUSUDAN RI
SANGNAM RI
CHAGANG
YOUNGDOKTONG
SINUIJU
NORD
P’YONGAN
COREA
DEL NORD
SITI DI TEST NUCLEARI
Youngdoktong:
Negli anni Novanta sembra
ci siano state diverse forti
esplosioni legate a test nucleari
P’unggye-yok:
Il 17 ottobre 2006 si
è svolto un test
nucleare sotterraneo
SUD HAMGYONG
SINP’O
HAMBUNG
YONGBYON
T’AECH’ON
TEYJO DONG
SUD
P’YONGAN
PAKCH’ON
SUNCHON
P’yongyang
SARIWON
SUD
HWANGHAE
T’AETA’N
Isola
Baeknyeong
Isola Yonp’yong
L’AREA DELL’ULTIMO “INCIDENTE”
TRA LE DUE COREE
MISSILI BALISTICI
Yong-cho Ri, Sangnam Ri:
Impianti di lancio
sotterranei
Musudan Ri:
Base di lancio del test
per i missili Taedong 2 del 2006
WONSAN
KANGWON
NORD
HWANGHAE
P’YONGSAN
KANGWON
Ch’unch’on
NUCHONRI
KYONGGI
KYONGGI
KANGHWA
MINIERE DI URANIO
Sunchon:
La miniera di
uranio più grande
P’yongsan:
In attività a partire
dagli anni Cinquanta
Pakch’on:
Miniera di uranio
e impianto
di estrazione
KANGNUNG
Seoul
UIJONGBU
SUWON
YOUNGSAN
CH’UNGCH’ONG
© United States Geological Survey
CHOONGWON
Ch’ongju
Taejon
Mar Giallo
FED.
RUSSA
KYONGSANG
COREA DEL SUD
KUNSAN
DAEGU
Mare dell’Est
Chonju
Ulsan
Ch’angwon
Kwangju
Muan
0
SUNCH’ON
KWANGJU
Pusan
© Limes
40 km
POPOLAZIONE
COREA DEL NORD
23.906.000
150
POPOLAZIONE
COREA DEL SUD
50.062.000
© Limes
Linea di cessate il fuoco
Zona demilitarizzata
fra le due Coree
lunga 250 km e larga 4 km
GIAPPONE
Fonte: global.security.org.u.s. council on foreign relations, geohivue.com
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
134
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
Iran
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
135
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
Iran: an update
136
02/04/2015: speaking from the White
House, President Obama announced
details of a framework agreement
between Iran and the P5+1—the United
States, Russia, China, France, the United Kingdom, and Germany—
that limits Iran’s path to building a nuclear weapon over the next
10 to 15 years. Although negotiators will finalize technical details
between now and the June 30 deadline, the parameters provide
Iran with sanctions relief in exchange for limits on its uranium
enrichment, converting its Arak heavy water reactor, limiting the
number and type of centrifuges, and agreeing to intrusive
inspections. Should Iran cheat or fail to uphold its end of the
bargain, however, the United States and its allies reserve the right
to “snap-back” into place tough economic and financial sanctions.
(© Washington Post)
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
Movies
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
137
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
138
more pictures
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
139
Yankee, 13.5 megatons, Bikini atoll (54)
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
Frigate bird, 600 kilotons, Christmas island (62)
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
140
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
141
Truckee, 210 kilotons, Christmas island (62)
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
Turk, 43 kilotons,
Nevada (55)
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
142
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
143
Xray, 37 kilotons, Enewetak atoll (48)
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
144
Met, 22 kilotons, Nevada (55)
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
Sugar, 1.2 kilotons, Nevada (51)
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
145
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
146
Stokes, 19 kilotons, Nevada (57)
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
147
Laplace, 1 kiloton, Nevada (57)
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
Wheeler, 197 kilotons, Nevada (57)
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
148
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA
149
Moth, 2 kilotons, Nevada (55)
CORSO DI FISICA NUCLEARE - PAOLO FINELLI
DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA