Newsletter Year 7 issue 4

Transcript

Newsletter Year 7 issue 4
Newsletter EnginSoft Year 7 n°4 -
3
EnginSoft Flash
Now that 2011 has arrived,
we recapitulate what we
have learned and achieved
in the past, and what
awaits us in the future.
Fresh
thinking
and
optimism will help us to
create
a
wealth
of
opportunities, both in our
personal and professional
lives.
The past two years have
shown how important it is Ing. Stefano Odorizzi
to maintain an open and EnginSoft CEO and President
positive attitude and to
believe in our ability to
create a promising future.
CAE and Virtual Prototyping are and will be the
foundations of successful state-of-the-art product design.
By the same token, they will support a healthy growth in
R&D, product development and in industry as a whole.
Thus they are and will be important foundations for
innovation!
We are proud of our customers and partners, of our
Network and EnginSoft, of how we all contribute to the
success of CAE and VP today.
This issue features, among many other topics, a review of
the EnginSoft International Conference, a major gettogether of engineering simulation experts and
technology providers which welcomed almost 600
participants this year.
Outstanding engineering expertise comes to us from
Pierburg Pump Technology who present their work for
reliability evaluation on an innovative oil pump under
crankshaft torsional vibrations. CADFEM GmbH Germany, a
founding member of the TechNet Alliance, presents
electro-thermal simulations for EV/HEV applications.
Fonderia F.lli Maspero and BRAWO Brassworking tell us
about stamping simulations for brass and aluminium with
the Forge software. The University of Pisa, Department of
Information Engineering, describes the design of
metamaterial based devices for electromagnetic
applications while Istanbul Technical University’s
Department of Space Engineering reports about their work
for the structural identification of a composite ARW-2
wing model.
The Software News this time inform our readers about
modeFRONTIER 4.3.0, ANSYS Mechanical 13.0, ANSYS CFD
13.0 and MAGMA5. EURO/CFD and Flowmaster CFD tell us
about the coupling of 1D and 3D CFD and the challenges
and rewards of co-simulation. We hear about Scilab and
how these and various other technologies, such as
modeFRONTIER, successfully support the simulation work
of industry and academia.
With the Corporate News, we would like to update our
readers on EnginSoft, ESSS North America and our Houston
Venture. Aperio Spain interviewed Joan Villadelprat, the
President of Epsilon Euskadi. Our consultant in Japan
spoke to Koichi Ohtomi, the President of the Japan
Society for Computational Engineering and Science and
Chief Research Scientist at the Corporate R&D Center of
Toshiba Corporation. Riganti SpA inform us about their
expertise for steel stamping, the use of Forge and their
collaboration with EnginSoft. Finally, we report about
recent seminars, the EnginSoft Partner Meeting and
TechNet Alliance Fall Meeting 2010, as we wish to share
our visions for the future with our readers. We close this
Newsletter with an invitation to enjoy your Spring and
Cherry Blossom in Kyoto, Japan’s cultural treasure house!
We hope that some of the articles will inspire you and
create ideas for a new exciting year in engineering
simulation. Please do contact us with any feedback and
topics for future publications.
EnginSoft and the editorial team of the Newsletter would
like to take this opportunity to wish you and your families
a very Happy, Healthy and Prosperous New Year!
Stefano Odorizzi
Editor in chief
4
- Newsletter EnginSoft Year 7 n°4
Sommario - Contents
ENGINSOFT INTERNATIONAL CONFERENCE
6
7
10
A BIG SUCCESS: The Enginsoft International Conference on CAE Technologies for Industry
EnginSoft Network met for Partner Meeting at Villa Fenaroli
EnginSoft e MAGMASOFT: una fusione di qualità
CASE STUDIES
12
15
19
20
Reliability Evaluations of an Innovative Oil Pump under Crankshaft Torsional Vibrations
Design of metamaterial based devices for electromagnetic applications
Electro-thermal simulation for EV/HEV applications
Structural Identification of a Composite ARW-2 Wing Model
SOFTWARE NEWS
23
25
29
31
34
37
37
ANSYS CFD 13.0
A Maxwell overview
Novità ANSYS Mechanical versione 13
modeFRONTIER 4.3.0 is now available
Customized KEY to METALS Solutions for Materials Properties
Third Wave Systems Boosts Software Performance. AdvantEdge FEM 5.6 Delivers Improved Robustness,
Accuracy
Third Wave Systems AdvantEdge Production Module 5.8
IN DEPTH STUDIES
39
45
53
An unsupervised text classification method implemented in Scilab
Simulare con Forge lo stampaggio di ottone ed alluminio
Coupling 1D and 3D CFD The Challenges and Rewards of Co-Simulation
INTERVIEWS
56
Interview with Joan Villadelprat, President of EPSILON EUSKADI
TESTIMONIAL
59
RIGANTI SpA: Acciaio stampato al maglio dal 1891
The EnginSoft Newsletter editions contain references to the following
products which are trademarks or registered trademarks of their respective owners:
ANSYS, ANSYS Workbench, AUTODYN, CFX, FLUENT and any and all
ANSYS, Inc. brand, product, service and feature names, logos and slogans are
registered trademarks or trademarks of ANSYS, Inc. or its subsidiaries in the
United States or other countries. [ICEM CFD is a trademark used by ANSYS,
Inc. under license]. (www.ANSYS.com)
modeFRONTIER is a trademark of ESTECO srl (www.esteco.com)
Flowmaster is a registered trademark of The Flowmaster Group BV in the
USA and Korea. (www.flowmaster.com)
MAGMASOFT is a trademark of MAGMA GmbH. (www.magmasoft.com)
ESAComp is a trademark of Componeering Inc.
(www.componeering.com)
Forge and Coldform are trademarks of Transvalor S.A.
(www.transvalor.com)
AdvantEdge is a trademark of Third Wave Systems
(www.thirdwavesys.com)
.
LS-DYNA® is a trademark of Livermore Software Technology Corporation.
(www.lstc.com)
SCULPTOR is a trademark of Optimal Solutions Software, LLC
(www.optimalsolutions.us)
Grapheur is a product of Reactive Search SrL, a partner of EnginSoft
For more information, please contact the Editorial Team
Newsletter EnginSoft Year 7 n°4 -
JAPAN CAE COLUMN
60
62
For the growth of MONOZUKURI in Japan
Enjoy your Spring with Cherry Blossom in Kyoto
CORPORATE NEWS
64
65
ESSS North America: the right Company for the Oil&Gas
and Offshore Industry Jobs – ESSS & EnginSoft
“Houstonventure”
EnginSoft al Kilometro Rosso
EVENTS
66
66
67
5
Newsletter EnginSoft
Year 7 n°4 - Winter 2010
To receive a free copy of the next EnginSoft
Newsletters, please contact our Marketing office at:
[email protected]
All pictures are protected by copyright. Any reproduction
of these pictures in any media and by any means is
forbidden unless written authorization by EnginSoft has
been obtained beforehand.
©Copyright EnginSoft Newsletter.
Advertisement
For advertising opportunities, please contact our
Marketing office at: [email protected]
TechNet Alliance Fall Meeting 2010
EnginSoft Event Calendar
EnginSoft S.p.A.
SEMINARIO: Integrare Strumenti e Metodi di
Progettazione e Simulazione
24124 BERGAMO Via Galimberti, 8/D
Tel. +39 035 368711 • Fax +39 0461 979215
50127 FIRENZE Via Panciatichi, 40
Tel. +39 055 4376113 • Fax +39 0461 979216
35129 PADOVA Via Giambellino, 7
Tel. +39 49 7705311 • Fax 39 0461 979217
72023 MESAGNE (BRINDISI) Via A. Murri, 2 - Z.I.
Tel. +39 0831 730194 • Fax +39 0461 979224
38123 TRENTO fraz. Mattarello - via della Stazione, 27
Tel. +39 0461 915391 • Fax +39 0461 979201
PAGE 12 RELIABILITY EVALUATIONS ON
AN INNOVATIVE OIL PUMP UNDER
CRANKSHAFT TORSIONAL VIBRATION
www.enginsoft.it - www.enginsoft.com
e-mail: [email protected]
COMPANY INTERESTS
CONSORZIO TCN
38123 TRENTO Via della Stazione, 27 - fraz. Mattarello
Tel. +39 0461 915391 • Fax +39 0461 979201
www.consorziotcn.it
PAGE 23 ANSYS CFD 13
PAGE 39 AN UNSUPERVISED TEXT
CLASSIFICATION METHOD IMPLEMENTED
IN SCILAB
EnginSoft GmbH - Germany
EnginSoft UK - United Kingdom
EnginSoft France - France
EnginSoft Nordic - Sweden
Aperio Tecnologia en Ingenieria - Spain
www.enginsoft.com
ASSOCIATION INTERESTS
NAFEMS International
www.nafems.it
www.nafems.org
TechNet Alliance
www.technet-alliance.com
Errata corrige
In the last newsletter issue number 3 year 7 the article "Elysium
CADdoctor enriches product data quality in PLM" at page 57 was
wrongly attributed to Ing. Giovanni Borzi, EnginSoft SpA. The real
Author of the article is Dr. Sakae Morita, ELYSIUM Co.,Ltd., Japan. We
apologize for the error with the people involved.
RESPONSIBLE DIRECTOR
Stefano Odorizzi - [email protected]
PRINTING
Grafiche Dal Piaz - Trento
The EnginSoft NEWSLETTER is a quarterly
magazine published by EnginSoft SpA
Autorizzazione del Tribunale di Trento n° 1353 RS di data 2/4/2008
ESTECO srl
34016 TRIESTE Area Science Park • Padriciano 99
Tel. +39 040 3755548 • Fax +39 040 3755549
www.esteco.com
A BIG SUCCESS:
The Enginsoft International Conference on CAE
Technologies for Industry
Every year since 1984, the EnginSoft International
Conference offers an excellent networking platform where
attendees take the opportunity to talk to industry
representatives about how CAE – or as we say nowadays:
Virtual Prototyping – can decisively influence the innovation
of design and production processes. At the EnginSoft
Conference, we talk to industry using the language of
industry. This is how we discuss the presentations and
testimonials from managers, practitioners, researchers,
scientists and technology providers – always from a business
value perspective.
The ideas of the Conference organizers are expressed in the
conference themes which respond to the tremendous
expansion of software technologies and computing power
and the challenges of successfully integrating these
technologies into industry processes. This is why the agenda
also includes such topics as cost-benefit analysis,
organizational challenges, knowledge capitalization,
methods and methodologies, staff training and career
development, how to manage the growing complexity for the
supply chain, the reliability of engineering simulation, the
validation and integration through test and measurement,
and finally how to deal with uncertainties.
For a few years now, the Conference takes place concurrently
with the ANSYS Italian Users’ Conference. The growing
interest in the event is reflected in the number of
participants – steadily growing over the years, to a record of
600 in 2010! The annual get-together of technology users
also underlines the philosophy and success behind the
business models of EnginSoft, a company that has gained
broad and deep experiences in all sectors and at different
levels of virtual prototyping and that has performed highly
valued engineering and computational work since the
pioneering times of CAE, and also ANSYS Inc. - the leading
worldwide producer of engineering simulation technology.
ANSYS offers a range of products which are unparalleled in
depth, breadth and applicability, and which meet today’s
simulation needs in the most efficient ways. The 2010
edition of the Conference was held at the Fiera Montichiari,
near Brescia, and has enjoyed – in addition to the
advantages offered by the beauty and quality of the venue –
two extraordinarily sunny days, as if to mark how by
leveraging our knowledge, software technologies can bring
value to our ideas and turn them into winning solutions for
today’s design processes. The conference program was
structured into a plenary session and five parallel sessions
with a strong focus on two key areas: enabling technologies
and industrial applications in different sectors.
The plenary session was opened by Stefano Odorizzi, CEO of
EnginSoft. Dr. Odorizzi welcomed the audience and thanked
in particular the participants who had arrived from around
the globe. In his presentation, Dr. Odorizzi summarized the
recent evolution at EnginSoft, he pointed out how the
company is now located in the market area of software
developers and technology transfer providers. Mr Odorizzi
emphasized that today simulation is “not just simulation as
usual”. He explained the international expansion of
the company, including the consolidation of its
subsidiaries in Europe, the new initiatives in the USA,
new partnerships with software developers
(ReactiveSearch, KeyToMetals), and why existing
partnerships (Flowmaster, Transvalor, TWS) have been
strengthened to satisfy the customers’ needs in the
best possible way. Dr. Odorizzi also presented to the
audience recent Joint Ventures with Cascade
Technologies, Hy.per.CAE, ESSS and the latest news
on co-funded research and educational projects.
Prof. Gianluca Iaccarino from Stanford University, and cofounder of Cascade Technologies, - a California-based
company that collaborates with EnginSoft – presented a
keynote talk on high-fidelity multi-physics simulations,
highlighting where and how these can have an incomparable
value for industry, in applications such as gas-turbine
combustion, noise prediction and multi-phase flows in
general. Dr. Andreas Vlahinos from AES in Denver who now
collaborates with EnginSoft Americas, presented an overview
of recent advances in infrastructural engineering and new
concepts for electric vehicles, by comparing different
scenarios through different approaches, also with
modeFRONTIER. The last keynote speaker Prof. Carlo Poloni,
who with EnginSoft is one of the co-founders of ESTECO,
showed why modeFRONTIER could be considered a ‘green
technology’ tool, by giving an example built around a typical
trip through Europe where the use of the software, as
demonstrated by some users, can positively affect the CO2
footprint.
The ANSYS experts from the various sectors then informed
the audience about the latest developments of the
technologies. They provided an update on the ANSYS
products with exciting news for the users, and aroused the
curiosity of those who were not yet familiar with these
technologies.
The conference ‘Gold Sponsors’, Microsoft, IBM and
MathWorks, presented the final talks of the plenary session.
In the parallel sessions and in the ‘poster session’ a wealth
of about 100 papers by speakers from different industries,
research institutions, academia and software producers was
presented.
The exhibition has been well visited throughout the two
Conference days. Attendees and exhibitors enjoyed proactive talks sharing knowledge about new solutions and their
possible applications, visions and strategies for the future,
and discussed questions on complex CAE topics. Hands-on
experiences were provided in the demo sessions.
The Conference has kept its promise and showed that it
deserves the trust of the participants, in the excellent
content of the agenda and in the attitude of the organizers.
Above all, the conference was also a get-together of
extraordinary people who brought not only engineering
knowledge to Brescia, but also enthusiasm, liveliness and a
warmth, qualities that give the event every year, and
especially this year, a unique atmosphere and character.
EnginSoft Network met for
Partner Meeting at Villa
Fenaroli
On 22nd and 23rd October this year, EnginSoft S.p.A.
welcomed its Network Partners from France, Germany,
Greece, Spain, Sweden & Nordic Countries, the UK and
the USA to the annual EnginSoft Partner Meeting at
Villa Fenaroli in Rezzano, near Brescia.
EnginSoft S.p.A. the mother company of the Network,
welcomed for the first time, many of the new Network
Partners from the USA: Cascade Technologies, Stanford
University, Advanced Engineering Solutions AES,
Converged Mechanical Solutions and ESSS Brazil.
The Partner Meeting offered an opportunity to exchange
experiences and knowledge between the Network
Partners, and with the EnginSoft experts. The 2 days saw
a Get-together and lively discussions of different cultures
with a wealth of knowledge and diverse expertise in CAE,
in various sectors.
Network Partners from Europe, USA and Brazil met at Villa Fenaroli
The aim of the annual Meeting is to strengthen ties
between the Network nodes, to provide an update on the
different product and service portfolios of the Partners,
and hence to leverage the Network’s resources to meet
our customers’ needs and expectations in the best
possible way!
CONFERENCE PROCEEDINGS
The EnginSoft International Conference 2010 Proceedings are
now available on CD. The CD includes more than 90 papers
presented during the different sessions of the event.
To receive a copy of the CD, please email to:
[email protected]
UN GRANDE SUCCESSO:
La Conferenza Internazionale EnginSoft
sulle Tecnologie CAE per l’industria
Ogni anno, dal 1984, la Conferenza Internazionale di
EnginSoft raccoglie il successo di un ‘format’ che, nell’idea
ispiratrice, è sempre lo stesso: parlare all’industria di come la
sperimentazione virtuale – il CAE, per utilizzare un termine di
più lunga storia – possa contribuire in modo determinante
all’innovazione del processo progettuale, e, di conseguenza,
dei processi produttivi. Parlare all’industria utilizzando il
linguaggio dell’industria, che si sostanzia nelle testimonianze
degli operatori del settore – manager, direttori tecnici,
utilizzatori, ma anche ricercatori, scienziati, e produttori di
tecnologie – presentate in ottica di valore.
tecnologie, con un’offerta che non ha eguali per
completezza, applicabilità ed integrabilità.
L’edizione 2010 del convegno si è tenuta al Centro Fiera del
Garda di Montichiari presso Brescia, e ha goduto, oltre ai
vantaggi offerti dalla bellezza ed efficienza della sede, di due
giornate straordinarie di sole, quasi a rimarcare la
prorompente evidenza di come, facendo leva sulle
conoscenze – il cui ruolo è, e rimarrà, imprescindibile - le
tecnologie proposte possano portare in piena luce quanto,
nei processi progettuali, può dar valore alle idee rendendole
vincenti nella competizione industriale.
Se l’idea ispiratrice – singolare e caratterizzante, rispetto ad
altri convegni del settore – è sempre la stessa, la sua
espressione, e, quindi, i temi trattati, rispecchiano da un lato
l’evoluzione formidabile delle tecnologie software e
dell’hardware, e, dall’altro, i problemi e le opportunità
connesse con la loro integrazione nei processi industriali. Si
parla, quindi, di analisi costi-benefici, di aspetti
organizzativi, della capitalizzazione delle conoscenze, di
metodi e metodologie, della formazione del personale e delle
carriere, ma anche di come far fronte alla crescente
complessità dei contesti e delle catene produttive,
dell’affidabilità degli approcci della simulazione al computer,
dei metodi per validarli e dell’integrazione con la
sperimentazione diretta, del trattamento delle
incertezze.
Da alcuni anni, l’evento è svolto congiuntamente
alla Conferenza Italiana degli utilizzatori di ANSYS.
Ed il successo, misurabile nel numero dei
partecipanti – in crescita ogni anno, e, quest’anno,
oltre la soglia record dei 600! – segna, da solo, il
seguito che le due aziende hanno. EnginSoft, da un
lato, per la vastissima esperienza in tutti i settori
ed a tutti i livelli cui si applica la simulazione
virtuale, e presente sul mercato sin dai tempi
pionieristici delle tecnologie software; ANSYS
dall’altro, come principale produttore mondiale di
Il convegno è stato articolato in una sessione plenaria
introduttiva, ed in cinque successive sessioni parallele,
organizzate secondo una matrice a due ingressi: quello delle
tecnologie abilitanti, e quello delle applicazioni industriali,
distinte per settore.
La sessione plenaria è stata aperta da Stefano Odorizzi,
presidente di EnginSoft, che ha innanzitutto dato il
benvenuto e ringraziato i partecipanti, in particolar modo
quelli provenienti dai Paesi Europei, dagli Stati Uniti e dal
Giappone. L’Ing. Odorizzi ha poi illustrato, in sintesi,
l’evoluzione di EnginSoft e la sua collocazione nell’attuale
panorama dei produttori e mediatori di tecnologie di settore,
tenuto conto che, oggi, la simulazione non è
certamente più “just simulation ‘as usual’”. Ha così
parlato dell’espansione dell’azienda a livello
internazionale, con il consolidamento delle filiali
europee, e l’avvio di nuove iniziative negli Stati
Uniti; delle nuove partnership con i produttori di
tecnologie, sia in estensione di precedenti
collaborazioni (Flowmaster, Transvalor, TWS), che in
vista di settori complementari a quelli trattati
(ReactiveSearch, KeyToMetals); di recenti accordi e
cointeressamenti societari (Cascade, Hy.per.CAE,
ESSS, …); dei progetti di ricerca e per la formazione
specialistica e continuativa.
Successivamente nella sessione plenaria ha parlato il
prof. Gianluca Iaccarino, dell’Università di Stanford,
co-fondatore di Cascade, società californiana con cui
EnginSoft ha avviato un accordo di collaborazione. Egli ha
parlato di applicazioni multi-scala di “alta fedeltà”, e di
come queste possano avere, in alcune circostanze, valore
incomparabile per l’industria, discutendone attraverso
esempi di grande evidenza nella simulazione della
combustione, del rumore, e dei flussi multi-fase.
Dopo di lui, Andreas Vlahinos, di AES, Denver, e,
recentemente, collaboratore di EnginSoft Americas, ha
presentato uno studio sull’attualità dei veicoli alternativi –
veicoli elettrici, rispetto a diversi modelli di infrastrutture
per la ricarica delle batterie – ponendo a confronto diversi
scenari, confrontati utilizzando modeFRONTIER. Carlo Poloni,
fondatore, con EnginSoft, di ESTECO, ha chiuso la serie degli
interventi mostrando come modeFRONTIER possa essere
considerato una ‘tecnologia verde’, proponendo, con un
vivace esempio preso dalla quotidianità di un viaggio
attraverso l’Europa, di misurare la riduzione di emissioni di
CO2 imputabile all’applicazione dell’ottimizzazione nella
progettazione.
ATTI DELLA CONFERENZA
È disponibile il CD degli atti EnginSoft International
Conference 2010, contenente oltre 90 paper presentati
nelle varie sessioni della Conferenza.
Per ricevere una copia del cd inoltrare una richiesta via
email a: [email protected]
È stata, poi, la volta di ANSYS, che, con un intervento
articolato tenuto dagli esperti dei diversi settori, ha
aggiornato sulla nuova versione dei prodotti, ingolosendo gli
utilizzatori, ed incuriosendo quanti, nell’assemblea, non
avessero ancora familiarità con le tecnologie proposte. I
“gold sponsor” del convegno, Microsoft, IBM e MathWorks,
hanno, infine, concluso la sessione.
Successivamente, nelle sessioni parallele – e nella “poster
session” – sono state presentate un centinaio di relazioni,
contribuite da esponenti del mondo dell’industria,
dell’università e della ricerca scientifica. Le relazioni sono
disponibili negli atti del convegno.
È stata molto apprezzata, infine, l’area fieristica dove i
partecipanti al convegno hanno avuto modo di discutere con
gli espositori, prendendo visione delle loro soluzioni e
strategie di sviluppo, di porre domande specifiche e di
toccare con mano, nelle dimostrazioni, la qualità e
l’estensione delle applicazioni offerte.
Complessivamente, anche quest’anno il convegno ha
mantenuto le promesse, meritando la fiducia che i
partecipanti – sia i fedelissimi che quelli intervenuti per la
prima volta – hanno accordato agli organizzatori. Ma il
convegno è stato anche un incontro straordinario di persone,
che con la loro vivacità, entusiasmo e calore hanno conferito
all’evento un carattere ed uno stile unico nel corso degli
anni.
EnginSoft e MAGMASOFT:
una fusione di qualità
La Redazione ha intervistato Piero Parona, responsabile commerciale EnginSoft del settore della Metallurgia.
Domanda d’obbligo: qual è il tema scelto per quest’incontro
e come sono state organizzate le giornate?
Il motto della Conferenza di quest’anno è “Credere nell’innovazione, simulare il mondo!”, in esso è racchiuso lo spirito che
anima EnginSoft e la nostra propensione ad applicare la simulazione numerica, o prototipazione virtuale, alle diverse applicazioni industriali.
All’interno di questa Conferenza che ha carattere internazionale e che si svolge in due giornate, sono previste otto Sessioni
dedicate a specifici settori: Meccanica, Fluidodinamica,
Ottimizzazione, Design Chain, Fonderia, Forgiatura,
Elettromagnetismo.
In queste sessioni è possibile ascoltare direttamente dalla voce delle Industrie, lo stato dell’arte sull’applicazione del CAE
(Computer-Aided Engineering o per dirlo in Italiano:
Ingegneria assistita dal computer) alle diverse tematiche di interesse industriale e della ricerca. Quest’anno i relatori sono
più di 90.
Quanto sono importanti le tecnologie Œsmart
nel mondo della fonderia?
La fonderia è uno dei settori manifatturieri in
cui interviene il maggior numero di interazioni
fra discipline diverse: la chimica, la metallurgia, la termica, la fluidodinamica, solo per citarne alcune. Esse concorrono, durante i diversi processi fusori, a dar vita al prodotto finale:
il getto di fonderia. La sfida è riuscire a rendere la complessità di queste interazioni, trasparenti all’utente, senza per questo fare delle approssimazioni che renderebbero vani i vantaggi
della simulazione. In altre parole dobbiamo
poter disporre di uno strumento potente e robusto per l’accuratezza delle analisi, ma utilizzabile facilmente da qualsiasi
tecnico di fonderia. In questo modo possiamo avere a disposizione una fonderia virtuale in cui sperimentare e ottimizzare
processi e prodotti con l’ottica della riduzione dei costi e del
miglioramento qualitativo e prestazionale dei getti. Con questi
presupposti la società tedesca MAGMA presenta in questa
Conferenza MAGMA5, la nuova generazione del software di simulazione dedicato alle fonderie, più diffuso al mondo, e
MAGMAfrontier, il modulo di ottimizzazione automatica multiobiettivo, che rappresenta il fine cui ogni fonditore aspira: il
getto migliore, al costo minore.
Qual è stata la risposta in termini di partecipazione all’evento? Siete soddisfatti della sua riuscita?
La Conferenza EnginSoft è diventata ormai un evento culturale
ben consolidato e di grande importanza per il mondo industriale italiano e internazionale. Possiamo dire che in Europa non
esistano altre Conferenze dedicate al CAE, con la stessa ampiezza di temi trattati e la partecipazione di relatori e pubblico provenienti da tutti i continenti, Asia e Americhe incluse. I
partecipanti sono più di 600 e in questi due giorni ciascuno di
essi ha la possibilità di seguire le sessioni tematiche che più lo interessano, i workshop applicativi dei software, i forum con gli esperti di
ogni tecnologia, e visitare gli stand degli sponsor, che quest’anno sono circa una ventina.
Ci può riassumere quali sono le tematiche
principali emerse in questi due giorni?
Per quanto riguarda la fonderia, molti sono stati i temi affrontati provenienti sia dal settore
dei metalli non-ferrosi che da quello dei ferrosi.
Per quanto riguarda i non-ferrosi lo studio di progettazione
bergamasco SPS ha trattato l’importante argomento della simulazione come ausilio alla progettazione degli stampi da pressocolata e ad esso si è collegato quello della fonderia friulana
Friulpress, anch’esso dedicato alla pressocolata, ma questa volta con l’esposizione di uno studio di Ottimizzazione automatica con MAGMAfrontier per il miglioramento qualitativo di un
getto per il settore motociclistico. Sempre al settore dei non
ferrosi appartiene la relazione tenuta dal Prof. L. Kallien
dell’Università di Aalen, che ha fatto una panoramica entusiasmante degli attuali settori sui quali il suo gruppo sta lavorando, soprattutto per la pressocolata, e come la simulazione con
MAGMASOFT venga largamente utilizzata per la formazione di
base degli ingegneri di fonderia. Per quanto riguarda i metalli
ferrosi, l’Università Politecnica delle Marche con l’ing. Michela
Simoncini, ha presentato un interessante studio di ri-progettazione delle modalità di colata in shell moulding di anelli in ghisa in cui MAGMAiron è stato fondamentale per il miglioramento della qualità dei getti, l’aumento della resa per colata e la
previsione delle caratteristiche meccaniche finali del getto. La
fonderia veneta VDP ha relazionato invece su un innovativo
progetto che integra la previsione dei difetti con MAGMAiron in
un sistema di progettazione automatica per il dimensionamento delle colate e del sistema di alimentazione dei getti, con lo
svolgimento di prove sperimentali che hanno dimostrato la
bontà delle simulazioni rispetto alla realtà di fonderia.
Particolarmente stimolante e originale è stato poi l’intervento
della fonderia piemontese Perucchini, che occupandosi di una
tecnologia di nicchia come quella dello shell moulding, ha parlato dell’uso della simulazione MAGMASOFT in chiave marketing
per dimostrare ai potenziali clienti la bontà tecnica ed econo-
mica di questo processo, rispetto ad altri processi più convenzionali. La giornata è proseguita con la nuova versione
MAGMA5.1 dedicata a tutti i processi con stampo metallico,
quindi parliamo di pressocolata, bassa pressione e conchiglia
in gravità, che ha suscitato notevole interesse per la sua innovativa modalità di impostazione delle analisi e facilità d’uso,
grazie anche alle nuove interfacce dirette con CATIA, ProE e i
principali CAD. La possibilità di prevedere la durata degli stampi prima dell’insorgere in essi delle cricche da fatica termica, e
la previsione delle caratteristiche meccaniche dei getti in lega
leggera, grazie all’uso di un nuovo modello micro-strutturale, è
stato recepito come una reale innovazione che potrà portare a
notevoli vantaggi economici per le fonderie. L’ottimizzazione
automatica, la simulazione della formatura delle anime, dei
processi Disamatic e Shell moulding, la simulazione dei trattamenti termici e la previsione dell’andamento delle tensioni e
deformazioni del getto durante l’intero ciclo di trattamento,
sono stati altri argomenti che sono stati accolti con grande interesse a saranno sicuramente oggetto di applicazione immediata da parte di molte delle fonderie intervenute, con delle
immediate ricadute sulla qualità dei getti prodotti. Ed è proprio questo il fine di questa Conferenza: rendere fruibili nel lavoro quotidiano di ogni azienda lo “stato dell’arte” del CAE, per
favorire con esso, l’innovazione e la competitività sul mercato.
Intervista a Piero Parona
EnginSoft
Intervista pubblicata su Pressocolata e Tecniche Fusorie
Anno 2010 - Num. 2
12
- Newsletter EnginSoft Year 7 n°4
Reliability Evaluations of an Innovative
Oil Pump under Crankshaft Torsional
Vibrations
Pierburg Pump Technology (PPT) is a company specializing
in the development and the production of mechanical and
electrical oil pumps, mechanical and electrical water pumps
and vacuum pumps.
PPT is collaborating with most of the automakers worldwide
in order to develop new products that fulfil the
requirements of the Euro5 and Euro6 standards.
automotive market, could provide fuel consumption
reductions of up to 2.5%, with corresponding CO2
reductions. Nevertheless, these vane pumps are significantly
more complex and less robust of the traditional geared ones
and for this reason, they require a long engineering phase
in which the support of the most advanced simulations
technologies is even more important every day.
Remarkably, these environmental restrictions have caused a
radical change in the design of oil pumps which now must
be able to optimize the engine lubrication while at the
same time reducing the fuel consumption. In order to
achieve this, PPT is developing the new generation of oil
pumps based on the new vane concept with variable
displacement (VOP), instead of the traditional gear design.
In fact, through this design revolution, PPT, as well as some
other competitors leader in the pumps development for the
An example of the PPT engineering approach
As an example of the PPT engineering approach, we
describe here the activities of the Calculation and
Simulation group during the development of an oil pump
for a new Euro5 engine. These activities involve both
calculation and testing. Based on the requirements of the
customer, one of the world’s leading automakers – the
R&D group of PPT has decided to develop, a vane oil pump
with variable displacement in order to achieve the
required fuel consumption reduction while maintaining
the same performance level as is provided by a traditional
pump. This VOP pump was designed for a new gasoline
engine; this new engine was based on an existing engine,
but with a modified injection system, the power has been
doubled.
Fig. 1 - A crack in the VOP rotor after the engine test
Fig. 2 - Magnification of the worn and cracked rotor engagement face
During this design phase, the PPT team made all
preliminary verifications of the design following the
internal standard calculation procedure, using on both
commercial and in-house software. This procedure is based
on both commercial and in-house software and allows the
design team to verify that the pump is well-designed from
the standpoints of kinematics, dynamics, hydraulics and
structural.
Early testing of prototypes confirmed a
successful design, however there were some failures
observed in a following validation phase when installed
on the actual engine.
In particular, the breakages have affected the pump rotor
that cracked generally at 1/3 of the total tests duration
or, in some cases, even before. As a first step, a SEM
investigation of the cracked surfaces of the parts have
been performed in order to investigate deeper the failure
mode and to guess the main causes of breakages. Through
this investigation it has been clarified that the failures
have been the result of a classical fatigue phenomenon
which starting point is likely located on the rotorcrankshaft (CS) engagement face, where the surfaces have
also a ductile aspect due to the several impact loads
between the two parts.
Newsletter EnginSoft Year 7 n°4 -
13
effects were taking place while the pump
was working [3]. Based also on these
results, some MB simulations were
performed modelling the complete oil pump
and applying as external loads the oil
delivery pressures previously estimated
through the CFD analyses. Through this
modeling and the imposition of the torsional
vibrations on the CS, the dynamic forces
between the VOP parts in presence of
acyclisms have been estimated.
In this way also the contact forces between
the rotor and the crankshaft, which should
be the main cause of the rotor failures, have
been evaluated in several working
Fig. 3 - Comparison of the CS torsional vibrations for the Euro4 and Euro5 engines
conditions [1]. Moreover, the detailed
The simulation work
analysis of these loads has clarified that the “Evo” engine
Based on these results, a complete calculation loop
causes a dramatic increase of in the CS-rotor impacts due
involving hydraulic, kinematic, dynamic and structural
to its high motion irregularity. As confirmation of this, the
evaluations was conceived by the R&D simulation group in
maximum values of the CS-rotor contact forces have been
order to verify the suspicion that the crankshaft’s irregular
estimated to be 5 times higher for the Euro5 engine
motion could be the main cause of the failures. Although,
application than the ones of the Euro4.
even if some preliminary calculations were
performed in the design phase, it was
absolutely necessary to investigate whether
the crankshaft torsional vibrations, which
was not included in the previous
verification simulation, could significantly
increase the level of load in the VOP. In
order to do so, the CS acyclisms in various
working conditions were measured by the
customer, readily verifying easily that the
irregularity of the motion in the “new”
Euro5 engine was much higher than that in
the “old” Euro4 [2].
Moreover, some CFD analyses were carried
out, to estimate the oil pressure level and
to verify that no unwanted fluidodynamic
Fig. 5 - CFD evaluation of the VOP oil pressure
Fig. 4 - CS-rotor contact forces and rotor speeds vs CS rotation angle from MBs
Fig. 6 - Equivalent stress in the rotor from FEAs
14
- Newsletter EnginSoft Year 7 n°4
The forces evaluated in this way were then used to
perform an FEM simulation in order to evaluate their effect
on the stress level in the rotor in general and in the rotorcrankshaft interface in particular.
In order to do so, the dynamic problem schematized in the
MB has been reduced to an equivalent static one applying
the “d’Alembert Principle” [4-5], so that the inertial
torques are distinguished from the reaction torque due to
the constraints and the loads. For this reason, the forces,
the angular accelerations and the friction and inertia
torques in specific high-stressing instants have been
recollected from the MB and implemented in ANSYS. The
FEM simulations so completed have confirmed that the
crack initiation starts on the rotor engagement surface in
contact with the CS.
Remarkably, the FEAs have also demonstrated that the
failures are essentially caused by the abnormal loads
coming from the engine and not by a lack of robustness in
the rotor. As further confirmation of this, the level of
more the safety of the part and to avoid further failures.
As final confirmation of the whole reliability analysis
activity, the significant improvement of the rotor safety
was confirmed by the following tests on the engine. These
test were successfully passed even for the worst working
conditions.
Summarizing, the multidisciplinary analysis so performed
has allowed PPT to find and to examine the causes of
failures of a rotor for an innovative oil pump, allowing PPT
to describe them very carefully to the customer. In this
way, the engineering choices already taken during in the
first design phase have been confirmed, allowing PPT to
propose and evaluate only the design modifications that
could significantly increase the reliability of the part.
Finally, through this approach, PPT has managed to
propose and validate through calculations the final
proposed pump design, thus avoiding a long tests phase
that could significantly increase the time and costs of the
product development.
Fig. 7 - Stress reduction in the rotor and consequent SF increase as result of redesign activity
stress in the current Euro4 application has been estimated
through the repetition of the MB and FEA calculations,
confirming that the dramatic increase of the engine
motion irregularity could cause rotor breakages for the
pump already in production also.
The rotor redesign to avoid the failures
In addition to this, the calculations loop here described
has enabled the evaluation of the possible benefits of
some design modifications through the repetition of the
MBs and the FEAs. In particular, the variation of the CSrotor clearance at the engagement surfaces, the increase
of the critical strength section of the rotor and increase of
the number of the engagement surfaces have been
evaluated as possible modifications for the reduction of
the stresses in the rotor.
Through the evaluation of these, it has been verified that
a proper combination of all these modifications will
increase the part SF from 1 up to almost 2. In addition to
this, a decrease of the motion irregularity has been finally
agreed to with the customer in order to increase even
Bibliography
[1] Nicola Novi, Raffaele Squarcini, Francesco Frendo,
Dynamic and kinematic evaluation of automotive
variable displacement vane pumps for reliability
characterization, SAE2009 09PFL-1221.
[2] Dante Giacosa, Motori Endotermici, Hoepli editore.
[3] F. Brusiani, G. M. Bianchi, M. Costa, R. Squarcini, M.
Gasperini, Analysis of Air/Cavitation Interaction Inside
a Rotary Vane Pump for Application on Heavy Duty
Engine, SAE2009 2009-01-1943.
[4] G. Mattei, " Lezioni di Meccanica Razionale", Servizio
Editoriale Universitario di Pisa.
[5] E. Funaioli, A. Maggiore, U. Meneghetti, “Lezioni di
Meccanica Applicata alle Macchine Vol.1”, Patron
Editore.
Alessandro Testa, Raffaele Squarcini,
Matteo Gasperini, Riccardo Maccherini
Calculation and Simulation Group,
Research & Development Department
Pierburg Pump Technology Italy SpA, Livorno
Newsletter EnginSoft Year 7 n°4 -
15
Design of metamaterial based devices
for electromagnetic applications
In the last decade, great attention has been devoted to the
study of Metamaterials. The electromagnetic properties of
homogeneous materials arise from the microstructure and
chemical composition of the material. These properties,
generally measured by permittivity and permeability, dictate
the response of the material to external electric and
magnetic fields, respectively. Artificial electromagnetic
materials are man-made composite structures which exhibit
properties not found in natural bulk materials.
Compared to the artificial electromagnetic materials, in
artificial impedance surfaces the structure is bound into two
dimensions.
These HISs are mainly used at microwave and (sub)
millimeter wave frequency and provide surface wave
suppression, improve antenna performance for modern
wireless communication systems, limit the interference
among adjacent devices, realize enhanced radar absorbing
materials, and foster novel microwave circuits and
waveguide designs.
In this work the unique properties of metamaterials will be
shown by using some examples regarding the suppression of
simultaneous switching noise and the implementation of
novel radar absorbing materials.
Fig. 1 - Three-dimensional sketch of the analyzed configuration (a) and a picture of a manufactured wideband absorber.
These surfaces can control the propagation or the
boundary conditions of electromagnetic fields and
are generally referred as High Impedance Surfaces
(HIS). The basic configuration of a metamaterial
generally comprises an arrangement of metal
elements of on a periodic lattice which are printed on
a planar grounded dielectric slab.
High impedance surfaces can be exploited to realize
Electromagnetic Bandgap (EBG) structures, which
prevent surface wave propagation within the socalled forbidden band, and Artificial Magnetic
Conductors (AMC), which approximate the behavior
of a Perfect Magnetic Conductor (PMC). The
electromagnetic behavior of these surfaces can be
tailored by using a proper design of the basic
element shape and size, a suitable value of the
periodicity and a correct choice of the dielectric
properties and thickness of the single or multiple
dielectric slabs employed for the structure.
Fig. 2 - Reflection coefficient of the ring FSS over a grounded air slab of 5mm. The
results obtained by Ansoft HFSS are compared both with MoM simulations and with an
equivalent circuit approach.
16
- Newsletter EnginSoft Year 7 n°4
Fig. 3 - Phi-cut of the electric field scattered by a finite absorber. (b) Scattering pattern of the 10x10 ring array on top of a 5 mm grounded air slab. The scattering patterns is shown at a frequency within the absorption band and compared with the scattering patterns of a PEC plane with the same dimensions.
Radar Absorbing Materials
The absorbing panel consists of a conventional high
impedance surface comprising lossy frequency selective
surfaces over a thin grounded dielectric slab [1]. The FSS
array, made up of capacitive cells, behaves as a capacitor in
the low frequency region but its impedance becomes
inductive after the first resonance. Let us consider an FSS
composed by a ring array, with a periodicity D equal
to 11 mm and a surface resistance Rs of 70 Ω/sq,
printed on a air grounded dielectric substrate with a
thickness of 5 mm (see Fig. 1). In Fig. 2 the
reflection coefficient of the absorber obtained by a
periodic MoM code, by the equivalent circuit
approach and by Ansoft HFSS v.10 is reported.
the matching condition over a wide frequency range. The
energy would be reflected in other directions only if the FSS
period were larger than one wavelength. In the present
design the redirection of the energy toward the grating
lobes starts after 27 GHz. In Fig. 3a the scattered field of a
finite absorbing structure obtained by HFSS is represented
within a phi cut.
The absorbing structure provides remarkable
performance (-15 dB in the band from 7 GHz to 20
GHz) with an overall thickness of only 5 mm. The
thickness of the absorber for obtaining the shown
absorption profile approaches the physical limitation
of the non-magnetic RAM [2]. Indeed, in this case,
the minimum theoretical thickness is 4.5 mm.
Fig. 4 - The two power planes form an effective parallel-plate waveguide with the same
area of the PCB.
This performance cannot be accomplished by
lightweight configurations employing optimized
Jaumann screen [3] or by other commercially
available non-magnetic multilayer structures (see for
instance [4]) with a thickness lower than 9-10 mm.
Despite the intrinsic periodicity of the structure, its
dimension can be reduced down to a 4 by 4 array
preserving almost the same absorption performances,
with respect to a PEC plate of the same dimensions.
The absorber here presented does not redirect the
energy in other directions as in other RAM designs
[5] but it dissipates the incoming power by realizing
Fig. 5 - (a) Planar EBG unit cell and (b) qualitative equivalent circuit..
Newsletter EnginSoft Year 7 n°4 -
17
x-direction can be neglected. When a high-speed device
switches, a sudden time-varying currents changes the
current consumption and a voltage wave arises and
propagates along the two planes, causing the so called
Simultaneous Switching Noise (SSN), which produces false
switching in digital circuits and malfunctioning in analog
Fig. 6 - Planar EBG structure with test ports for S parameter evaluation.
The graph shows that the energy is dissipated by the
structure and not redirected in other directions. The
reflected patterns both for a metallic square of 110 mm x
110 mm and for the presented absorbing structure with the
same dimension (10 x 10 unit cells) in correspondence of a
frequency inside the absorption band are reported in Fig.
3b. The radiation pattern has been obtained by using the
HFSS full wave simulator.
Fig. 7 - Numerical result of the magnitude of S21 parameter.
The manufactured structure results in a very lightweight
configuration, indeed a 30 cm × 30 cm sample weighs 10 g
compared with the 450 g of a commercial magnetically
loaded absorber (Eccosorb [6]) with the same dimensions.
Metamaterials for Simultaneous Switching
Noise Suppression
The recently emerged system-on-package (SoP) technology
provides low-cost and compact digital circuits for
communication devices, sensors or high-speed modules; SoP
requires highly integrated systems [7][8]. This is obtained
by integrating multiple dies and passive devices on
substrates which are stacked in three dimensions and
interconnected laterally or vertically onto the package
substrate. The use of vias as interconnection structures in
high-density System on Package substrates and Printed
Circuit Boards (PCBs) is the most common solution to route
signals in these multilayer structures. These closely-spaced
interconnections may become sources of high-frequency
noise and generate coupling wich affects both signal and
power integrity. This can cause serious problems regarding
electromagnetic interference (EMI) and electromagnetic
compatibility (EMC) control.
In fact, as a result, the noise reduces the achievable
performance, worsens the bit error rate (BER) and greatly
lowers the system reliability. Active devices are generally
connected between two planes or can be linked to the
signal layer by using through-vias. These two planes, which
have the same area as the PCB, can be considered as an
ideal parallel-plate waveguide (Fig. 4), where the dimension
in the y-direction is assumed to be much larger than the
thickness h and therefore any variation along the
Fig. 8 - Numerical result of the magnitude of S31 parameter.
Fig. 9 - Numerical result of the magnitude of S41 parameter.
18
- Newsletter EnginSoft Year 7 n°4
circuits. The guiding structure reported in Fig.4 can support
transverse electric (TE), transverse magnetic (TM) and
transverse electric and magnetic (TEM) modes [9].
Since the typical thickness of the commercially available
PCBs is on the order of few millimetres (1 mm – 5 mm), the
cut-off frequencies for TE and TM modes are very high (on
the order of hundred of gigahertz) hence the only modes of
concern are the dominant waves of TEM modes with the cutoff frequency corresponding to that of the TM0. In addition
to this, since practical power planes have finite width and
length it is also important to consider the resonance modes
TEmnp and TMmnp excited in the structure given by:
Since h is very small with respect to w and l, only TEmn0 and
TMmn0 modes have to be investigated. It is therefore of
paramount importance to suppress the resonant modes
induced in the parallel-plate waveguide of finite length and
width.
Our aim is to design a metamaterial which is able to inhibit
the propagation of the SSN within a large bandwidth (from
1.0 GHz to 6.6 GHz) with a good suppression level (less
than -30 dB) and also along a wide range of directions. More
specifically, we look at to the employment of an
Electromagnetic Bandgap (EBG) structure which prevents
the propagation within a specific frequency band. The EBG
unit cell is shown in Fig. 5a. The size is 30 mm x 30 mm and
the gap between the lines is equal to 1 mm. A simple model
for the qualitative behaviour of the unit cell is presented in
Fig.5b.
This equivalent circuit with lumped elements contains a
capacitance Ca and an inductance La which take into account
the interaction between the EBG patch and the continuous
plane. The second part refers to the thin line connecting the
inner patch of each unit cell to the other part of the
structure (Lb) and the capacitance Cb produced by the gaps
between neighbouring cells.
The addressed power/ground plane with the planar EBG
printed on the upper layer comprises 3 x 3 unit cells. The
whole dimension is 90 mm x 120 mm as reported in Fig. 6,
where the ports used for S parameter evaluation are
indicated. The two conductive layers are placed at the top
and down face of a slab of FR4 dielectric material (εr=4.4,
tg loss=0.02). The thickness considered for the dielectric
layer is 1.54 mm.
The behaviour of the structure is probed at four points by
means of lumped ports. Each lumped port used to test the
SSN suppression is located at the inner patch centre. The
employment of four ports makes it possible to check the
different level of suppression for different directions of
propagation along the EBG structure. As a reference, we
compare the EBG performance with a two-layer solid power
plane. All the simulated results were obtained using the
Ansoft High Frequency Structure Simulator (HFSS). In Fig. 7,
Fig.8 and Fig.9 there are reported comparisons between the
attenuation realized by the structure along the path
connecting various connecting ports. The magnitude of the
parameter S21 is maintained below -30 dB over the
bandwidth starting from around 1.0 GHZ up to 6.6 GHz for
all the investigated cases.
References
[1] F. Costa, A. Monorchio, G. Manara “Analysis and Design
of Ultra Thin Electromagnetic Absorbers Comprising
Resistively Loaded High Impedance Surfaces”, IEEE
Trans. on Antennas and Propagation, vol. 58, no. 5,
2010.
[2] Rozanov, K. N., “Ultimate Thickness to Bandwidth Ratio
of Radar Absorbers,” IEEE Trans. on Antennas and
Propagation, vol. 48, no. 8, pp. 1230-1234, 2000.
[3] B. Chambers and A. Tennant, “Optimized design of
Jaumann radar absorbing materials using a genetic
algorithm,” Inst. Elect. Eng. Proc. Radar Sonar Navigat.,
vol. 143, pp. 23–30, Jan. 1996.
[4] Laird Tecnologies Company, http://www.lairdtech.com/
Products/EMI-Solutions/Specialty-EMI-Solutions/
Microwave-Absorbers/.
[5] Paquay, M. Iriarte, J.-C. Ederra, I. Gonzalo, R. de Maagt,
P., “Thin AMC Structure for Radar Cross-Section
Reduction”, IEEE Trans. on Antennas and Propagation,
vol. 55, no. 12, pp. 3630-3638, 2007.
[6] Emerson and Cuming Microwave product, 28 York Avenue
Randolph,
MA
02368
USA,
http://www.eccosorb.com/main/Home.html.
[7] R. R. Tummala, M. Swaminathan, M. M. Tentzeris, J.
Laskar, G.-K. Chang, S. Sitaraman, D. Keezer, D. Guidotti,
Z. Huang, K. Lim, L. Wan, S. K. Bhattacharya, V.
Sundaram, F. Liu, and P. Markondeya Raj,“The SoP for
miniaturized,
mixed-signal
computing,
communication,and consumer systems of the next
decade,” IEEE Trans. Adv. Packag.,vol. 27, no. 2, pp.
250–267, May 2004.
[8] T. Sudo, H. Sasaki, N. Masuda, and J. L. Drewniak,
“Electromagnetic interference (EMI) of system-onpackage (SoP),” IEEE Trans. Adv. Packag., vol. 27, no. 2,
pp. 304–314, May 2004.
[9] D. Pozar, Microwave Engineering, 2nd ed., New York:
Wiley, 1998.
Agostino Monorchio, Simone Genovesi, Filippo Costa
University of Pisa, Dipartimento di Ingegneria
dell’Informazione: Elettronica, Informatica,
Telecomunicazioni - Pisa, Italy
Newsletter EnginSoft Year 7 n°4 -
19
Electro-thermal simulation for EV/HEV
applications
High power energy storage systems are necessary for the new
age of electric vehicles. Lithium ion batteries have the
advantage of high energy density, good aging characteristics
and high efficiency, but at the same time their thermal range of
operation is limited. With temperatures under 0°C, the power
capacity of the lithium battery is reduced about 70% and with
a temperature over 40°C, irreversible damage can occur over
70°C there can also be thermal runaway. Hence efficient and
accurate thermal management is necessary.
The battery cooling system shown in Fig 1 is analyzed and
designed with the aid of numerical tools. We use a modeling
methodology starting with CFD and ending at a low dimensional
Fig. 1 - The battery pack model (http://www.lionsmart.de/)
the cell model (see Fig 3 right). The
electrical model is implemented in VHDLAMS language.
The effect of discharge current is evaluated
in 25Ah cells connected in series in 1,5 and
10 C-rates, see Fig. 4. Losses effects are
present in higher currents showing a
reduced total capacity and lower voltage,
which can be observed in the voltage
profiles.
Fig. 2 - The idea of model order reduction (http://ModelReduction.com)
L. Kostetzer; S. Nallabolu; E. Rudnyi
CADFEM GmbH, Grafing bei München, Germany
but accurate compact thermal model for system level simulation.
This model is ready to be coupled with other physical domains
For more information, please contact:
like electrical, chemical and mechanical. Detailed CFD simulation
Mr Erke Wang - [email protected]
is performed to analyze the air flow over corrugated channels.
Heat transfer coefficients are calculated with CFD and then used
in a finite element (FEM) thermal model of a Li-Ion battery pack
with one-dimensional flow (FLUID116).
The finite element thermal model is, however, incompatible with
system level simulation, since it is high dimensional and its
transient simulation takes too much time. We use modern model
reduction (see Fig 2) in order automatically to develop an
accurate compact thermal model of the battery pack.
After that we use a semi-physical electrical model of the battery.
It is based on electrochemical equations developed by the group
Fig. 3 - Electro-thermal battery coupling in Simplorer
of Prof Newman (DualFoil), but with simplified assumptions to
speed model simulation. The parameters
of the model still have some physical
meaning but they should be determined
during a parameterization procedure.
The system level thermal model is
coupled with an electrical battery cell
model in Simplorer (see Fig 3 left). For
simplicity, only three cells that are
coupled with the battery pack are
shown. A sub-circuit model describes Fig. 4 - Voltages and temperatures in constant current discharge
20
- Newsletter EnginSoft Year 7 n°4
Structural Identification of a Composite
ARW-2 Wing Model
At NASA Langley Research Center, a program called Drones for
Aerodynamics and Structural Testing-DAST was carried out to
generate an extensive database of measured steady and
unsteady pressure data to be used in validation of
computational aero-structural studies. The data concerning the
composite aeroelastic research wing (ARW-2) presented in this
program has been used as a benchmark problem by many
researchers in the past mostly with simplified models. However,
the structural definition of the composite skin as presented in
literature is not complete enough to create a 3D "Finite Element
Model" of the wing skin to use in validation of computational
studies today. Thus, a computational composite ARW-2 wing
model which has the similar structural response with the
experimental wing should be identified to be used in highfidelity computations. ARW-2 composite skin is made of
fiberglass material with honeycomb panels sandwiched between
the middle two layers of fiberglass. Moreover, the thicknesses of
ribs, spars, skin and axial bars of the wing are still missing
geometrical properties.
Several experimental studies about ARW-2 wing exist in
literature. Sanford [1] provides geometrical and structural
properties of the ARW-2 wing. Sanford [2] also presented
experimental studies for steady state conditions in order to
generate extended database for the ARW-2 wing. Unsteady
transonic aerodynamic characteristics of the ARW-2 wing are
given in Seidel's [3] experimental work. In addition,
computational studies concerning the ARW-2 wing have been
presented by Cohen [4] and Bhardwaj [5]. Bhardwaj created a 3D
the ARW-2 wing model with isotropic skin and verified the ARW2 computational wing model for static aeroelastic analysis in the
transonic regime. Farhangnia [6] performed static and dynamic
Aeroelastic analysis by using an aeroelastic code ENSAERO which
was also used by Bhardwaj. Farhangnia modeled the wing
structure as a composite plate. A 3D computational isotropic
ARW-2 wing model which has a compatible structural response
with the experimental wing was identified in a former study and
also aeroelastic validation and multi-disciplinary optimization of
this isotropic ARW-2 wing model was performed by Nikbay and
Aysan [7]. In this paper, a further study is carried on identifying
a 3D structural model of ARW-2 wing with composite skin
parameters by taking into account only bending, torsional
Fig. 1 - Computational model of ARW-2 wing structure
responses and modal analysis. The aim of the whole study is to
come up with a reliable computational ARW-2 model with
composite skin which is validated in both structural and
aeroelastic responses to be used in benchmark studies. This
identification process utilises an inverse engineering approach
based on a multi-objective optimization algorithm
modeFRONTIER 4.1 driving a structural finite element solver,
Abaqus 6.7.
NASA's ARW-2 wing had three different supercritical airfoils in
order to investigate the interaction between the flexible, or
elastic wing and the aerodynamic forces experienced during
flight in transonic regime [1]. The geometric model created via
the software CATIA V5R17 is shown in Figure 1.
The spars and ribs were machined from 7075-T73 aluminum
alloy. In Table 1, mechanical properties of Aluminum 7075-T73
are presented.
Table 1 - Mechanical Properties of Aluminum 7075-T73
The ARW-2 wing composite skin was made of fiberglass material
with honeycomb panels sandwiched between the middle two
layers of fiberglass for areas of skin not located over the spars
or ribs. The number of layers of fiberglass used to make the skin
varied from 36 at the inboard end to 27 at the outboard end,
with approximately 25 % of the layers at ±45 degree orientation
[3]. By using these definitions, the wing skin is divided into two
as inner and outer surfaces. The honeycomb core is located at
the center of these surfaces. The ±45 degree plies are located
around the honeycomb core, symmetrically. The 0 degree and 90
degree plies are placed above the ±45 degree plies.
In order to determine the upper and the lower limits of unknown
mechanical properties of the fiberglass material, microstructural composite analysis is done by using Halpin-Tsai
equations [8]. The Halpin-Tsai equations are simple approximate
forms of the generalized self consistent micro mechanical
solutions and proven to agree well with experimental values [8].
To generate the macro-structure of the composite model for the
ARW-2 wing skin, orthotropic elasticity in plane stress case is
considered in this study, which Abaqus 6.7 is used as the finite
element solver.
If both material properties and thickness parameters of
composite skin are introduced as optimization variables in the
inverse identification problem, the number of optimization
variables increases dramatically, thus complicating the process
to find a feasible optimum solution. For the sake of simplicity,
the material properties of reinforcement and matrix materials are
taken from literature and the average material values for
composite skin is provided by using Halpin-Tsai equations and
tabulated in Table 2. In the optimization problem, concerning
Newsletter EnginSoft Year 7 n°4 -
Table 2 Mechanical Properties of Fiberglass and Honeycomb
the composite skin, only the thicknesses of honeycomb and
fiberglass layers are left as optimization variables.
Here, we consider a multi-objective optimization problem based
on structural mechanics where the missing thicknesses of the
fiberglass layers, the honeycomb core and, ribs, axial bars and
spars are defined as optimization variables. The optimization
problem for the composite ARW-2 structural identification has
eight inequality constraints and two objective functions. The
objective functions of the optimization algorithm are; 1) to
minimize the average relative error in first five modal
frequencies and 2) to minimize the average of relative error in
static bending displacement at the wing tip on rear and front
spars. For bending analysis, a 100 lb load is applied in the
upward direction at the wing tip on the front spar of the wing
to carry out the identification study. The torsional response is
not included as an error criterion in the optimization problem
but will be checked after the optimum solution for the identified
model is provided.
There are four inequality constraints which control the thickness
and radius of axial bars. The remaining inequality constraints are
defined to limit the relative error for the first mode, the average
relative error for the first three modes, the average relative error
of five and to limit the wing tip deflection relative error.
The optimization workflow is constructed in the multidisciplinary and multi-objective optimization program,
modeFRONTIER 4.1. using a gradient-based optimization
algorithm NLPQL which is based on a "Sequential Quadratic
Programming"(SQP) algorithm. SQP is an algorithm that has
demonstrated robustness and efficiency for a broad range of
optimization problems [9]. NBI-NLPQLP (Normal Boundary
Intersection-Sequential Quadratic Programming Method) [10] is
used to solve multi-objective optimization problems.
Figure 2 gives a detailed explanation for the symbols of nodes
used in the optimization flowchart. Figure 3 shows the
modeFRONTIER workflow scheme which is constructed for this
structural identification type of optimization problem. As seen
in Figure 3, the optimization variables are placed on the left side
and also the inequality constraints for the radii and thicknesses
of the axial bars are located on the left bottom corner of the
figure. These constraints do not depend on the results of either
structural analysis or modal analysis but only on geometric
definition. The FE solver Abaqus node, which performs both
modal analysis and static analysis, is at the core of Figure 3. The
three modal analyses and also the modal objective function
appear on the upper right side of the workflow. Similarly, the
bending constraint given and the objective function appear on
the lower right side of the workflow. All of these criteria are
related to the function evaluations of Abaqus, and this is why
they are located after Abaqus node in the workflow.
The optimization process uses 20 design of experiments (DoE)
with "Sobol sequence", which distributes the experiments
21
uniformly in the design space [11]. Then, the best 20 solutions
produced by the first DoE run are fed to the actual optimization
run as user defined DoEs for the NBI-NLPQLP generations.
Finally, a total of 128 designs are generated for the optimization
problem. The solution of the problem took 125 hours 55 minutes
and 44.328 seconds on a workstation with Intel(R) Core(TM)2
CPU 6700 @ 2.66 GHz processor, with 2 GB of RAM on Microsoft
Windows XP operating system. 108 designs were found to be
feasible that satisfy the constraint condition given in the
optimization problem, and 19 designs were unfeasible that did
not satisfy the constraint condition. Moreover, there was 1 error
design that did not give any solution because modeling or
computational errors occurred during the optimization workflow.
As a result, 5 designs are found in the Pareto-front set for the
solution of the multi-objective problem. These Pareto designs
with their objective and constraint values are tabulated in Table
3 for comparison. Here, a solution which has a lower error in the
first natural frequency would be a more prefered solution than
others since first modes dominate the total deflection of the
wing. In Table 3, Pareto number 3 is considered to be the final
Table 3 - Pareto Optimal Set
solution since it has the smallest error in first mode, smallest
error for the average of first three modes, second smallest error
for the average of five modes and also an acceptable error in
wing tip displacement. This final solution yields the identified
computational model of the ARW-2 composite wing. For the
identified model, the natural frequency values for five modes,
and the tip displacement of forward and rear spars are tabulated
Fig. 2 - modeFRONTIER Workflow Nodes
Fig. 3 - Workflow of the modal and structural optimization problem of ARW-2
22
- Newsletter EnginSoft Year 7 n°4
Table 4 - Relative Errors Between the Computational and the Experimental
Data
in Table 4 to compare the values with the experimental data in
a detailed way.
The identified computational model is subjected to a twisting
moment created by a 1 lb load applied upward at the wing tip
on the front spar and a 1 lb load applied in downward at the
wing tip on the rear spar. Then, the twisting response of the
identified composite ARW-2 wing is obtained and validated with
Bhardwaj's study [5] as shown in Figures 4 and 5.
This study aimed to identify a full composite model of a 3D
ARW-2 wing structure that can be used in validation studies of
aeroelastic tools. Former studies assuming isotropic skin were
published, however a 3D composite skin approach was not
reported in the literature to the best of author's knowledge. In
this paper, this model is identified by utilization of multiobjective optimization techniques in an inverse engineering
approach where the unknown thickness parameters and material
properties were used as optimization variables while trying to
minimize the error of the structural responses in modal
frequencies and bending displacements. Also, the twisting
response of the identified computational model is compared
with the experimental and former computational data. The next
step of this study will be to validate the aeroelastic response of
the identified composite model with experimental data and even
improve the model by taking into account the fluid-structure
interaction for specified flow conditions.
References
[1] M.C. Sandford, D. A. Siedel, C. V. Eckstorm and C.V. Spain. In
Geometrical and Structural Properties of an Aeroelastic
Research Wing (ARW-2). NASA Technical Memorandum 4110,
1989.
[2] M.C. Sandford, D. A. Siedel, and C. V. Eckstorm. In Steady
Pressure Measurements on an Aeroelastic Research Wing
(ARW-2). NASA Technical Memorandum 109046, 1994.
[3] D. A. Siedel, M.C. Sandford, and C. V. Eckstorm. In Measured
unsteady transonic aerodynamic characteristics of an elastic
supercritical wing. Journal of Aircraft, 24 (4):225-230, 1987.
[4] D. E. Cohen. In Trim Angle of Attack of Flexible Wings Using
Non-Linear Aerodynamics. PhD thesis, Virginia Polytechnic
Institute and State University, USA, 1998.
[5] M. K. Bhardwaj. In A CFD/CSD Interaction Methodology for
Aircraft Wings. PhD thesis, Virginia Polytechnic Institute and
State University, USA, 1997.
[6] M. Farhangnia, G. Guruswamy, and S. Biringen. In Transonicbuffet associated aeroelasticity of a supercritical wing. 34th
Aerospace Science Meeting and Exhibit,January 15-18 1996,
Reno, NV. AIAA, 1996.13
[7] M. Nikbay and A. Aysan. In Identification of Structural and
Aeroelastic Properties of a Computational ARW-2 Wing Model
(a) Refence Study [5]
(b) Current Study
Fig. 4 - Displacement of the Front Spar of ARW-2 Subjected to a Twisting
Load
(b) Current Study
(a) Study [5]
Fig. 5 - Displacement of the Rear Spar of ARW-2 Subjected to a Twisting
Load
For Aeroelastic Optimization Applications. IFASD-2009,
International Forum on Aeroelasticity and Structural
Dynamics, Seattle, WA, June 21-25 2009.
[8] P. K. Mallick. Fiber-Reinforced Composites. Materials,
Manufacturing, and Design Second Edition, Revised and
Expanded, New York, USA, 1993.
[9] K. Schittkowski and C. Zillober, and R. Zotemantel. In
Numerical Comparison on Nonlinear Programming Algorithms
for Structural Optimization. Struc. Optim., 7: 1--28, 1994
[10] I. Das and J.E. Dennis. In Normal-Boundary Intersection: A
New Method for Generating the Pareto Surface in Nonlinear
Multicriteria Optimization Problems. SIAM Journal on
Optimization, 8:631--657, 1998
[11] modeFRONTIER V4 Version Documentation. Esteco.
For more information, please contact:
Melike NIKBAY, Ph.D. - Assistant Professor
Istanbul Technical University - Faculty of Aeronautics and
Astronautics. Department of Astronautical Engineering, Air
Space Medium and Systems Division. [email protected]
Nikbay Melike
Istanbul Technical University, Faculty of Aeronautics and
Astronautics, Dept. of Astronautical Engineering - Turkey
[email protected]
Gür Fırata
Istanbul Technical University, Faculty of Aeronautics and
Astronautics, Aeronautical and Astronautical Engineering
Program - Turkey
[email protected]
Tanır Emreb
Istanbul Technical University, Faculty of Aeronautics and
Astronautics, Aeronautical and Astronautical Engineering
Program - Turkey
[email protected]
Newsletter EnginSoft Year 7 n°4 -
23
ANSYS CFD 13.0
In questo articolo vengono presentate le principali novità di ANSYS CFD 13. Sotto questo nome vengono inclusi i due principali solutori fluidodinamici ANSYS CFX
e ANSYS FLUENT oltre ad una serie di strumenti verticalizzati per lo studio di turbomacchine (BladeModeler
e TurboGrid) e di raffreddamento di componenti elettronici (Icepak).
Nella versione 13.0 viene rafforzata la struttura di
Fig. 2 - struttura di ANSYS CFD 13
ANSYS Workbench, l’ambiente di lavoro parametrico che
costituisce il punto di integrazione di tutti i software ANSYS
come parametri ed utilizzate in Workbench per lanciare
e permette la definizione di un unico processo di analisi per
sequenze di analisi in batch. Per esempio anche le dimenla simulazione di diversi aspetti fisici di uno stesso sistema.
sioni della mesh possono essere trattate in maniera paraDalla versione 13.0, oltre all’interazione fluido-struttura, è
metrica ed è stato aumentato il numero di parametri insepossibile studiare l’interazione tra aspetti elettromagnetici,
ribili nel set-up di Fluent;
fluidodinamici e strutturali in un unico processo di simulazio• Una gestione più rapida del passaggio di carichi da una
ne.
soluzione CFD ad un modello termico e strutturale. È
Nell’articolo vengono inoltre spiegate le principali novità dei
infatti possibile dalla versione 13 passare un campo di
due solutori CFD e le linee di sviluppo che si basano su tre
temperatura su un intero corpo anziché sulle sole superprincipi fondamentali: robustezza, efficienza ed accuratezza
fici ed è stato reso più rapido il processo di interpolazione dei dati (Figura 4);
del calcolo.
• Il passaggio di informazioni tra il codice elettromagnetiANSYS CFD in Workbench
co Maxwell e un modello fluidodinamico (Figura 5);
La struttura di ANSYS CFD rimane immutata rispetto alla ver• La possibilità di lanciare sequenze di analisi in batch
sione 12 ed è completamente integrata in ANSYS Workbench
mediante Remote Solver Manager. Questo permette di lan(Figura 1 e Figura 2).
ciare diverse analisi in simultanea sfruttando tutte le
macchine disponibili in rete tramite un sistema a code.
• L’inclusione di MS Excel in un processo di analisi e la sua
interazione con gli altri software.
Fig. 1 - ANSYS Workbench, modellazione parametrica ed integrazione di
diverse discipline
Gli strumenti di interfaccia con i CAD, il modellatore geometrico ed ANSYS Meshing consentono di importare o costruire
il modello in maniera parametrica e di generare una griglia di
calcolo automatica utilizzando diversi metodi di mesh.
Il set-up dell’analisi e la soluzione vengono eseguite separatamente per i due codici ANSYS CFX e ANSYS FLUENT, mentre
il post-processamento torna ad essere eseguito in un ambiente unico CFD-Post.
Le principali novità di ANSYS Workbench riguardano:
• L’estensione nell’utilizzo dei parametri (Figura 3). Un
maggior numero di grandezze possono essere definite
Fig. 3 - definizione di una sequenza di analisi parametrica e lancio batch
Fig. 4 - interazione fluido-struttura, passaggio di carichi termici e di pressione
24
- Newsletter EnginSoft Year 7 n°4
•
Fig. 5 - interazione tra elettromagnetismo e fluidodinamica, passaggio di
potenze termiche.
DesignModeler e ANSYS Meshing: strumenti geometrici
e di mesh
Un ulteriore passo avanti è stato fatto sia nella modellazione geometrica sia nei metodi di mesh unificati. È importante ricordare che gli strumenti DesignModeler e ANSYS
Meshing permettono di creare geometrie e mesh di calcolo
per tutti i software ANSYS con notevoli vantaggi nella condivisione di geometrie tra discipline diverse.
Un unico modello geometrico e lo stesso ambiente di mesh
possono essere messi in condivisione tra CFD, FEM ed elettromagnetismo con notevole risparmio di lavoro e tempo.
DesignModeler garantisce l’import da CAD con lettura dei parametri e con la versione 13 ha visto l’introduzione di strumenti che consentono la pulizia e la generazione delle geometrie in modo più rapido e flessibile.
Per quanto riguarda i metodi di mesh per la fluidodinamica lo
sviluppo è andato nella direzione di:
• Aumento di efficienza nella generazione con riduzione
dell’occupazione di memoria e conseguente aumento della massima dimensione di mesh;
• Generazione di mesh in parallelo per l’abbattimento dei
tempi di calcolo;
• Introduzione di metodi di mesh derivati da ICEM-CFD,
Gambit e T-grid per rendere disponibili tecniche avanzate
di mesh;
• Miglioramento della diagnostica e del controllo qualità;
• Interoperabilità: diversi metodi di mesh possono essere
impiegati su uno stesso modello in diverse parti geometriche. Questo porta maggiore flessibilità per domini complessi;
• Meshing Body-by-Body: l’aggiornamento o la modifica di
mesh viene gestita separatamente per i corpi diversi ed è
quindi più rapida per le geometrie complesse.
ANSYS CFX e ANSYS Fluent: i solutori fluidodinamici
Nello sviluppo della versione 13 è stata data continuità alle
linee di sviluppo della versione 12 seguendo le richieste dei
clienti e le applicazioni dei principali settori industriali. I
punti fondamentali di sviluppo sono i seguenti e sono comuni sia ad ANSYS CFX che ad ANSYS FLUENT:
• Robustezza e accuratezza del solutore, efficienza del calcolo parallelo: in Fluent è stato introdotto un nuovo schema numerico (pseudo-transient) che permette di ridurre
•
•
•
di un ordine di grandezza il numero di iterazioni necessarie per convergere. È stato inoltre reso più efficiente il
calcolo parallelo su processori multi-core ed è stato ridotto il tempo necessario per le operazioni di Input/Output
con sensibili incrementi di velocità di calcolo;
Simulazione di motori a combustione interna: sia in
Fluent che in CFX continua lo sviluppo delle metodologie
di simulazione motore. In Fluent sono disponibili nuove
modalità di gestione delle mesh deformabili, mentre in
CFX sono state sviluppate delle interfacce che guidano
l’utente nella definizione della movimentazione di valvole e pistone, nella gestione della mesh deformabile e delle condizioni di flusso nella varie fasi-motore. Le stesse
interfacce consentono anche di far comunicare CFX con
software mono-dimensionali di comune impiego in ambito motoristico;
Modelli di trasporto di particelle: questi modelli trovano
impiego nella simulazione dei processi di iniezione di
combustibile liquido e solido e sono utilizzati nell’industria chimica e di processo e in quella dei motori auto e
aeronautici. L’utilizzo della CFD in questi settori ha lo
scopo di ridurre i consumi di combustibile e le emissioni
inquinanti. In CFX il tempo di calcolo di traiettorie è stato ridotto di 3-4 volte con miglioramenti del 30-40% sui
tempi dell’intera simulazione. Sono stati introdotti inoltre
nuovi materiali e la possibilità di definire miscele di
sostanze, rendendo quindi più realistica la composizione
dei combustibili simulati. Infine è stata migliorata la
robustezza del calcolo ed è quindi possibile simulare carichi più elevati di particelle;
Modelli multifase euleriani: oltre ai metodi più precisi per
la risoluzione delle interfacce tra le fasi, sono stati introdotti modelli di ebollizione e condensazione a parete e di
wall film;
Modelli di combustione: anche in questo ambito sono stati introdotti nuovi modelli per la simulazione di motori a
combustione interna (G-equation e spark ignition
models);
Fig. 6 - modello transient-blade-row
Newsletter EnginSoft Year 7 n°4 -
25
• Interazione fluido-struttura: continua lo sviluppo dell’interazione fluido-struttura 2-way tra Fluent ed ANSYS,
mentre in CFX è ora disponibile come full release il solutore a 6 gradi di libertà. Questo permette il calcolo del
moto di un corpo rigido sotto l’effetto delle forze fluidodinamiche e di altre natura. Questo modello è ora validato e documentato.
Fig. 7 - strutture turbolente risolte con modello LES
• Turbolenza: sia in Fluent che in CFX continua lo sviluppo
dei metodi Large Eddy Simulation, con miglioramenti
sugli schemi numerici e sulla velocità di calcolo. Questi
modelli sono per esempio di impiego per la risoluzione di
problematiche aeroacustiche;
• Turbomacchine: è stato introdotto in CFX il modello
Transient-Blade-Row che consente di eseguire simulazioni transitorie su un ridotto numero di pale anche in caso
di pitch differente tra rotore e statore. Questo consente
di ridurre le estensioni dei domini di calcolo e di ottenere risultati accurati con un basso impiego di RAM e ridotti tempi di CPU;
ANSYS CFD 13: conclusioni
L’uscita della nuova release ANSYS 13 costituisce un notevole passo in avanti sia dal punto di vista dell’integrazione tra
i software CFD, elettromagnetici e strutturali, che dal punto
di vista dei modelli disponibili e dei fenomeni fluidodinamici simulabili.
A questo si aggiungono i miglioramenti relativi alla modellazione parametrica e alla facilità nella gestione di analisi parametriche.
Tutti questi aspetti nascono dall’idea che la simulazione non
debba essere utilizzata a posteriori come strumento di verifica o di soluzione di problemi, ma come uno strumento di progettazione e di sviluppo prodotto.
Per ulteriori informazioni:
Massimo Galbiati - EnginSoft
[email protected]
A Maxwell overview
Con l’uscita della nuova release 13 di ANSYS trovano spazio
in interfaccia WorkBench la
maggior parte dei software per
l’analisi elettromagnetica provenienti da casa Ansoft (Figura
1).
Qui vengono presentati alcuni
aspetti significativi del software che implementa il metodo agli elementi finiti per le
analisi statiche, armoniche e
transitorie in bassa frequenza:
Maxwellv14.
1) La facilità di utilizzo.
Maxwell si presenta come una
piattaforma semplice da utilizzare. L’interfaccia agevola Fig. 1 – integrazione dei software
l’utente in tutte le operazioni Ansoft nell’analysis System di
di modellazione, di pre- e ANSYS WorkBench
post-processing, infatti tutti i comandi sono accessibili
direttamente da interfaccia o tramite short cut menu.
La gran parte delle quantità di interesse ingegneristico,
come forze e coppie, perdite nel ferro, densità delle correnti, flussi concatenati, tensioni indotte, velocità, posizione, etc, sono disponibili come output diretti.
L’algoritmo di mesh autoadattiva concorre alla semplicità
di utilizzo di Maxwell. L’abilità di questo algoritmo di generare in maniera completamente automatica il modello
nodi-elementi, consente al progettista di risparmiare tempo durante la fase di preparazione del modello e di concentrarsi maggiormente sulla sintesi e sulla comprensione
ingegneristica dei fenomeni da analizzare.
Per quanto riguarda la progettazione e verifica dei motori
elettrici è possibile utilizzare i modelli generati con RMxprt
o utilizzare all’interno di Maxwell le cosi dette UDP (User
defined Primitives), una serie di geometrie parametriche
bidimensionali e tridimensionali che riproducono una vasta
gamma di modelli di macchine elettriche (Figura 2).
Sempre nell’ottica di una rapida modellazione e set-up dei
modelli di motori elettrici, dalla release 14 di Maxwell è
presente una nuova funzionalità che consente l’accoppiamento degli avvolgimenti elettrici attraverso le superfici
su cui si applicano dei vincoli di continuità - matching
boundary - (Figura 3).
26
- Newsletter EnginSoft Year 7 n°4
po avvalendosi di una tecnologia che consente di
risolvere problemi di grandi dimensioni, caratterizzati da matrici sparse e con un elevato numero di
elementi. Tale tecnologia si basa sullo sviluppo di
due tipi di solutori iterativi PCG (Preconditioned
Conjugate Gradient) e QMR (Quasi-Minimal
Residual).
Il solver PCG viene utilizzato nel caso di analisi di
tipo Eddy Current, mentre il solver QMR viene utilizzato per analisi di tipo magnetostatico ed elettrostatico.
3) Definizione dei circuiti esterni di pilotaggio
Maxwell consente di connettere un circuito esterno
al modello agli elementi finiti:
• mediante la definizione dell’equazione del segnaFig. 2 – Una selezione di alcune UDP (User defined Primitives) per la modellazione dei
le
di alimentazione, o mediante una look-up table
motori elettrici.
in cui si indicano i valori assunti dal segnale in corrispondenza di diversi istanti temporali;
• mediante accoppiamento con un simulatore circuitale
embedded (TDSLink) che estrae il circuito a parametri
concentrati o il circuito equivalente di Norton
(Figura 4);
• in cosimulazione con Simplorer attraverso un link dinamico che pilota il modello realizzato in Maxwell in corrispondenza di determinati istanti temporali.
Fig. 3 – Modello 3D di motore elettrico a magneti permanenti ottenuto con
RMxprt. La continuità del carico elettrico sulle bobine (A-B) è automaticamente garantita dalle condizioni di continuità matching boundary
2) I solutori di Maxwell
Per la gestione del calcolo distribuito, in
Maxwell sono presenti due strumenti particolarmente efficaci: il Multiprocessing e il
Distributed Solve (DSO). In particolare, il
Multiprocessing consente di splittare
un’analisi parametrica o uno sweep in frequenza su più core appartenenti ad una
stessa macchina, mentre il DSO consente di
utilizzare più macchine separate per una
stessa analisi. L’utilizzo combinato delle
due opzioni massimizza lo sfruttamento delle risorse di calcolo, non solo in termini di
memoria e CPU accessibile su una singola
macchina, ma su più macchine separate.
Sebbene il solutore diretto consenta di ottenere risultati accurati in tempi relativamente contenuti, Maxwell 14 permette di ridurre l’onere computazionale della simulazione sia in termini di memoria che di tem-
4) Accoppiamento con software alta frequenza
Esistono due possibili tipologie di accoppiamento tra
Maxwell e HFSS:
• Accoppiamento Near Field: la distribuzione del campo
magnetico, effettuata mediante l’analisi in frequenza
eseguita in Maxwell, viene utilizzata in HFSS come sorgente di campo vicino. Al fine di ottenere la distribuzione di campo lontano non è necessario simulare il
modello completo;
Fig. 4 – integrazione della circuiteria esterna con i modelli di Maxwell.
Newsletter EnginSoft Year 7 n°4 -
27
Dalla release Maxwell 14 la procedura descritta può essere implementata considerando una curva di demagnetizzazione BH estesa al terzo quadrante. La Figura 5 sintetizza
quanto finora descritto.
6) Calcolo delle perdite nel ferro per gli acciai elettrici:
Le perdite nel ferro si compongono di tre termini come indicato nell’equazione seguente:
Fig. 5 – Curva di demagnetizzazione estesa al terzo quadrante.
• Quando in HFSS è necessario modellare materiali ferromagnetici che presentano una magnetizzazione non
uniforme, questa può essere valutata in Maxwell
mediante un’analisi statica e successivamente esportata verso il modello in HFSS.
5) Calcolo della demagnetizzazione dei magneti permanenti.
Maxwell consente di valutare la demagnetizzazione dei
magneti permanenti sottoposti ad un campo magnetico
che si oppone a quello proprio del magnete, come ad
esempio quello generato da una bobina percorsa da corrente.
Il calcolo può essere effettuato sia mediante un’analisi
magnetostatica che transient.
La procedura utilizza 2 analisi successive:
Nella prima analisi viene considerato un modello nel quale vi sia il magnete permanente e la sorgente smagnetizzante. In tal modo per ciascun elemento del magnete si
determina il punto di lavoro sulla curva BH.
La seconda analisi importa la soluzione precedente, ed attribuisce ad ogni elemento del magnete permanente un
nuovo tratto di curva BH (recoil curve) ottenuto con i dati resi disponibili dall’analisi precedente.
in cui compaiono le perdite per isteresi, le perdite dovute
alle Eddy Current e le perdite addizionali [1].
I valori dei coefficienti presenti nell’equazione (Kh, Kc e Ke)
sono difficilmente reperibili. Maxwell calcola tali coefficienti a partire dalle curve di perdita dei lamierini magnetici (note da DataSheet) attraverso una procedura di
Curve-Fitting. Le curve di perdita possono essere inserite
in corrispondenza di una o più frequenze.
La Figura 6 mostra le perdite nel pacco magnetico di un
trasformatore implementando la procedura illustrata.
7) Insulating Shell Boundary
Le Insulating Shell Boundary sono condizioni al contorno
di particolare interesse ingegneristico che Maxwell consente di definire. Tali condizioni sono generalmente utilizzate per modellare fogli di materiale isolante caratterizzati da spessori infinitesimi, o crack sottili all’interno di
conduttori. In Figura 7 viene mostrato come un crack modellato con tale boundary possa modificare il percorso delle correnti indotte.
8) Curve BH per materiali anisotropi e laminati
Maxwell permette di definire la composizione di un materiale non lineare come laminato, o di assegnargli proprietà anisotrope.
I lamierini magnetici sono ampiamente utilizzati per la riduzione delle perdite dovute alle correnti parassite.
Fig. 6 – Perdite nel pacco magnetico di un trasformatore elettrico (a), evoluzione delle perdite nel tempo (b).
28
- Newsletter EnginSoft Year 7 n°4
Fig. 7 - densità di correnti indotte (b-c) in prossimità di crack presenti all’interno di un conduttore metallico (a)
Mentre le proprietà anisotrope vengono largamente utilizzate nei trasformatori di potenza e
nelle macchine elettriche di grandi dimensioni.
Per definire un laminato in Maxwell non è necessario modellare geometricamente le singole
lamine, ma è sufficiente assegnare al materiale
corrispondente la composizione di laminato, indicata attraverso il valore di stacking factor e la
direzione di laminazione (Figura 8).
Per quanto riguarda l’anisotropia dei materiali è
possibile definire un curva BH per ciascuna direzione.
Fig. 8 - Laminato di un motore sincrono a riluttanza: La laminazione è definita rispetto al
L’interfaccia ANSYS13-Maxwell14
Come già accennato Maxwell può essere lancia- componente radiale di un sistema di coordinate cilindriche solidale al rotore.
to direttamente dall’interfaccia di ANSYS Workbench, trageometrici, insieme ad altri definiti eventualmente nei semite l’icona presente nella finestra dell’Analysis System.
tup delle analisi, in un unico foglio di calcolo, il Parameter
In questo modo Maxwell2D/3D può essere utilizzato all’inSet (Figura 9), per effettuare sweep parametrici o come
terno del Project Schematic di ANSYS Workbench, e condibase per una successiva analisi di ottimizzazione.
vide le informazioni con altri blocchi di analisi attraverso
le procedure tipiche dell’interfaccia WB (Figura 9). Un'altra
[1] Lin, D.; Zhou, P.; Chen, Q. M.: The Effects of Steel
caratteristica importante di questa integrazione è la posLamination Core Losses on Transient Magnetic Fields Using
sibilità di utilizzare in Maxwell, come negli altri prodotti
T-Ω Method. IEEE VPPC, 2008-09-03 -05, Harbin, China
Ansoft presenti nell’interfaccia Workbench, le geometrie
parametriche modellate in Design-Modeler, o importate in
ANSYS attraverso i plug-in parametrici a disposizione dei
Per maggiori informazioni:
principali CAD in commercio.
Emiliano D’Alessandro - EnginSoft
[email protected]
Un’unica geometria parametrica è così a disposizione dei
solutori Ansoft e dei solutori di ANSYS. L’interfaccia
Alice Pellegrini - EnginSoft
Workbench consente inoltre di gestire questi parametri
[email protected]
Fig. 9 - Esempio di analysis flow nel Project Schematic di ANSYS Workbench
Newsletter EnginSoft Year 7 n°4 -
29
Novità ANSYS Mechanical versione 13
dotto vari processi automatizzati per il trasferimento dei
La nuova release ANSYS 13.0 è caratterizzata da diverse
dati tra differenti fisiche di progetto:
nuove ed avanzate funzionalità finalizzate a rendere più
• da CFD a Strutturali;
veloce, più semplice e più economico il raggiungimento
• da CFD a Termiche;
dei risultati, controllando contemporaneamente l’accura• da Termiche a Strutturali;
tezza del risultato finale della simulazione.
• da LF Emag a Strutturali;
Le nuove funzionalità si riferiscono alle seguenti tre aree
• da HF Emag a Termiche.
di applicazione:
1. Maggiore precisione e fedeltà: la progettazione multiCon ANSYS 13.0, tramite l’”External
disciplinare è uno degli obiettivi prinData Mapper” (Figura 1), c’è la possicipali della versione di ANSYS 13.0,
bilità di importare i dati sotto forma di
finalizzati a rispettare le esigenze
un file di testo che definisce una nuprogettuali espresse dagli utilizzatori
vola di punti con la corrispondente
e di rispecchiare in maniera sempre
grandezza da rimappare (Temperatura,
più accurata la realtà e la sua evolupressione…). Il mapping dei dati
zione nel tempo.
esterni consente agli utenti di diversi
2. Maggiore produttività: ANSYS 13.0
gruppi (come gli utenti CFD e struttucomprende una serie di tools, che
rali) lo scambio di dati relativi al mohanno l’obiettivo di ridurre al minimo
dello in modo molto semplice ed imi tempi di gestione, in favore della
mediato; prevedendo la possibilità di
fase di progettazione.
importare la temperatura corporea, la
3. Maggiore potenza di calcolo: per
pressione superficiale, il coefficiente
alcune simulazioni di ingegneria,
di scambio termico… L'utente può deANSYS 13.0 è in grado di fornire ridufinire, da interfaccia (Figura 2), le unizioni di velocità, nei tempi di simula- Fig. 1 - Link per l’importazione dei dati esterni
tà per i dati da importare e allineare i
zione, anche da 5 a 10 volte maggio- importati
dati con la geometria corrente.
re delle versioni software precedenti.
Di conseguenza anche simulazioni multifisiche molto complesse possono essere compiute in modo più rapido ed efficiente, accelerando lo sviluppo dei prodotti e la fase di
progettazione.
Un aspetto centrale che va ad inserirsi all’interno di questi aspetti di multidisciplinarietà è l’”External Data
Mapper”.
In molti team di progettazione meccanica, più ingegneri, di discipline
diverse, si trovano a collaborare ad
uno stesso progetto con l’utilizzo di
strumenti differenti. Per esempio ingegneri che si occupano di analisi
fluidodinamiche (FLUENT o CFX) devono scambiare dati e risultati, su un
medesimo progetto, con coloro che si
occupano di analisi strutturali (per
esempio la necessità di fornire temperature o pressioni provenienti da
calcolo fluidodinamico, ad ingegneri
che si occupano di un successivo calcolo strutturale).
Come parte dell’impegno per la simulazione multifisica, ANSYS ha intro-
Per quanto riguarda l’analisi esplicita, sempre nell’ottica
della multidisciplinarietà, ANSYS ha proseguito il cammino verso la completa integrazione di AUTODYN all’interno
della piattaforma ANSYS Workbench.
Nell’ambito delle simulazioni esplicite, poiché i liquidi o
gas, presenti nel nostro modello (per esempio liquidi contenuti in un recipiente) possono influenzare drasticamen-
Fig. 2 - Inserimento delle unità di misura per i dati
30
- Newsletter EnginSoft Year 7 n°4
•
•
•
•
Navi;
Esplosivo;
Formatura e idroformatura;
Impatti ad alta velocità, dove la deformazione del
bersaglio e /o di un proiettile è estrema, (e quindi è
preferibile scegliere l’accoppiamento EulerianoLagrangiano);
• In Ambito Aerospaziale (ammaraggio aereo…).
Un aspetto fondamentale dell’inserimento di AUTODYN all’interno della piattaforma Workbench, è la disponibilità
dell’intera libreria di materiali espliciti che erano presenti
solo in AUTODYN, e il loro conseguente facile utilizzo tramite l’Engineering Data con cui gli utenti di
ANSYS WB hanno già familiarità dalle versioni
precedenti (Figura 4).
Fig. 3 - Accoppiamento Eulero-Lagrange
Un ulteriore aspetto sul quale si è concentrata
ANSYS nella nuova release è l’impegno nel fornire soluzioni ad alte prestazioni, monitorando
l'evoluzione hardware al fine di trarne vantaggio
per i processi di simulazione. L’obiettivo è di ridurre i tempi di soluzione per gli utenti in modo
da essere un leader del settore in questa tecnologia, non solo come soluzioni ottenute ma anche come tempistica. L'idea generale sta nell’utilizzo delle GPU, scaricando i pesanti algoritmi di
calcoli complessi su più schede di GPU in grado
di eseguire calcoli general-purpose con precisione doppia.
Fig. 4 - Libreria materiali espliciti (TNT, PBX…)
te il comportamento generale dell’intero assieme, ANSYS
ha introdotto una nuova funzionalità chiamata "accoppiamento di Eulero-Lagrange" all'interno dell’Explicit ANSYS
Solver della release 13.0.
Questa caratteristica, prima disponibile solo in interfaccia
AUTODYN, è disponibile per l'ambiente Workbench (Figura
3), rendendola così di facile utilizzo per tutti
coloro che già sfruttavano la piattaforma
ANSYS WB per altre applicazioni. Di conseguenza, per gli utenti di ANSYS Mechanical
WorkBench, la definizione del modello è molto
simile a una simulazione implicita con corpi rigidi e flessibili: sarà necessario solamente selezionare l’opzione euleriana rispetto a quella
lagrangiana, che, nella precedente release era
l’unica disponibile.
Le applicazioni tipiche di questa tecnica sono:
• Impatto o caduta di fluido (corpo riempito
o parzialmente riempito, bottiglie,
contenitori…);
Attualmente, sfruttando queste nuove tecnologie, ci si può aspettare un incremento di velocità dei tempi di risoluzione pari a 2-3 volte, nel
caso di una simulazione con 4 core della serie Nehalem
5.500.
Per maggiori informazioni:
Daniele Calsolaro - EnginSoft
[email protected]
Fig. 5 - Confronto dei tempi di risoluzione con l’uso delle GPU
Newsletter EnginSoft Year 7 n°4 -
31
modeFRONTIER 4.3.0 is now available
We are pleased to announce
that version 4.3.0 of
modeFRONTIER has been
released. modeFRONTIER 4.3.0 includes significant new features
and several enhancements to the existing components.
Schedulers and Optimizers
New Features and Improvements
• NSGA-II was entirely re-designed to support unordered
discrete variables for mixed-integer problems. New schemes
have been added:
o Controlled Elitism to increase uniformity distribution of
Pareto front.
o Variable Population Size for higher accuracy of
approximated Pareto front.
o Steady State Evolution (MFGA): steady state evolution
with an adaptive elitism procedure for an efficient
parallelization scheme.
• The External Schedulers Bridge lets the users integrate userdefined optimizers with modeFRONTIER to enhance
flexibility and efficiency for specific optimization problems.
A runtime library to exchange data between modeFRONTIER
• Support of unordered discrete
variables for the Evolution
Strategy algorithm.
RSM algorithms
Improvements
• Evolutionary Design RSM can
now perform parallel RSM
training using multi-thread
technology in order to exploit
computational
resources
available.
Fig. 2 - External Schedulers
Bridge
The Design Space
New Features
• New Correlation Matrix chart which is now provided with an
interactive threshold filter for selective visualization of
correlation matrix. In addition to the already existing
Pearson coefficient, Spearman, Partial Correlation and Partial
Ranking Correlation coefficients have been added to the list.
The RSM Multiple Function Plot for comparative display of
multiple RSM functions created and interactive moving sliders to
change input values and update the related RSM function.
The Design Space Template which allows Design Space
visualization charts to be saved to an XML Template file for later
reuse in different projects.
The Workflow
New Features
• The Grid System powered by GridGain system which enables
modeFRONTIER for grid computing. This system lets
modeFRONTIER submit Workflow design evaluation jobs
across a local network, wait for the execution and retrieve
Fig. 1 - The new NSGA-II configuration panel
and third-party software tools (including MATLAB, Scilab and
Octave) is provided, thus custom optimization algorithms
can be coupled with modeFRONTIER.
• Parallel RSM training using multi-thread technology in the
FSIMPLEX and FMOGA-II algorithms.
• Enhancements for the MOSA algorithm, which include:
o Support of unordered discrete variables.
o Steady-state evolution option.
Fig. 3 - New Correlation Matrix chart
32
- Newsletter EnginSoft Year 7 n°4
Fig. 4 - RSM Multiple Function Plot
The METAPost Direct Integration Node to let METAPost users
extract FEA responses for the optimization problem, by reading
the following quantities:
• Real Scalar History
• Real Vector History (X,Y history curve)
• Complex Vector History (Frequency, Magnitude and Phase)
• The SimulationX Direct Integration Node for coupling with
the SimulationX software used for design, analysis, and
optimization of complex systems. The interface available
enables parsing of inputs/outputs parameters to/from
Components and Connections, including scalar (e.g.
component/connection parameters), vector (e.g. output
curves) and matrix (e.g. Component Tables) data. The
SimulationX node supports the GridGain system for
distributed computing.
• The new JMAG Direct Integration Node which supports JMAG
Designer and handles input scalar parameters for the Study
available as well as scalar output parameters.
Fig. 5 - Design Space Template
the results. The Grid System is available in beta version for
the UGS-NX, LabVIEW, ANSYS Workbench and SimulationX
nodes only.
The new ANSYS Workbench Direct Integration Node which
includes the following features:
• Support of ANSYS Workbench v12.1.
• Handling of Input/Output Parameters defined in the
Workbench Parameter Set.
• Pre-processing macro functionalities available to detect
geometry failure, check mesh quality or similar.
• Post-processing macro functionalities available for advanced
assessment of results.
• Support GridGain system for distributed computing.
Fig. 6 - The Grid Manager interface
Fig. 7 - The METAPost Interface
• The new Octave Direct Integration Node for coupling with
the Octave software tool.
• The SoC Node allows easy integration into the
modeFRONTIER optimization workflow of any System-onChip simulator that follows the Multicube specifications. The
integration node takes care of the design space
introspection, automatic workflow generation and simulator
interaction.
• The LookUpTable (LUT) node which for a given set of inputs
X=(X1,X2,...,Xn), and a reference sets of data (i.e. any table
in the Design Space) finds the nearest point to X, by
returning the array corresponding to the design of the
dateset which best matches X. Consequently, combined use
of the LUT node and SOM utility enables the users to use any
SOM Table in the Workflow to find the BMU in order to
classify sets of data for each iteration of the scheduler
selected.
• The Workflow Creation Wizard which allows the users to
quickly and easily create basic Workflow patterns, including
Input/Output variables, vectors, application nodes and file
nodes.
Newsletter EnginSoft Year 7 n°4 -
33
Corsi di Addestramento Software
2011 - EnginSoft & modeFRONTIER
Fig. 8 - The Workflow Creation Wizard
Fig. 9 - The Custom Workflow Library
• The Workflow Creation and Edit from Excel which now
supports import/export of variable settings for vector
variables.
• The Custom Workflow Library for selective view of the
Workflow nodes library.
Improvements
Major improvements of the existing features include:
• Ambient conditions available as input and custom unit
selection in the Flowmaster node.
• New license check option before the evaluation run starts for
the ANSA and GT-SUITE node.
• PRT and ASM versioning control in the ProEngineer node.
• Timeout option available in the application script nodes
For more information:
Francesco Franchini - EnginSoft
[email protected]
Nel contesto di un’applicazione ingegneristica (sviluppo
prodotto, analisi numerica FEM/CFD tramite strumenti CADCAE, analisi di scenario, …), modeFRONTIER è in grado di
determinare come le diverse possibili soluzioni progettuali si
collochino e si differenzino una rispetto all’altra (in funzione
delle variabili monitorate), e quindi è in grado di ricercare
quelle configurazioni che garantiscano il miglioramento delle
prestazioni (obiettivi) del sistema investigato e/o il
conseguimento
delle
specifiche
prefissate
(obiettivi/vincoli). L’utente di turno (i.e. project engineer,
process/product engineer, …) ha dunque la possibilità di
comprendere se la soluzione ottenuta è effettivamente
quella di ottimo rispetto alle condizioni al contorno
prestabilite oppure se è fattibile e/o conveniente ricercarne
una migliore.
modeFRONTIER: Corso Standard
• Introduzione a modeFRONTIER;
• Ambiente di pre-processing di modeFRONTIER e logica di
costruzione del workflow;
• Applicazione degli strumenti fondamentali del workflow
di modeFRONTIER;
• Metodologie DOE e descrizione delle tecniche DOE disponibili in modeFRONTIER;
• Acquisizione dati, fondamenti di analisi statistiche e di
distribuzione con modeFRONTIER;
• Introduzione alla teoria di base dell’ottimizzazione
(mono e multi-obiettivo), algoritmi e strategie di ottimizzazione con modeFRONTIER;
• Post-processing dei dati per mezzo di strumenti dedicati
alla analisi di problemi multi-obiettivo, analisi di sensitività, analisi statistica;
• Introduzione all’utilizzo delle tecniche RSM (Response
Surface Methodologies) con modeFRONTIER;
• Cenni alla Robust Design Optimization con
modeFRONTIER.
modeFRONTIER: Corso Avanzato
• Implementazione di workflow con logiche di ottimizzazione complesse con modeFRONTIER;
• Algoritmi di ottimizzazione avanzati e loro benchmarking
con modeFRONTIER;
• Analisi statistica avanzata ed analisi multi-variata di dati
con modeFRONTIER;
• Self-Organizing Maps (SOM) e Clustering di dati in
modeFRONTIER;
• tecniche RSM – teoria, pratica e loro combinazione con
l’ottimizzazione diretta in modeFRONTIER;
• Multi Objective Robust Design Optimization (MORDO) con
modeFRONTIER – analisi di robustezza;
• Multi Criteria Decision Making (MCDM) – supporto alle
decisioni per problemi multi-obiettivo.
www.enginsoft.it/corsi
34
- Newsletter EnginSoft Year 7 n°4
Soluzioni
Customized KEY to
personalizzate di
METALS Solutions
Key to Metals per
for Materials
proprietà di leghe
Properties
metalliche
The following article presents an overview of the technical
collaboration between EnginSoft and Key to Metals. The common
project concerns the development of the KTM product for the
“Extended Range” module and also the agreement for the
commercial distribution of the “Customized Solution” module,
both at national and international level.
Questo articolo si fonda sul rapporto di collaborazione di natura
tecnica tra EnginSoft e Key to Metals per lo sviluppo del prodotto
KTM per il modulo “Extended Range”, nonché sull’accordo di
distribuzione commerciale, sia nazionale che internazionale, per il
modulo “Customized Solutions” particolarmente interessante per
i Key Accounts di EnginSoft in Italia e nel mondo"
The KEY to METALS database is designed to help a broad range
of engineering professionals in finding equivalent materials
worldwide, getting easy-to-use and accurate metal
properties, and navigating through international
standards. The KEY to METALS database includes
more than 4,000,000 property records for over
160,000 metal alloys from all over the world, with
the “standard” dataset comprising of international
cross-reference tables, composition, mechanical
and physical properties, heat treatment diagrams,
advanced properties such as stress-strain curves,
fatigues and more.
The platform is available in 19 languages, online
and as desktop software. Turn-key, easy to use and
versatile, the KEY to METALS database is currently
being used in over 100 countries, in companies
ranging from world leaders and Fortune 500
Companies to the smallest Businesses, providing
the customer with time and money savings in
conjunction with increased quality of engineering
and sourcing possibilities.
For companies whose material properties information needs to
go beyond the standard database and search engine, Key to
Metals AG now offers tailor-made, customized solutions. With
flexible implementation, our solutions range from online Web
services to closed intranet applications to embedded OEM
components depending on the customer’s needs. Customized Key
to Metals solutions can be grouped into two categories: private
databases and material data export.
Il Database KEY to METALS è stato sviluppato per supportare una
vasta gamma di Progettisti strutturali nella ricerca di proprietà
Private Databases
These solutions combine the complete information scope and
functionality from the Key to Metals database, or a part thereof
combined with a private database containing the customer’s
proprietary information.
The information contained is highly dependent on the needs of
the particular customer and may include:
Fig. 1 - schema di database e soluzioni proprietarie
Fig. 1 - General schematics of private database and solution.
chimico-fisico-meccaniche di leghe metalliche mondiali unitamente alle loro corrispondenze incrociate. KEY to METALS include più di 4.000.000 singoli dati relativi a più di 160.000 leghe
e contiene anche ulteriori utili informazioni quali diagrammi di
trattamento termico, curve stress-strain, fatica e altro ancora.
La piattaforma è disponibile in 19 lingue che utilizzano caratteri originali, e consente accessi on-line o da desktop. Il database è attualmente utilizzato in oltre 100 paesi, in Aziende che
vanno dai leader mondiali compresi nella lista Fortune dei
“major 500” fino a Imprese medio-piccole anche sotto i 10
dipendenti, fornendo agli Utenti un notevole risparmio di tempo assieme a un seti dati per la progettazione difficilmente reperibile altrimenti.
Newsletter EnginSoft Year 7 n°4 -
35
Per le aziende che necessitano di informazioni e strutture informatizzate basate su specifici motori di ricerca, Key to Metals offre delle soluzioni “personalizzate”. Grazie ad una
implementazione flessibile si offrono soluzioni che vanno da servizi web on-line ad applicazioni di tipo “chiuso” (intranet), fino ad
accordi OEM basati sulle singole esigenze.
Queste soluzioni possono essere raggruppate
in 2 categorie: database proprietari ed esportazione di dati secondo determinati formati.
Fig. 2. - Esempio di selezione dei materiali, esportazione e aggiornamento
Fig 2. - An example of material selection, exporting and updating workflow.
• Proprietary metals used in customer’s supply chain;
• Cross-referencing customer’s proprietary designations to
other standard and proprietary designation;
• Approved materials and cross-references/replacements for
sourcing and engineering;
• Collection of grades used for material identification in
conjunction with a spectrometer;
• Proprietary heat treatment and welding procedures and
details;
• Advanced properties, dimensions, tolerances, various tables;
• Full texts or abstracts of customer’s standards and internal
specifications;
• Additional information regarding shapes, dimensions,
tolerances, etc.
The private database is then combined with a custom-made
application, which is then deployed to the customer’s internal
users and possibly to its partners and suppliers if required (Fig.
1).
•
•
•
•
•
•
•
•
Database proprietari
Queste soluzioni combinano la funzionalità
parziale o totale di Key to Metals con un
database proprietario del Cliente. Le informazioni contenute dipendono sostanzialmente
dalle esigenze dell’Utente e possono comprendere:
Metalli proprietari utilizzati nella supply chain del cliente;
Riferimenti incrociati tra le designazioni proprietarie del
cliente e quelle definite dalle Normative internazionali (riferimenti incrociati);
Materiali alternativi per l’outsourcing e per la progettazione;
Raccolta specifica di Designazioni di leghe utilizzate per
identificare materiali tramite strumenti di analisi chimica;
Procedure di trattamento termico e saldatura proprietarie
con relativi dettagli;
Proprietà avanzate, dimensioni, tolleranze, tabelle,
Documentazione interna per capitolati, procedure etc.
Ulteriori informazioni in merito a forme, dimensioni, tolleranze, ecc.
A richiesta, questo database “proprietario” può essere gestito
con una procedura sviluppata “su misura” per utilizzo all’interno
dell’Azienda o per una capillare distribuzione presso la rete
esterna dei partners, clienti e fornitori (Figura 1).
The main benefits are:
• It’s a turn-key solution, which will save a lot of time and
money when compared to in-house solutions;
• Highest quality product, supported by a wealth of experience in developing applications for the metal working industry;
• Cost and price advantage owing to developers in Eastern
Europe;
• Full support, ISO 9000 and ISO 27000 service level;
• Enables a “quick victory” for the customer by deploying a
system which brings results instantly.
I vantaggi principali sono:
• È una soluzione “chiavi in mano”, che produce un sensibile
risparmio di tempo e denaro rispetto alle soluzioni “fatte in
casa”;
• Massima qualità del prodotto, supportata da una notevole
esperienza nello sviluppo di applicazioni per l'industria della
lavorazione dei metalli;
• Costi molto competitivi che beneficiano della localizzazione
nell’area Est-Europa;
• Supporto completo, qualità certificata ISO 9000 e ISO 27000
per il livello dei servizi;
• Consente l’ottenimento di risultati in tempi estremamente
rapidi con conseguente recupero dell’investimento iniziale.
Material Data Export
Key to Metals AG provides a full materials property data export
facility from the Database, giving the customer the freedom to
use the exported data in their own information system, for
Enterprise Resource Planning (ERP), Product Lifecycle
Esportazione di dati sui materiali
Key to Metals AG offre una totale fattibilità nella esportazione
dei dati verso altri programmi, dando al cliente la completa
libertà di processarli nel proprio sistema informatico rispettando specifiche esigenze quali quelle dettate da Enterprise
36
- Newsletter EnginSoft Year 7 n°4
Resource Planning (ERP), Product
Lifecycle Management (PLM) o qualsiasi altra applicazione.
Oltre ai dati per migliaia di materiali che possono essere importati nel
sistema del cliente, Key to Metals
offre il cosiddetto “KEY to METALS
data Builder”. Questa è un'applicazione unica che ricopre un flusso di
lavoro completo, dalla selezione dei
materiali di interesse per il cliente,
all'esportazione dei dati, al controllo periodico degli aggiornamenti per
sintonizzare il dati con le Normative
in continua evoluzione (Fig. 2).
Fig 3. il servizio di “Avviso Aggiornamenti” tiene sotto controllo gli aggiornamenti sui materiali di interesse del cliente. L’importazione degli aggiornamenti si effettua semplicemente premendo un tasto sullo schermo.
Fig 3. Update Alert Service monitors updates made on the materials of
customer’s interest. Importing the updates and keeping the database always
up-to-date is then as simple as pushing the button.
Management (PLM) or any other application the customer deems
useful. Besides the material data for thousands of materials that
can be imported into the customer’s system, Key to Metals offers
KEY to METALS Data Builder. This is a unique application that
covers the complete workflow from the selection of the materials
of interest for the customer, exporting the data, to later
monitoring the updates done on the materials in the standard
KEY to METALS database and importing the changes back into
the customer’s system (Fig 2). This way, besides having seamless
material data, the customer has a database that is completely
up-to-date, and remains so via the push of a button (Fig 3).
The main benefits of the KEY to METALS material data export and
Data Builder are:
• Tremendous savings in time and money comparing to “homemade” databases, both in initial deployment and
maintenance;
• Easy-to-use wizard, with direct access to over 160,000 alloys
from the database, possibility for data reviewing,
recalculating, refining, multiple exporting file formats and
workflow support;
• Priority data updating plan and monthly updates via the
Web;
• Full support, ISO 9000 and ISO 27000 service level;
• High quality of data, always up-to-date, which ultimately
brings “peace of mind” to the customer.
Victor Pozeit,
Key to Metals AG, Zürich, Switzerland
In questo modo, oltre a disporre di
dati sui materiali senza soluzione di
continuità, il cliente dispone di un
database che è completamente upto-date, e rimane tale tramite la
semplice pressione di un tasto (Fig.
3).
I principali vantaggi della esportazione di dati e del Key to
Metals data Builder sono:
• Un notevole risparmio di tempo e denaro rispetto a database “empirici” fatti in modo autonomo con notevoli problemi
di manutenzione e aggiornamento;
• Facilità di uso, con accesso diretto a oltre 160.000 leghe dal
database, con possibilità di verifica, di ricalcolo, di formati
multipli di esportazione files e supporto per il flusso operativo;
• Piano di aggiornamento prioritario con aggiornamenti mensili via web;
• Supporto completo con qualità certificata ISO 9000 e ISO
27000 per livello di servizio;
• Alta qualità dei dati, sempre aggiornati, che forniscono la
massima “tranquillità” operativa per il cliente.
Victor Pozeit,
Key to Metals AG, Zürich, Switzerland
Newsletter EnginSoft Year 7 n°4 -
37
Third Wave Systems Boosts Software
Performance. AdvantEdge FEM 5.6 Delivers
Improved Robustness, Accuracy
EnginSoft is pleased to announce the release of Third Wave
Systems AdvantEdge FEM version 5.6. AdvantEdge FEM is a
materials-based software solution for the optimization of metal
cutting, and has been an innovative computer aided engineering
(CAE) software package since its inception. The FEM software
provides detailed information about heat flow, temperatures,
stresses, and forces for machining processes.
Recognizing that improved software performance would benefit
users of all backgrounds and industries, Third Wave Systems
developers centered their activities for AdvantEdge FEM version
5.6 on the software’s physics-based computation platform.
Subsequently, enhancements were made to contact algorithms
and wear modeling approaches; the resulting machining
modeling data is more robust and accurate than previouslygenerated data.
All standard features for
AdvantEdge FEM continue to
be supported in version 5.6:
STEP, STL, VRML, and DXF
tool import; Standard and
custom tool creation; Library
of 130+ workpiece materials;
User-defined material and
constitutive models; Residual stress modelling; Temperature and
stress analysis of the following processes: Milling, Turning,
Drilling, Boring, Tapping, Grooving, Broaching, Sawing.
Ongoing software benefits experienced by AdvantEdge FEM users
are: Increased material removal rates; Improved tool life;
Predicted chip shape; Shortened product design cycles; Reduced
trial and error testing.
Third Wave Systems AdvantEdge
Production Module 5.8
EnginSoft is pleased to announce the release of an updated
version of Third Wave Systems NC program optimization
software, AdvantEdge Production Module 5.8. Production Module
is process-analysis CAE software that integrates workpiece
material properties, CAD/CAM inputs, and machine dynamics to
map forces, temperatures, and more. Over the years, this
technology has become integral to engineers looking to reduce
costs and cycle times, maximize machine utilization, and reduce
tool breakage. By displaying results visually, Production Module
allows users to better understand the machining process to
avoid potential problems and identify opportunities for
improvements. Production Module 5.8 3D will be packed with
more new features than usual for TWS:
• With the new MULTI-CONSTRAINT OPTIMIZATION feature,
minimum and maximum optimization limits are consolidated
into one value and a new optimization constraint is
introduced. This secondary input allows users to define
another variable and limit not to be exceeded during
optimization. These two force checks, combined with
preexisting feed rate constraints, will provide a more
complete optimization solution.
• SELECTIVE FORCE COMPUTATION allows user to select which
results they want to compute. Calculating only the results
which are of interest increases graph display speed and
decreases the amount of memory required.
• A new AIR-CUT OPTIMIZATION safety check ensures that
cutting tools are a safe distance from the workpiece,
providing a safer air-cut optimization.
• PERFORMANCE SPEEDUPS mean the software delivers results
faster and makes the
software quicker to
navigate. Speedups
of up to 2x have
been achieved for
force computation,
graph displays, and
workpiece loading.
Significant efforts were also dedicated to better align the 2D
Production Module user experience with that of Production
Module 3D. Current PM3D users may recognize several features
that will now be integrated with PM2D, including:
• COMPARISON GRAPH – a second graph to better analyze
multiple results at the same time.
• NAVIGATOR – allowing users to easily review and navigate
the toolpath.
• ARCHIVING – automatically zips the key input files needed
for setup, providing easy storage of the projects for future
use.
• MACHINE FILE SETUP – enabling all changes to machine
parameter and transient files to be made within the
Production Module 2D user interface.
Benefits to using the software include: Reduced cycle times;
Maximized machine utilization; Improved tool life; Increased
productivity.
For further information on Third Wave System AdvantEdge:
Ing. Enrico Borsetto - EnginSoft
[email protected]
!PPLICAZIONISEMPREPIÂESIGENTI
RICHIEDONOELABORAZIONI
SEMPREPIÂVELOCI
%#OMPUTER%NGINEERINGSIPROPONECOMEUNA
REALTAITALIANADIECCELLENZANELLINTEGRAZIONEDI
SOLUZIONIDEDICATEALCALCOLOADALTEPRESTAZIONI
(0#LOFFERTADI%SIBASASUUNESTESAGAMMADI
PRODOTTIWORKSTATIONGRAFICHESERVERSTORAGE3!.
FINOAISISTEMICLUSTERhCHIAVIINMANOvDIGRANDI
DIMENSIONITUTTIPROGETTATIINBASEALLAESIGENZEDEL
CLIENTEETESTATISECONDORIGOROSEPROCEDUREPER
OFFRIRESOLUZIONISCALABILIEDAFFIDABILINELTEMPO
GARANTENDOILRITORNODEGLIINVESTIMENTI
SULLHARDWARE
%#OMPUTER%NGINEERINGEXCELSATINTEGRATING
SOLUTIONSFORTHE(IGH0ERFORMANCE#OMPUTING
(0#%SRANGEINCLUDESABROADSELECTIONOF
PRODUCTSFROMCOMPUTERGRAPHICS7ORKSTATIONSTO
SERVERSTORAGE3!.UPTOPOWERFULCUSTOMBUILT
CLUSTERSYSTEMSEACHONEOFTHEMDESIGNED
FOLLOWINGTHECLIENTSREQUIREMENTSANDTESTED
ACCORDINGTOSTRICTPROCEDURESINORDERTOPROVIDE
SCALABLESOLUTIONSWHICHARERELIABLEEVENASTIME
GOESBYANDGUARANTEEAPROFITABLERETURNON
HARDWAREINVESTMENTS
%COMPUTERENGINEERING3P!6IA-ARTIRIDELLA,IBERTÜ3CANDIANO2EGGIO%MILIA)TALIA
4EL&AXWWWECOMPANYCOMEMAILINFO ECOMPANYCOM
Newsletter EnginSoft Year 7 n°4 -
39
An unsupervised text classification
method implemented in Scilab
Text mining is a relatively new research field whose main
concern is to develop effective procedures able to extract
meaningful information - with respect to a given purpose from a collection of text documents. There are many contexts
where large amounts of documents have to be managed,
browsed, explored, categorized and organized in such a way
that the information we are looking for can be accessed in a
fast and reliable way. Let us simply consider the internet,
which is probably the largest and the most used library we
know today, to immediately understand why the interest
around text mining has increased so much during the last
two decades.
A reliable document classification strategy can help in
information retrieval, to improve the effectiveness of a
search engine for example, but it can be also used to
automatically understand whether an e-mail message is spam
or not.
The scientific literature proposes many different approaches
to classify texts: it is sufficient to perform a web search to
find a large variety of papers, forums and sites discussing
this topic.
The subject is undoubtedly challenging for researchers who
have to consider different and problematic aspects emerging
when working with text documents and natural language.
Usually texts are unstructured, they have different lengths
and they are written in different languages. Different authors
means different topics, styles, lexicons, vocabularies and
jargons, just to highlight some issues. One concept can be
expressed in many different ways and, as an extreme case,
also the same sentence can be graphically rendered in
different ways:
You are welcome!
U @r3 w31c0m3!
This strategy can be used to cheat the less sophisticated email spam filters, which probably are not able to correctly
categorize the received message and remove it; some of them
are based on simple algorithms which do not consider the
real meaning of the message but just look the words inside,
one at a time.
The search for an exhaustive and exact solution to the text
mining problem is extremely difficult, or practically
impossible.
Many mathematical frameworks have been developed for text
classification: naïve Bayes classifiers, supervised and
unsupervised neural networks, learning vector machines and
clustering techniques are just a short - and certainly not
complete - list of possible approaches which are commonly
used in this field. They have both advantages and
disadvantages. For example, some of them usually ensure a
good performance but they have to be robustly trained in
advance using predefined categories: other ones do not
require a predefined list of categories, but they are less
effective. For this reason the choice of the strategy is often
tailored to the specific categorization problem that has to be
solved.
In spite of their differences, all of the text
categorization approaches have however a
first common problem to solve: the text
has to first processed in order to extract
the main features contained inside. This
operation erases the “superfluous” from
the document, retrieving only the most
relevant information: the categorization
algorithm will therefore work only with a
series of features characterizing the
document. This operation has a
fundamental role and it can lead to
unsatisfactory results if it has not been
conducted in an appropriate way.
Another crucial aspect of data mining
techniques is the postprocessing and the
summarization of results, which have to
be read and interpreted by a user.
Fig. 1 - This image has been generated starting from the text of the EnginSoft Flash of the Year 7 n°1 This means that the faster and the more
effective data mining algorithm is useless
issue and the tool available in [4].
40
- Newsletter EnginSoft Year 7 n°4
if improperly fed or if results cannot be represented and
interpreted easily.
Our personal interest for these techniques was born some
weeks ago when reading the last issue of the EnginSoft
newsletter. In a typical newsletter issue there usually are
many contributions of different kinds: you probably noticed
that there are papers presenting case studies coming from
several industrial sectors, there are interviews, corporate and
software news and much more. Sometimes there are also
papers discussing topics “strange”, for the CAE community,
as probably this one may seem to be.
A series of questions came out. Does the categorization used
in the newsletter respect a real structure of the documents,
or is it simply due to an editorial need? Can we imagine a
new categorization based on other criteria? Can we discover
categories without knowing them a-priori? Can we finally
have a representation of this categorization? And finally, can
we have a deeper insight into our community?
We decided to use the EnginSoft newsletters (see [3]) and
extract from them all the articles written in English, starting
from the first issue up to the last one. In this way we built
the “corpus”, as it is usually called, by the text miners
community, the set of text documents that have to be
considered. The first issues of the newsletter were almost
completely written in Italian, but English contributions
occupy the most of pages in the later years. This certainly
reflects the international growth of EnginSoft. The corpus
was finally composed of 248 plain text documents of variable
lengths. The second step we performed was to set up a simple
text mining procedure to find out possible categorizations of
the corpus, taking into account two fundamental aspects:
first the fact that we do not have any a-priori categorization,
and secondly the fact that the corpus cannot be considered
as “large” but, on the contrary, probably too poor to have
clear and robust results.
We finally decided to use an unsupervised self organizing
map (SOM) as a tool to discover possible clusters of
documents. This technique has the valuable advantage of not
requiring any predefined classification and certainly of
allowing a useful and easily readable representation of a
complex dataset, through some two-dimensional plots.
The preprocessing of the corpus
It easy to understand that one of the difficulties that can
arise when managing text, looking one word at a time and
disregarding for simplicity all the aspects concerning lexicon,
is that we could consider as “different” words which
conceptually can have the same meaning. As an example, let
us consider the following words which can appear in a text;
they can be all summarized in a single word, such as
“optimization”:
optimization, optimizing, optimized, optimizes,
optimization, optimality.
It is clear that a good preprocessing of a text document
should recognize that different words can be grouped under
a common root (also known as stem). This capability is
usually obtained through a process referred to as stemming
and it is considered fundamental to make the text mining
more robust. Let us imagine to launch a web search engine
with the keyword “optimizing”: we probably would like that
also documents containing the words “optimization” or
“optimized” are considered when filling the results list. This
probably because the true objective of the search is to find
out all the documents where optimization issues are
discussed.
The ability of associating a word to a root is certainly
difficult to codify in a general manner. Also in this case there
are many strategies available: we decided to use the Porter
stemming approach (it is one of the most used stemming
technique for processing English words: see the paper in [5])
and apply it to all words composed by more than three
letters.
If we preprocess the words listed above with the Porter
stemming algorithm the result will be always the stem
“optim”. It clearly does not have any meaning (we cannot
find “optim” in an English dictionary) but this does not
represent an issue for us: we actually need “to name” in a
unique way the groups of words that have the same meaning.
Another ability that a good preprocessing procedure should
have is to remove the so-called stop words, that is, all the
words which are used to build a sentence in a correct way,
according to the language rules, but that usually do not
significantly contribute to determine the meaning of the
sentence. Lists of English stop words are available on the
web and they can be easily downloaded (see [2]): they
contains words such as “and”, “or”, “for”, “a”, “an”, “the”,
etc…
In our text preprocessor we decided to also insert a
procedure that cuts out all the numbers, the dates and all the
words made of two letters or less; this means that words such
as “2010” or “21th” and “mm”, “f”, etc… are not considered.
Also mathematical formulas and symbols are not taken into
consideration.
Collect and manage information
The corpus has to be preprocessed to produce a sort
dictionary, which collects all the stems used by the
community; then, we should be able to find out all the most
interesting information describing a document under
examation in order to characterize it.
It’s worth mentioning that the dictionary resulting from the
procedure described above using the EnginSoft newsletters is
composed of around 7000 stems. Some of them are names,
surnames and acronyms such as “CAE”.
It immediately appears necessary to have a criterion to judge
the importance of a stem in a document within a corpus. To
this purpose, we decided to adopt the so–called tf-idf
coefficient, term frequency – inverse document frequency,
which takes into account both the relative frequency of a
stem in a document and the frequency of the stem within the
corpus. It is defined as:
Newsletter EnginSoft Year 7 n°4 -
41
coefficients computed for each stem, listed
in columns, as they appear while processing
the documents, listed in rows. The strange
The current status of research and applications in
profile of the non-zero coefficients in the
Year 6, issue 2
0.0082307
Multiobjective Optimization.
matrix is obviously due to this fact: it is
interesting to see that the most used stems
Multi-objective optimization for antenna design.
Year 5, issue 2
0.0052656
appear early on while processing documents,
Third International Conference on Multidisciplinary
and that the rate of dictionary growth - that
Year 6, issue 3
0.0050507
Design Optimization and Applications.
is the number of new stems that are added
to the dictionary by new documents - tends
modeFRONTIER at TUBITAK-SAGE in Turkey.
Year 5, issue 3
0.0044701
to gradually decrease. This trend does not
depend, on average, on the order used in
Optimal Solutions and EnginSoft announce Distribution
Year 6, issue 3
0.0036246
Relationship for Sculptor Software in Europe.
document processing: the resulting matrix is
always denser in the left part and sparser on
Table 1 - The results of the search for “optimization” in the corpus using the tf-idf coefficient.
the lower-right part.
Obviously, the top-right
Published in
Document title
Stem
tf-idf
the Newsletter
corner is always void.
The matrix in Figure 2
VirtualPaintShop.
Max
Year 2, issue 4
VPS
represents a sort of
Simulation of paint processes of car bodies.
0.0671475
database which can be
Combustion Noise Prediction in a Small Diesel Engine
Min (non-zero)
Year 7, issue 3
design
used to accomplish a
Finalized to the Optimization of the Fuel Injection Strategy
0.0000261
document
search,
Table 2 - The stem with the maximum and the minimum (non zero) tf-idf respectively found in the corpus are reported in
according
to
a
given
the table together with the document title where they appear.
criterion; for example, if
we wanted to find out the most relevant documents with
respect to the “optimization” topic, we should simply look
for the documents corresponding to the highest tf-idf of the
being
stem optim. The results of this search are collected in Table
1, where the first 5 documents are listed.
In Table 2 we list the stems which register the highest and
the lowest (non zero) tf-idf in the dictionary, together with
the documents where they appear. More generally, it is
interesting to see that high values of tf-idf are obtained by
words that appear frequently in a short document, but that
where the subscripts w and d stand for a given word and a
globally are not used at all (see the acronym “VPS”). On the
given document respectively in the corpus C - done by N
contrary, low values of this coefficient are obtained by
documents - while ni,j represents the number of times that the
common words in the corpus (see “design”) that are
word i appears in the j-th document. This coefficient allows
us to translate words into numbers.
infrequently used in long documents.
In Figure 2, the corpus has been graphically represented,
In Figure 3 the histogram of the tf-idf coefficient and the
plotting the matrix containing the non-zero tf-idf
empirical cumulate density function are plotted. It can be
seen that the distribution is strongly left-skewed: this means
that there are many stems that are largely used in the corpus,
therefore having very low values of tf-idf. For this reason the
logarithmic scale is preferred in order to have a better
representation of the data.
Document title
Published in
the Newsletter
Fig. 2 - A matrix representation of the non-zeros tf-idf coefficients within
the corpus. The matrix rows collect the text files sorted in the same order as
they are processed, while the columns collect the stems added to the dictionary in the same order as they appear while processing the files.
tf-idf of stem
“optim”
A text classification using Self Organizing Maps
Self Organizing Maps (SOMs) are neural networks which have
been introduced by Teuvo Kohonen (we address the
interested reader to [6] to have a complete review of SOMs).
One of the most valuable characteristics of such maps is
certainly the fact that they allow a two-dimensional
representation of multivariate datasets, preserving the
original topology; this means that the map does not alter the
distances between records in the original space when
projecting them in the two-dimensional domain. For this
reason they can be used to navigate multidimensional
42
- Newsletter EnginSoft Year 7 n°4
Fig. 3 - The histogram (left) and the empirical cumulative distribution (right) of the tf-idf. The distribution has clearly a high skewness: the large majority of
stems has a low tf-idf. For this reason the logarithmic scale has been used in the graphs.
datasets and to detect groups of records, if present. A second
interesting characteristic of these maps is that they are
based on an unsupervised learning: this is the reason why,
sometimes, such maps are said to learn from the
environment. They do not need any imposed categorization
nor classification of data to run, but they simply project the
dataset “as it is”. The mathematical algorithm behind these
maps is not really difficult to understand and therefore is not
difficult to implement; however, the results have to be
graphically represented in such a way that they can be easily
accessed by the user. This is probably the most difficult task
when developing as SOM: fortunately Scilab has a large set of
graphical functions which can be called upon to build
complex outputs, such the one in Figure 6.
A common practice is to use a sort of honey-comb
representation of the map, where each hexagon stands for a
neuron: colors and symbols are used to draw a result (e.g. a
dataset component or the number of records in a neuron).
The user has to set the dimensions of the map, choosing the
number of neurons along the horizontal and the vertical
directions (see Table 3, where the set up of our SOM is briefly
reported) and the number of training cycles that have to be
performed. Each neuron has a prototype vector (that is a
vector with the same dimension of the designs in the
dataset) which should be representative, once the net has
been trained, of all the designs pertaining to that neuron.
Certainly the easiest way to initialize the prototypes is to
choose random values for all their components, as we did in
our case.
The training consists of two phases: the first one is called
“rough phase”, the second one “fine tuning” and they usually
have to be done with slightly different set-ups to obtain the
best training, but operationally, they do not present any
difference.
During the training a design is submitted to the net and
assigned to the neuron whose prototype vector is closest to
the design itself; then, the prototypes of the neurons in the
neighborhood are updated trough an equation which rules
the strength of the changes according, for example, to the
training iteration number and to the neuron distances.
During a training cycle all the designs have to be passed to
the net, always following for example a different order of
submission, to ensure a more robust training. There is a large
variety of rules for updating available in the literature which
can be adopted according to the specific problem. We
decided to use a Gaussian training function with a constant
learning factor which is progressively damped with the
iteration number. This leads to a net which progressively
“freezes” to a stable configuration, which should be seen as
the solution of a nonlinear projection problem of a
multivariate dataset on a two dimensional space.
At the end of the training phase, each design in the dataset
has a reference neuron and each prototype vector should
summarize at best the designs in their neuron. For this
reason the prototype vectors can be thought as a “summary”
of the original dataset and used to graphically render
information through colored pictures.
One of the most frequent criticism to SOMs that we hear
within the engineering community is that these maps do not
provide, as a result, any number but rather colored pictures
that only “gurus” can interpret. All this, and the fact that
results often depend on the guru who reads the map,
confuses engineers. We are pretty convinced that this is a
wrong feeling; these maps, and consequently the colored
pictures used to present results, are obtained with a precise
algorithm such those used in other fields. As an example, let
us remember that even results coming from a finite element
simulation of a physical phenomenon are usually presented
through a plot (e.g.: stress, velocity or pressure fields in a
domain) and that they can change as the model set up
changes (e.g.: mesh, time integration step…) and that
therefore they have to be always interpreted by a skilled
engineer.
We submitted the dataset with the tf-idf coefficients and ran
an SOM training with the setup summarized in Table 3. To
prevent stems with too high or too low values playing a role
in the SOM training, we decided to keep only those belonging
to the interval [0.0261 - 2.6484]·10-3. This interval has been
chosen starting from the empirical cumulative distribution
reported in Figure 3 and looking for the tf-idf corresponding
to the 0.1 and the 0.8 probability respectively. In this way,
the extremes, which could be due, for example, to spelling
Newsletter EnginSoft Year 7 n°4 -
43
between neurons’ prototypes outside the
blue zones.
Number of horizontal neurons = 15
Training = sequential
nCycles = 50
nCycles = 10
The dimension of the white diamonds
Number of vertical neurons = 15
Sample order = random
iRadius = 4
iRadius = 1
superimposed on the neurons is
Grid initialization = random
Learning factor = 0.5
fRadius = 1
fRadius = 1
proportional to the number of documents
which pertains to the neuron. It is clear
Scaling of data = no
Training function = gaussian
that there are many files that fall into
Table 3 - The setup used for the SOM training phase. See [6] to have an exhaustive description of them.
one of these two groups.
Looking to the map drawn in Figure 6, we can try to
understand what is the main subject discussed by papers in
these groups. We decided to report the stems which gain the
highest tf-idf in the prototype vectors, providing in this way
two “keywords” that identify papers falling in the neurons. In
the first group, positioned on the left-upper part of the map,
certainly there are documents discussing EnginSoft and the
international conference. Documents discussing optimization
and computational fluid dynamics belong to the second
group, positioned on the central-lower part of the net;
actually, stems such as “optim” and “cfd” often gain the
Fig. 4 - The quantization error plotted versus the number of the training itehighest tf-idf.
rations. This gives us a measure of the goodness of the map training.
Grid
Rough Phase
Fine Phase
mistakes, are cancelled out from the dataset, ensuring a more
robust training. The dictionary decreases from 7000 to
around 5000 stems, which are considered to be enough to
describe exhaustively the corpus, keeping very common
words and preserving the peculiarities of documents.
Once the SOM has been trained (in Figure 4 the quantization
error versus the training iteration is drawn), we decided to
use the “distance matrix” as the best tool to “browse” the
results. The so-called D-matrix is a plot of the net where the
color scale is used to represent the mean distance between
the neurons’ prototype vector and their neighbors (red means
“far”, blue means “close”). In this way, with just a glance,
Fig. 5 - The D-matrix. The white diamonds give evidence of the number of
one can understand how the dataset is distributed on the
files pertaining to the neuron. The colormap represents the mean distance
net, and also detect clusters of data, if any. This graphical
between a neuron’s prototype and the prototypes of the neighbor neurons.
Two groups of documents (blue portions) can be detected.
tool can be also enriched with other additional information,
plotted together with the
color scale, making it
possible to represent the
dataset in a more useful
way. An example of these
enriched versions is given
in Figures 5 and 6.
Looking at the plot of the
D-matrix reported in
Figure 5, one can
conclude that there are
mainly two large groups
of papers (the two blue
zones), which are not
however
sharply
separated, and there are
many outliers. It is not
easy to identify in a
unique way other clusters
of papers, since the Fig. 6 - The D-matrix. For each neuron the first two stems with highest tf-idf as given by the prototype vectors are reported,
distance is too high in the attempt to highlight the main subject discussed by articles falling in the neurons.
44
- Newsletter EnginSoft Year 7 n°4
Fig. 7 - The contributions by Stefano Odorizzi (left), by Akiko Kondoh (middle) and by Silvia Poles (right) as they fall in the SOM (see white diamonds).
Conclusions
It is interesting to see some of the relations and links that
We have considered the English articles published in the old
appear in the net. For example, the lower-right corner is
issues of the EnginSoft newsletter and preprocessed them
occupied by documents mainly discussing laminates and
adopting some well-known methodologies in the field of text
composite materials; going up in the net, following the right
mining. The resulting dataset has been used to train a self
border, we meet papers on casting and alloys and the Turkish
organizing map; the results have been graphically presented
corner at top, where contributions by Figes have found a
and some considerations on the documents set have been
place. Moving to the left we meet stems such as “technet”,
proposed.
“allianc” and “ozen”, that remind us of the great importance
All the work has been performed using Scilab scripts,
that EnginSoft gives to international relationships and to the
expressly written to this aim.
“net”. We also find several times “tcn”, “cours” and “train”,
which is certainly due to the training activities held and
References
sponsored by EnginSoft in the newsletter. In the upper left
[1] http://www.scilab.org/ to have more information on
corner the “race” stem can be found: the competition corner
Scilab.
- we could say - because contributions coming from the world
[2] http://www.ranks.nl/resources/stopwords.html to have
of racing (by Aprilia, Volvo and others) fall here.
an exhaustive list of the English stop words.
Figure 6 certainly gives us a funny but valuable view on our
[3] http://newsletter.enginsoft.it/ to download the pdf
community.
version of the EnginSoft newsletters.
Another interesting output which can be plotted is the
[4] http://www.wordle.net/ to generate funny images
position that documents written by an author assume in the
starting from text.
net. This could be useful to detect common interests
[5] http://tartarus.org/~martin/PorterStemmer/def.txt
between people in a large community. This kind of output is
[6] http://www.cis.hut.fi/teuvo/
summarized in Figure 7, where, starting from left to right,
the position of documents by Stefano Odorizzi, by Akiko
Kondoh and by Silvia Poles are reported. It can be seen that
Contacts
our CEO contributions, the “EnginSoft Flash” at the
For more information on this document please contact the
beginning of all the issues, fall in the first group of
author:
documents, where EnginSoft and its activities are the focus.
Akiko’s contributions are much more
Massimiliano Margonari
spread on the net: some of them fall
EnginSoft S.p.A.
in the left-lower portion, that could
[email protected]
be viewed as the Japanese corner,
some other between the two main
groups. Finally, we could conclude
that Silvia’s contributions mainly
focus on PIDO and multi-objective
optimization topics.
In Figure 8 the prototype vector of a
neuron in the first group of
documents is drawn. On the right side
of the picture the first 10 stems
which register the highest values of
tf-idf are reported. These stems could
be read as keywords that concisely Fig. 8 - The prototype vector of the pointed neuron in the net: the tf-idf is plotted versus the stems in the
define documents falling in the dictionary. On the right the first 10 highest tf-idf stems are displayed. The horizontal red line gives the
lowest tf-idf registered by the 10th stem.
neuron.
Newsletter EnginSoft Year 7 n°4 -
45
La deformazione plastica dei metalli ed in particolare lo
stampaggio a caldo dell’ottone è un processo largamente
diffuso che ha sostituito, laddove possibile, i classici processi di fonderia. Il costo elevato di produzione dei particolari in ottone viene sensibilmente abbattuto dall’estrema lavorabilità e dall’elevato valore di recupero degli sfridi generati in fase di fabbricazione, rendendo quindi economicamente vantaggioso questo tipo di processo. Volendone analizzare in dettaglio le specificità, il processo parte da barre
estruse cilindriche, che vengono tagliate, scaldate alla temperatura opportuna (sopra i 700°C), quindi formate il più
delle volte in un’unica operazione. La tipologia di particolari prodotti è estremamente varia, ma la maggior parte riguarda la raccorderia per impianti idraulici, dove è possibile ottenere il pezzo già con i fori interni, limitando al minimo le successive fasi di foratura e lavorazione meccanica.
Per far questo si sfrutta l’estrema duttilità del materiale, ma
si sono anche perfezionate delle macchine con cinematiche
complesse, a forare su cuscino, dove le spine entrano quando lo stampo superiore scende sull’inferiore, quest’ultimo
contrastato da un cuscino idraulico; oppure configurazioni
“a campana”, con due semistampi e spesso dei punzoni che
scendono contro una spina principale. La forma sempre più
complessa dei particolari da produrre ha portato ad una evoluzione continua delle presse di stampaggio tradizionali,
con carrelli inclinabili dall’utente, ma anche allo sviluppo di
nuove macchine con cinematica a ginocchiera o “link-drive”
e di recente lo sviluppo di macchine per le quali la cinematica dei punzoni è guidata da sistemi idraulici o elettrici, in
grado di muovere i punzoni secondo tempi e velocità scelte
dall’utente. Parimenti si è osservato di recente uno sviluppo di nuove leghe di ottone a basso tenore di piombo, elemento utile per la rottura del truciolo, ma nocivo a contatto con l’acqua potabile. Dal punto di vista industriale,
l’Italia vede una notevole concentrazione di trasformatori di
ottone, concentrati nelle provincie di Brescia e di Novara,
legati per lo più al mondo della rubinetteria.
Quando Enginsoft si è trovata, ormai più di 10 anni fa, a
confrontarsi con questo particolare processo industriale, ci
si è subito accorti della complessità del tema da affrontare.
Forge, il software prodotto da Transvalor e specifico per la
deformazione dei materiali metallici, è sembrato lo strumento ideale, con la possibilità di implementare tutte le peculiarità di questo processo. Ad una prima caratterizzazione in
laboratorio delle leghe di ottone più utilizzate, sono seguite le prime simulazioni, che hanno dato subito buoni risultati, ma che hanno evidenziato il punto critico di questo
processo: il materiale ottone, per la sua duttilità, è solito
creare una notevole quantità di ripieghe, sia in fase di uscita in bava, ma anche durante il riempimento delle impronte. Seguire questo comportamento si è rivelato subito essere molto complesso dal punto di vista numerico, dovendo la
modellazione del pezzo tener conto delle zone dove due o
più lembi di materiale tendevano a riunirsi, per effetto del
flusso del materiale. Il produttore del software, stimolato
dalle esperienze che Enginsoft ha fatto con alcuni importanti gruppi trasformatori di ottone in Italia, ha migliorato
progressivamente il software, introducendo recentemente
delle nuove funzioni di contatto e nuovi traccianti, in grado di evidenziare le ripieghe e seguirne l’evoluzione durante il processo di stampaggio. Questo sviluppo ha portato
and un significativo vantaggio anche in termini di riduzione di oltre il 30% dei tempi di calcolo. Un altro aspetto specifico di questo processo produttivo riguarda la necessità di
considerare una lubrificazione differenziata di parti dei punzoni o degli stampi e la considerazione di eventuali problemi di intrappolamento di gas/lubrificanti. In riferimento al
primo punto, il modello è stato migliorato e consente di
specificare zone a lubrificazione differenziata, mentre per
l’intrappolamento di gas/lubrificanti, il modello di calcolo
tiene conto di questo effetto, evidenziando difetti di riempimento legati all’aumento di pressione in aree isolate, oltre a consentire di specificare delle tirate d’aria e valutarne
l’effetto sulla forma finale. Dal punto di vista del miglioramento delle cinematiche, sono stati via via perfezionati i
modelli di processo per lo stampaggio a forare ed introdotte nuove cinematiche richieste dagli utilizzatori. Per quanto riguarda lo stampaggio a forare, il modello attuale replica perfettamente tutti i movimenti della macchina: ad
esempio se c’è troppo materiale, lo stampo inferiore si muove contro il cuscino prima del contatto con lo stampo inferiore, quindi i punzoni entrano anticipati rispetto al movimento voluto, ma è possibile anche vedere l’apertura dello
stampo a pacchetto chiuso, per effetto della spinta interna
legata all’entrata dei punzoni. Sono stati implementati carrelli inclinati, il cui movimento è legabile anch’esso alla discesa dello stampo inferiore contro il cuscino. Recenti sviluppi hanno riguardato l’implementazione di presse a ginocchiera o di tipo “link-drive”, per le quali la cinematica consente una fase di chiusura più graduale, unitamente ad una
fase di apertura più rapida. La flessibilità nella definizione
delle leggi di movimento dei punzoni ha consentito di simulare senza problemi le nuove macchine ad azionamento
idraulico o elettrico, per l’ottenimento di pezzi senza bava
(flash-less). La possibilità di concatenare più movimenti
STAMPAGGIO OTTONE E ALLUMINIO
Simulare con Forge lo stampaggio di
ottone ed alluminio
46
- Newsletter EnginSoft Year 7 n°4
consente di seguire le varie azioni di chiusura dei punzoni
e delle matrici in una pressa “a campana”. Per particolari di
maggiori dimensioni, si passa al modello della pressa a bilancere/vite, grazie al quale è possibile valutare se la macchina è in grado di completare la corsa o se esaurisce l’energia disponibile prima di completare il pezzo.
Lo sviluppo del software è continuo: ad esempio si sta lavorando per aggiungere dei risultati in grado di descrivere con
maggior dettaglio il flusso di materiale attorno ai punzoni
rispetto allo stampo in movimento contro il cuscino, visualizzare meglio le azioni di flessione dei punzoni per effetto
del materiale, valutare gli effetti di risucchio del materiale
nella fase di apertura degli stampi. Sempre più numerosi sono inoltre gli esempi di utilizzo della funzione di ottimizzazione automatica contenuta nel programma, ad esempio per
modificare la posizione della barra sullo stampo e per ridurre al minimo il materiale utilizzato, garantendo comunque il
completo riempimento e l’assenza di ripieghe sul pezzo.
Da qualche tempo molte aziende che stampano ottone hanno iniziato a dedicarsi anche all’alluminio, per applicazioni
principalmente nel campo automotive. In questo specifico
ambito l’esperienza di Transvalor con numerosi stampatori
di alluminio ha garantito fin da subito di poter utilizzare il
software anche in questo ambito, consentendo ai molti utilizzatori italiani di poter valutare “in virtuale” le differenze
tra un processo a loro ben noto, avendo loro sempre stampato ottone, ed un processo non noto, lo stampaggio di alluminio. Per quanto riguarda le specifiche del processo, normalmente vengono utilizzate presse a bilancere/vite, ben
implementate nel programma, lo scorrimento del materiale
alluminio è molto differente e ben riprodotto, grazie alla
precisa caratterizzazione del materiale, e il range delle temperature di trasformazione risulta essere più delicato che
per l’ottone.
Volendo cercare una sintesi, si può dire che Forge è uno
strumento molto accurato, in particolare nello specifico ambito dello stampaggio dei metalli non ferrosi. È in grado di
consentire una valutazione a priori molto precisa della fattibilità di un particolare con il proprio processo e di intervenire in virtuale sugli stampi per migliorare la qualità del
pezzo. Lo stampo frutto del lavoro di simulazione può essere lavorato e mandato in produzione, limitando al minimo le
operazioni di campionatura in linea.
Riportiamo di seguito alcuni esempi di utilizzo del programma ed i pareri di alcuni utilizzatori italiani.
Caratteristiche comuni a tutte le modalità di stampaggio:
• Importazione da CAD delle geometrie degli
stampi/punzoni/spine in formato .stl e .step;
• Definizione del materiale da database, sono
presenti le leghe non ferrose più utilizzate (Cu,
ottone, Al, …), sono in fase di caratterizzazione le leghe recentemente messe in commercio
(ad esempio “ecobrass”, “Munz”, …);
• Ampia flessibilità nella definizione delle cinematiche
tramite modelli predefiniti di “pressa” ed opzioni specifiche;
• Per la pressa meccanica sono presenti modelli per la
pressa biella-manovella, pressa a ginocchiera, pressa
link-drive, cinematiche utente (fig. 1);
• Possibilità di specificare attriti differenziati legati ad
una superficie degli stampi con differente finitura super-
biella-manovella
ginocchiera
link-drive
Fig. 1 – modelli di presse meccaniche presenti nel programma
Fig. 2 - lubrificazione differenziata sulla testa del punzone
ficiale e/o lubrificazione indirizzata solo in alcune zone,
come ad esempio la testa di un punzone (fig. 2);
• Possibilità di calcolare l’intrappolamento di gas/lubrificante ed i relativi effetti sul completamento del pezzo,
valutando l’effetto degli scarichi (venting);
• Possibilità di simulare l’operazione di tranciatura delle
bave.
Peculiarità
Il software è in grado di simulare i processi principali di
stampaggio a caldo di leghe non ferrose:
• Stampaggio a bilancere/pressa a vite (fig. 3): pressa “ad
energia” da database, specificata l’energia disponibile
Fig. 3 – stampaggio al bilancere: configurazione reale ed esempi di particolari simulati
Newsletter EnginSoft Year 7 n°4 -
Fig. 5 – stampaggio a forare con spina inclinata
ed il numero di colpi il software permette di valutare le
quote di chiusura degli stampi;
• Stampaggio “a forare” su cuscino (fig. 4): pressa meccanica da database che guida lo stampo superiore, stampo
inferiore su cuscino del quale si specifica la resistenza,
spine che si muovono in funzione del movimento del
cuscino. Forge consente di valutare l’apertura degli
stampi legata all’eccessiva pressione esercitata dal
materiale nella fase di entrata delle spine. Tra le opzioni sviluppate “ad-hoc” vi sono la possibilità di utilizza-
idraulico/elettrico (fig. 8): la flessibilità di impostazione della cinematica consente di specificare, per ogni
stampo/punzone, tempi di entrata e leggi di moto differenti, con l’ottenimento di pezzi “flash-less”.
Esempio di risultati ottenibili
Flusso di materiale
Forge è in grado di simulare correttamente il flusso di materiale nello stampo per effetto della chiusura delle matrici
e per effetto dell’entrata dei punzoni. Una modifica delle
Fig. 7 – stampaggio in campana: chiusura punzone superiore, chiusura matrici e discesa contro il
punzone inferiore.
re carrelli inclinati (fig. 5), di
introdurre nello stampo degli
inserti (fig.6), la funzione di
“gas trapping” per valutare l’effetto dell’intrappolamento di
gas/lubrificanti;
• Stampaggio “in campana” (fig.
7): grazie alla funzione di concatenamento di più analisi, è possibile valutare tutte le azioni di
chiusura degli stampi, quindi di
entrata delle spine ed infine di
discesa contro il punzone principale;
• Stampaggio “in campana” –
chiusura punzone sup., chiusura
matrici, discesa contro punzone
inf.;
• Stampaggio con nuove presse
con punzoni ad azionamento
Fig. 6 – stampaggio a forare con inserto e grafico
forze sui punzoni
Fig. 8 – stampaggio “flash-less”: vista dei contatti e curve
di movimento dei punzoni.
Fig. 9 – Corpo pompa – confronto tra sequenza interrotta e simulazione e versione ottimizzata.
STAMPAGGIO OTTONE E ALLUMINIO
Fig. 4 – stampaggio a forare su cuscino: configurazione
reale
47
48
- Newsletter EnginSoft Year 7 n°4
PARTICOLARI IN OTTONE
Di seguito una serie di esempi reali di particolari in ottone, dove la simulazione ha aiutato i progettisti a migliorare la qualità del proprio processo produttivo.
Corpo collettore tre vie (fig. 10): la simulazione mostra con l’analisi dei contatti (in blu i contatti con lo stampo, in rosso le mancanze) che il materiale ha modo di allargarsi verso i raccordi laterali, dando origine ad un risucchio nella parte interna dei punzoni principali. Il pezzo reale mostra lo stesso tipo di difetto.
Fig. 10 - Corpo collettore tre vie - risucchi su entrata spine.
Corpo ad incasso (fig. 11): nell’ipotesi originale di stampaggio si riscontra una ripiega profonda in corrispondenza degli attacchi laterali esagonali. Sono state studiate diverse ipotesi di stampaggio, che hanno portato ad una eliminazione del difetto.
Fig. 11 - Corpo incasso - configurazione originale con ripiega e configurazione ottimizzata senza ripiega.
Corpo valvola (fig. 12): nelle campionature si riscontrano delle ripieghe sul lato delle spinette. La simulazione mostra come si forma il difetto e suggerisce degli accorgimenti per eliminare il problema.
Fig. 12 - Corpo valvola con ripieghe lato spinette – vista globale e vista del difetto.
Piletta stampata al bilancere (fig. 13): la simulazione evidenzia tutti i difetti riscontrati nella realtà: delle ripieghe sulla parte esterna (con il risultato “folds”), dovute alla giunzione di flussi, delle ripieghe sulla parete estrusa legate alla chiusura di materiale sul profilo ed un risucchio sul lato opposto legato all’estrusione di materiale.
Fig. 13 - Piletta su bilancere – ripieghe esterne, ripieghe su parte estrusa, risucchio su parte piana opposta.
Raccordo a 3 vie con spina inclinata (fig. 14): la configurazione, inizialmente non presente in Forge, è stata implementata sfruttando la flessibilità del codice a trattare cinematiche non-standard. La simulazione ha mostrato come si muove il
materiale e le mancanze, che a finecorsa si completano dando luogo alle ripieghe presenti nel pezzo reale. Una modifica
nella posizione della barra di partenza, verificata con la simulazione, ha risolto il problema.
Newsletter EnginSoft Year 7 n°4 -
49
Fig. 14 - Raccordo a 3 vie con spina inclinata – mancanze che generano poi ripieghe su attacco laterale.
Leva miscelatore (fig. 15): le prime campionature mostravano diverse ripieghe critiche. Il pezzo è stato verificato con la
simulazione, che ha rilevato tutti i difetti presenti nella realtà. Sempre tramite la simulazione si sono studiati diversi accorgimenti, che hanno consentito di ottenere il pezzo privo di difetti.
Fig. 15 - Leva miscelatore – varie ripieghe identificate su varie versioni e soluzione finale senza difetti.
Fig. 16 - Guscio con ghiera quadra - ripieghe sottopelle.
Corpo mix lavabo (fig. 17): la forma particolare del pezzo ha portato a valutare in virtuale diverse ipotesi di processo, con
barre di diverso diametro e alcune ipotesi di preformatura. Dopo una giornata di studi si è identificata la configurazione migliore in termini di sfruttamento di materiale (massimo riempimento con la minor bava), che presentava comunque un difetto di sfogliature sulla testa (visualizzato con il risultato “folds”), ritenuto comunque accettabile in quanto viene successivamente asportato con le lavorazioni meccaniche.
Fig. 17 - Corpo mix lavabo - confronto reale - simulato e presenza di sfogliature sulla testa.
STAMPAGGIO OTTONE E ALLUMINIO
Guscio con ghiera quadra (fig. 16): il pezzo risulta critico da ottenere da barra tonda a causa della profonda estrusione
inversa cui è sottoposto ed alla necessità di ottenere la ghiera quadra superiore. La simulazione evidenzia la formazione di
una prima ripiega in corrispondenza della prima variazione di diametro, sulla quale il materiale si ripiega ulteriormente a
formare il difetto presente sulla ghiera quadra. La simulazione mostra la posizione e la profondità del difetto, che è stato
possibile eliminare con la scelta di una barra di diametro differente.
50
- Newsletter EnginSoft Year 7 n°4
PARTICOLARI IN ALLUMINIO
Di seguito sono mostrati una serie di esempi nei quali la simulazione ha aiutato i tecnici a comprendere le motivazioni dei
difetti riscontrati nei pezzi, indicando la strada per risolverli.
Braccetto sospensione (fig. 18): particolare di forma molto complessa, dove lo studio ha consentito di minimizzare le bave e di identificare il difetto di riempimento riscontrato nella realtà. Una minima aggiunta di materiale ha consentito di ottenere il pezzo privo di difetti.
Fig. 18 - Braccetto - Riduzione delle bave e mancanza di riempimento di un dettaglio.
Tappo per automotive (fig. 19): la particolare forma interna dava luogo ad una ripiega, in una zona critica per la chiusura del tappo, difetto identificato dalla simulazione. Sono stati valutati in virtuale diversi accorgimenti, che hanno consentito di eliminare completamente il difetto.
Fig. 19 - Tappo - Giunto nella zona inferiore del rilievo e versione senza difetto.
Testa di sterzo motociclistica (fig. 20): lo stampaggio di questo particolare risulta critica per la formazione di ripeghe
nella zone del profilo intermedio superiore. Lo studio dei flussi effettuato con la simulazione ha spiegato le cause di questo difetto: una giunzione di flussi nel caso di risalita non equilibrata di materiale. Si è valutata quindi una modifica nello stampo inferiore, che ha orientato meglio il materiale verso il profilo, ha eliminato il difetto ed ha consentito anche un
risparmio di materiale, scaricando una zone che poi viene lavorata alla macchina utensile.
Fig. 20 - Testa di sterzo motociclistica - Giunti legati alla chiusura dei flussi.
Perno (fig. 21): l’errata scelta della barra può portare ad un flusso non corretto di materiale verso la zona esterna e quindi al riempimento per ritorno e ripiega in prossimità delle razze. La simulazione ha aiutato a comprendere come si chiude
il materiale su se stesso e quindi a testare varie geometrie di barra, fino a trovare quella che garantisce la miglior qualità
del pezzo.
Fig. 21 - Perno - il materiale si allarga verso l’esterno, chiudendosi quindi su se stesso e formando le ripieghe sulle razze.
Newsletter EnginSoft Year 7 n°4 -
51
Raccordo (fig. 22): il pezzo, molto massivo, ad una prima analisi non mostrava dei difetti significativi di riempimento. Il
cliente ha però evidenziato la presenza di bolle in corrispondenza della linea di trancia delle bave, difetti considerati critici per la qualità del pezzo. La simulazione ha mostrato un aumento importante di temperatura nella zone di uscita del materiale in bava, ad un livello sufficiente per innescare le bolle nel materiale. Tramite la simulazione si sono testate diverse
ipotesi di temperature iniziali di barra, identificando il compromesso migliore per garantire un flusso corretto di materiale,
una sollecitazione non eccessiva della pressa e temperature sulle chiusure non eccessive, ottenendo quindi il particolare con
la qualità richiesta.
BRAWO BRASSWORKING – Cividate Camuno (BS)
Ogni nuovo pezzo passa prima dalla simulazione per
eliminare mancanze e ripieghe. Dove è possibile, testiamo
noi e poi proponiamo ai nostri clienti modifiche che
migliorano la producibilità e spesso anche la funzionalità di
quello che siamo chiamati a produrre. Fondamentale è
l’interfaccia costante con Enginsoft, che ci supporta
nell’implementazione di nuove configurazioni e ci fa crescere
nella coscienza dell’analisi dei risultati, ma anche il
confronto con Transvalor, che ci segue nell’implementazione
di funzioni sempre più complesse, ma che rendono la
simulazione sempre più vicina alla realtà.
METALPRINT – Ponte S. Marco – Calcinato (BS)
Abbiamo scelto Forge come uno strumento utile a farci
crescere nello specifico dello stampaggio di alluminio, un
campo a noi poco noto. Usando lo strumento abbiamo messo
a punto il nostro processo e siamo stati in grado di proporci
ai nostri clienti come realtà in grado di supportarli nel
percorso di analisi di fattibilità di un pezzo. In diverse
occasioni, il software è stato elemento determinante per
prendere una commessa, garantendo a-priori il risultato
finale, prima promesso solo sulla carta.
ZUCCHETTI MARIO – Antegnate (BG)
La simulazione della deformazione della billetta tra gli
stampi rappresenta un valido aiuto per l’ottimizzazione del
processo di stampaggio a caldo. L’analisi dei risultati della
simulazione consente di valutare i problemi sul pezzo e sugli
stampi, di testare versioni modificate e deliberare stampi e
sequenza di produzione dopo aver individuato la soluzione
ottimale. In questo modo si riducono al minimo i tempi di
messa a punto “trial and error” arrivando alla soluzione
ottimale senza impegnare fisicamente le presse e la materia
prima. Forge è stato essenziale anche per far crescere
rapidamente delle nuove figure tecniche, che hanno potuto
stampare “in virtuale” un numero rilevante di particolari
(nell’ordine di 60 pezzi nei primi 3 mesi), risolvendo, con
l’aiuto degli esperti di stampaggio presenti da anni in
azienda, sia problemi “storici” di stampaggio, che via via
supportando le scelte per nuovi particolari.
FONDERIA F.LLI MASPERO – Monza (MI)
La nostra produzione è caratterizzata da particolari spesso
molto complessi, in leghe non ferrose spesso non comuni
(bronzo-alluminio, cupro-nickel, …), che abbiamo trovato
già disponibili nel database dei materiali di Forge. Le
esperienze iniziali con il programma ci hanno spinto a
meglio approfondire i dati di processo per inserirli nella
simulazione, attraverso un monitoraggio delle nostre
macchine. Questo ci ha portato ad un maggiore controllo dei
parametri fondamentali dello stampaggio, con un
miglioramento complessivo della qualità dei pezzi prodotti
ed una migliore ripetibilità delle operazioni. Si è ottenuta
una reale ottimizzazione del nostro processo, con ricadute
sensibili sul conto economico. L’evoluzione del mercato ci
porterà ad affrontare prodotti sempre più difficili e di
nicchia, per i quali avere questo strumento ci garantisce
sicurezza nell’affrontare i progetti più impegnativi ed
innovativi, dando un notevole impulso alla nostra
competitività.
STAMPAGGIO OTTONE E ALLUMINIO
Fig. 22 - Raccordo - bolle su linea di bava legate a T troppo elevata e pezzo finale privo di difetti.
52
- Newsletter EnginSoft Year 7 n°4
condizioni di processo, quali ad esempio il cambio della barra (dimensioni e posizione) o modifiche apportate alla geometria delle matrici, portano a dirette conseguenze sul risultato finale, indicando la via per procedere verso il miglioramento del pezzo. Un primo caso mostra la sequenza di
riempimento di un corpo pompa in ottone (fig. 9): la simulazione ricalca in modo fedele quanto accade nella realtà,
che è possibile comprendere solo effettuando delle sequenze interrotte.
Procedere con la simulazione del processo di stampaggio,
valutando a priori i problemi, consente di testare diverse
configurazioni e scegliere la migliore, riducendo al minimo i
tempi ed i costi di campionatura in stampaggio.
Mancanze e ripieghe
I risultati che normalmente si utilizzano per capire il flusso
di materiale sono i contatti e le ripieghe. Per i primi, in blu
sono riportate le aree di contatto con stampi/punzoni, in
rosso le mancanze. Per le ripieghe, il software evidenzia con
il colore rosso le zone dove il materiale ripiega su se stesso. Appositi sensori consentono di valutare anche come si
muove la ripiega durante la stampata e quindi aiutano a capire se rimane interna o esce sulle bave.
OTTIMIZZAZIONE AUTOMATICA
Forge è l’unico software di simulazione di stampaggio ad includere una funzione per l’ottimizzazione automatica.
Partendo da un progetto di riferimento, è possibile specificare il range di variabilità di alcuni parametri (ad es. dimensione della barra, sua posizione sullo stampo, …) e chiedere al software di trovare i migliori valori per soddisfare gli
obiettivi (ad es. riempimento dello stampo, assenza di ripieghe, …).
Nell’esempio seguente, è stato ottimizzato uno stampo per
la produzione di un raccordo a T in ottone. I parametri impostati sono un diametro barra tra 36,8mm e 55,2mm, una
lunghezza barra tra 48mm e 72mm ed una possibile variazione rispetto alla posizione iniziale di
-5mm lungo Y. Si chiede all’ottimizzatore di trovare i migliori valori per minimizzare il materiale
impiegato.
Primo risultato ottenuto: con una barra
d=38,13mm, L=49,2mm e dY=-3,7, si ottiene il
riempimento del pezzo con il minimo materiale
possibile, ma si riscontrano delle ripieghe.
Richiedendo come vincolo anche l’assenza di ripieghe, il software individua un’altra configurazione, che necessita di molto più materiale.
Partendo infine da barra coricata, si ottiene la
migliore soluzione, con riempimento completo
senza ripieghe e con un significativo risparmio di
materiale (-15% rispetto all’ipotesi iniziale)
L’ottimizzatore valuta diverse generazioni di individui, selezionando via via i migliori per convergere alla combinazione di valori e parametri che
consentano di ottenere i migliori obiettivi (completo riempimento dell’impronta, nel rispetto dei
vincoli imposti (assenza di ripieghe).
Per maggiori informazioni:
Marcello Gabrielli - EnginSoft
[email protected]
Newsletter EnginSoft Year 7 n°4 -
53
Coupling 1D and 3D CFD
The Challenges and Rewards of
Co-Simulation
It is now well known that 3D CFD simulations can give detailed
information about fluid and flow properties in complex 3D
domains and that, on the other hand, 1D CFD simulations can
give important information at system levels, i.e. about the
performances of an entire system of internal flows. The
drawbacks of the two simulation methods are that the former
requires high computational costs while the latter cannot
capture complex local 3D features of the flow. Therefore, the two
simulations methods are to be seen as complementary, indeed a
coupling of the two methods can use the strongest points of the
two methods while minimizing the drawbacks. In particular,
with a multi-scale modelling approach (achieved by coupling 1D
and 3D codes) it is possible to simulate large and complex
domains by modelling the complex parts with a 3D approach and
the rest of the system with a 1D approach. This methodology can
provide detailed information only where needed while providing
system level information in the rest of the domain; this
minimizes the computational costs. Moreover, the multi-scale
approach avoids the need of imposing approximated boundary
conditions to the 3D simulation which would badly affect the
reliability of the simulation itself.
EnginSoft has a long and important experience both in 1D and
3D simulation modelling (with ANYS Fluent, ANSYS CFX and
Flowmaster) and is active in multi-scale simulations. There are
different methodology for coupling 1D and 3D codes. The
coupling methodologies can be divided in manual or automatic
depending on the method of data transfer between the two
codes, or in one-way or two-way depending whether both
systems mutually influence each other or not. Manual one-way
coupling between 1D and 3D CFD codes is a standard practice in
EnginSoft. Usually the complex components in the systems (such
as valves, orifices, heat exchangers, vessels) are modelled in 3D
with ANSYS CFX or ANSYS Fluent. The characterization of these
components allows the definition of an equivalent 1D
component used inside the 1D model of Flowmaster. Using this
simple approach all the detailed information gained with the 3D
simulations are embedded and used inside the 1D system model.
EnginSoft is also actively investigating automatic one-way and
two-way coupling methodologies between Flowmaster and
ANSYS Fluent and ANSYS CFX.
The coupling possibility is not limited to CFD field but can
extend to multi-physics. An example of multi-physics one-way
coupling is the simulation of vibrations in piping systems (e.g.
compressed gas systems, blow-down systems); this simulation is
performed by modelling the pressure wave propagation inside
the piping system with Flowmaster and passing the forces
exerted by the internal flow to ANSYS for a mechanical analysis.
EnginSoft has performed several vibration analyses for different
customer using this one-way multi-physics approach with a
semi-automatic procedure. Another example of multi-physics
two-way coupling is the simulation of thermal deformation of
solid structures and the fluid flow though them. In this case
both systems influence each other so that the coupling needs to
be two-way and automatic. EnginSoft has developed a fullyautomatic interface between Flowmaster and a thermomechanical code for such a simulation. Finally, in this framework
it is worth mentioning that Flowmaster can be directly coupled
with mode-FRONTIER allowing multi-objective optimizations.
EnginSoft is active in this field with different optimization
projects involving 1D CFD and Flowmaster.
"This article originally appeared in
the October 2010 edition of
Benchmark and has been reprinted
with permission from NAFEMS"
Vincent Soumoy of EURO/CFD and David Kelsall of Flowmaster
Ltd, both members of the NAFEMS CFD Working Group, provide
an overview of the recent NAFEMS UK seminar on coupling 1D
and 3D.
The benefits of coupling 1D and 3D CFD codes have long since
been recognised. Automotive and aerospace companies have
used 1D codes to gain a better understanding of system
performance (such as fuels systems), whilst 3D codes are used
to analyse detailed behaviour within and around key
components. With that in mind, the NAFEMS CFD Working Group
recently arranged a seminar at the Heritage Motor Centre in
Gaydon to understand the benefits of such links and assess the
current state of the art. Approximately 40 interested parties
from across the NAFEMS membership attended to hear a number
of interesting and thought-provoking presentations from various
speakers.
Darren Morrison started the technical presentations by sharing
an interesting view on the subject from the perspective of a
large aerospace company (AIRBUS). Validation is seen as
54
- Newsletter EnginSoft Year 7 n°4
of a complicated flow topology. Even with 1D analyses
simplifying the fluid dynamic calculations, about 250 CPU-days
of CFD computations where used to optimise the configuration.
Large aircraft system co-simulation
desperately important, so that much of their work is to prove
that any couplings are producing realistic and reasonably
accurate predictions. In designing fuel systems, much of the
analysis is done with 1D codes – for reasons of computational
economy – but sometimes the passages and fluid interactions
are so complex that only a 3D treatment is felt appropriate.
Hitherto results have been passed manually from 1D to 3D
analyses. There is a desire for such couplings to be automatic –
but without compromising the integrity of the analysis.
Representing a vendor’s perspective, Domonik Sholz from ANSYS
Germany called for participating codes to develop a common
infrastructure so that they could support a wide range of multiphysics applications. Using the example of tracer transport in a
pipe network, he showed how co-simulation between ANSYS CFX
and LMS AMESim gave excellent agreement with experiment, for
flows in- and around- pipe junctions. The inter-code coupling
was partially enabled by ANSYS CFD codes (CFX and Fluent)
providing direct links to several 1D Codes (including AMESim,
Flowmaster and GTPower). Further examples included:
• a vehicle thermal management model simultaneously
running Fluent, GTPower and Flowmaster which gives
temperature results to within 2% of experimental
observations;
• an exhaust gas recycle (EGR) featuring CFX and GTPower.
LMS International’s R&D Manager Roberto d’Ippolito then
demonstrated an exciting application of 1D-3D coupling:
optimization. 3D CFD on its own is currently too computationally
intensive to be used in conjunction with optimization analyses
for large industrial systems. 1D codes can be used to
approximate the essential features of 3D CFD predictions so that
meaningful optimization analyses can be performed in
conjunction with CFD analyses. Using the example of a water
jacket for a 5-cylinder in-line turbo-diesel, d’Ippolito
demonstrated a practical methodology to optimise the design of
the cooling holes of the head gasket. This is a multi objective
optimization problem with a need to maximize the minimum
velocity through the holes and to minimize the related pressure
losses between the cylinder head and crank-case in the context
Picking up on some of the concepts raised by ANSYS’s Sholz,
Sreenadh Jonnavithula from CD-adapco discussed the
motivations for coupling 1D and 3D CFD drawing on experience
gained within CD-adapco. (In fact, these struck a chord with
most participants in the meeting.) He showed how couplings to
SPT Group’s multiphase flow code OLGA, Gamma Technologies’
GT-Power and Ricardo’s WAVE have been implemented in CDadapco’s newest CFD code, STAR-CCM+. Jonnavithula used
automotive and oil industry case studies to demonstrate the
generic coupling capabilities of STAR-CCM+ together with
specific interfaces to 3rd party products, including:
• a coupling to OLGA to facilitate the design of an oil company
slug-catcher (to capture a large plug or slug of liquid that
might be projected from a multiphase oil pipeline);
• a coupling with GT-POWER to facilitate the design of auto
engine intake and exhaust systems, with GT-POWER
modelling exhaust pipes and ducts, whilst STAR-CCM+
simulated detailed flows within the manifolds.
As a complete contrast to the bespoke couplings offered by
ANSYS and CD-Adapco, Pascal Bayrasy of the Fraunhofer
Institute for Algorithms and Scientific Computing (Fraunhofer
SCAI) presented the neutral coupling interface server, MpCCI(
Mesh-based parallel Code Coupling Interface).
MpCCI was originally developed as a multi-physics coupling
application. It facilitates coupling and data exchange between,
for example, a finite element (FE) stress analysis code and a CFD
flow analysis codes for Fluid Structure Interaction (FSI)
calculations and has recently been enhanced to allow 1D-3D
couplings.
MpCCI addressed some of the challenges inherent in cosimulation - complex hardware environments and challenging
software engineering requirements - by using adapters
(developed for each software vendor) to establish a direct
connection between the MpCCI Coupling Server and the 1D or 3D
CFD code. Currently coupling adaptors exist for Abaqus, ANSYS,
Fine/HEXA, Fine/TURBO, Flowmaster, Fluent, Flux, ICEPAK,
MSC.Marc, Permas, STAR-CD and RadTherm amongst others. In
principle, MpCCI offers the potential of even more complex
couplings than bi-lateral ones between 1D and 3D CFD codes.
Nevertheless Bayrasy demonstrated the attention to detail that
Full vehicle thermal management
Newsletter EnginSoft Year 7 n°4 -
55
Much of ESDU’s experience is now captured in CFD Best Practice
Guidelines for modelling pressure loss and flow characteristics.
The final talk of the day came from David Burt of MMI
engineering. He showed a multiply coupled problem featuring
buoyancy driven flow in a complex ventilation system. It related
to a nuclear facility where no contaminants could be allowed to
escape from a process building. The modelling involved coupling
a 3D CFD model (for the building space), a 1D model (for the
ventilation system) and MATLAB to define some of the key
components within the overall model. Much of the coupling was
achieved manually, and whilst this gave acceptable results it
limited the test scenarios, use cases and failure cases that could
be assessed. Burt felt that an automatic coupling capability
(between the computer applications) would have led to an
improved understanding of the influence of each model on any
of the others.
The links with 1D software are fully integrated in the STAR-CCM+ user
interface
has been necessary to ensure that MpCCI produces stable,
convergent, conservative and consistent co-simulation
solutions.
Flowmaster’s David Kelsall then illustrated how a 1D code might
be coupled to a 3D code (Fluent, STAR-CD or STAR-CCM+) using
MpCCI as a coupling adaptor. Using the example of an aircraft
environmental control system (ECS) to manage passenger cabin
climate, Flowmaster was used to model the equipment and
ducting within the ECS supply, whilst 3D CFD codes were used to
model a partial section of the cabin (to minimize CFD runtimes). MpCCI was used as a coupling adapter. The overall model
allowed various what-if scenarios to be tested. Changes within
the ECS supply network were shown to have a demonstrable
effect on passenger comfort within the aircraft cabin. The
example showed that realistic simulations are possible and
provided further scope for development and optimization. The
presentation discussed some of the challenges overcome in
coupling 1D and 3D models and demonstrates that a methodical
approach promotes convergence. With the MpCCI coupling
adaptor it was a relatively straightforward exercise to swap the
CFD codes between STAR-CD, Fluent and STAR-CCM+
The final session of the day was dedicated to different aspects
of the 1D-3D coupling challenges.
Francesca Iudicello from the ESDU Fluid Mechanics Group
reminded the meeting of the importance of using fully validated
data and correlations, particularly when 3D calculations are
approximated as 1D processes. ESDU has a rich history in
developing methods for the design of internal flow systems for
over 40 years, using validated experimental data and 1D
analytical methods. Their methods now include the use of 3D
CFD predictions to supplement and support experimental data.
Iudicello emphasized the importance of understanding:
• the type of averaging to use for the flow parameters at the
inlet and outlet boundaries;
• the sensitivity of the CFD solutions to the location,
magnitude, profile and turbulence entity of the boundary
conditions.
Concluding Remarks
The presentations of the day clearly demonstrated that there is
a significant interest in the coupling of 1D-3D CFD.
The type of organisation undertaking coupled solution would
seem to be capital intensive industries (such as automotive,
aerospace, and oil) where significant gains may accrue from
improved understanding of system interactions.
Developers and vendors are clearly responding to customer
needs because many 3D CFD developers (e,g, ANSYS, CD-adapco)
are developing bespoke coupling solutions for their own
products, linked to specific 3rd party applications. However
many users will be lucky if they happen to have the specific
combination of 1D-3D applications that specific vendors already
support – otherwise the development costs may be significant if
a new coupling adaptor needs to be developed.
Fraunhofer-SCAI are pursuing a different strategy. They provide
a neutral interface for simulation code coupling and already
provide coupling adaptors to a wide range of FE, 3D and 1D CFD
and other simulation tools.
During the day and in the questions time after the presentations
there were a number of lively discussions, with some useful
insight into the different perspectives of the vendors and users
in a range of different industries.
There are clearly many issues still to be addressed before
coupling and co-simulation become universally stages of the
analysis process. But the current state of the art (and the
competing offerings from developers and suppliers) would seem
to suggest that this technology will develop and improve over
the coming years. It is an area that NAFEMS will continue to
monitor and make information available to members.
Thanks are recorded to members of the NAFEMS CFD working
group who organised this event and especially to Jo Davenport
(of NAFEMS) for organizing the venue and ensuring the day ran
so smoothly and David Kelsall as technical champion.
Vincent Soumoy – EURO/CFD • David Kelsall – Flowmaster Ltd
For further information:
Dr. Alberto Deponti - EnginSoft
[email protected]
56
- Newsletter EnginSoft Year 7 n°4
Interview with Joan Villadelprat,
President of EPSILON EUSKADI
Epsilon Euskadi, situated in The
Basque Country in Spain, was
founded in 2003 as a racing team
participating with two cars in the
“Nissan World Series” and in this
short time they have become a
Technological Innovation Centre
unique in the world.
The
Master
in
Technical
Specialization within Automobile
Racing, METCA, is the result of
collaboration between Epsilon Joan Villadelprat, the President
Euskadi and the University of of Epsilon Euskadi.
Mondragón that, in the six years since starting in 2005, has
become an international benchmark. The course provides
more than 1,700 teaching hours over 11 months and this
year the participation included 32 students from 6 different
countries.
AperioTec (Barcelona, Spain) and modeFRONTIER cosponsored the course together with other companies and for
the first time was involved in training the students in the use
of optimization within the "CAD & Calculation" course
module.
Here we provide parts of an interview held with Mr. Joan
Villadelprat, the President of Epsilon Euskadi, to gain his
impressions on the progress of Epsilon Euskadi, the METCA
program and the usefulness of the modeFRONTIER software.
1. What were the main reasons for initiating the METCA?
Joan Villadelprat: One of the main reasons that led us to start
the Masters, and Epsilon in general,
was to add special emphasis to
motorsport that went beyond mere
show. The main objective is to train
the next generation of engineers
who wish to develop their career in
the world of high competition and
industrial sectors that require a high
degree of technological expertise
and innovative components. The
ambitious and unique combination
of theory and practice that the
METCA degree offers provides a
unique opportunity to educate the
next generation of engineers
capable of reaching and meeting the
highest level in motorsport as well
as in other industries in which
technology and innovation are the
cornerstones.
2. Why it is considered a world pioneering master?
JV: It is a pioneering master due to its combined theoretical
and practical orientation. Students not only receive
theoretical knowledge from high level teachers and lecturers
but within the same program they implement this knowledge
in the workshops, the wind tunnel, the engineering design
department and with the Epsilon teams that participate in
the World Series by Renault championship. Thanks to this
approach, every day the students are faced with real
situations and problems from which they obtain a unique
experience that will enable them, tomorrow, to confidently
accept any challenge.
3. Are you aware of any former METCA students currently
working on a racing team? If so, in what team and what
functions are they carrying out?
JV: Year 2010 is the sixth promotion, but of the previous five
promotions, we are aware of eight alumni who work or have
worked as engineers in Formula 1, in Sauber, Renault, Toyota
and Red Bull. We also know of students who work in other
competitions such as the GP2 and the Le Mans Series where
they work as engineers with different responsibilities.
4. Would you highlight any aspects of the new Epsilon
facilities in Vitoria?
JV: In January 2010 we moved to the new Innovation Centre,
located in the Parque Tecnológico de Álava, Vitoria. Here we
have 17.000 square metres of facilities equipped with the
latest technologies to meet the four basic areas that Epsilon
focuses on: R&D, manufacture, competition and training.
These new facilities enable us to face many
more challenges and to empower more
students. For METCA we have a classroom
fully equipped with the latest software and
hardware in addition to using the rest of the
facilities for their practical classes and
projects, the most important of which is the
Wind Tunnel. This is a unique facility in Spain
based on its features - size, power and
moving floor - making it the most modern in
Europe.
5. Can you please tell us about the current
use of the wind tunnel at the centre?
JV: The wind tunnel at the centre is used
both for our own projects and projects for
others. Our current projects include the
prototype development of a Le Mans car in
accordance with current specifications and a
prototype Formula 1 car. But we do not only
Newsletter EnginSoft Year 7 n°4 -
test vehicles, we can study any surface
exposed to air flow to improve its
aerodynamic efficiency. In the tunnel we
have tested the official Nike football for
the Spanish, Italian and English football
leagues and the Bell helmet that cyclist
Alberto Contador used for the time trials in
the Tour de France this year. We have also
done tests on new profiles for wind turbine
blades, solar panels and high speed trains.
57
classes dedicated to optimization and use with
modeFRONTIER.
11. What might be future opportunities for
optimization using modeFRONTIER in your
processes or designs?
JV: Applications and areas where we can
optimize the designs are so diverse that
optimization can be performed in virtually all
vehicle areas. The capabilities of this type of
software tool enable us to precisely and
confidently obtain optimal designs.
6. Why did you decide to include
modeFRONTIER in this master?
JV: The aim of the master is to provide a
12. Epsilon provides engineering services for
multi-disciplinary education to students in
companies with high technological value, so
order to broaden their knowledge in
what are the opportunities to utilize some of
disciplines such as aerodynamics, vehicle
the modeFRONTIER features?
dynamics, powertrain (engine, gearbox and Driver Albert Costa signing autographs JV: The possibilities are vast. Our company
transmission), calculation and simulation, with Commercial Director Jordi Caton. philosophy at Epsilon is that we use intellect and
CAD, programming, track engineering and
the available tools to provide high added-value
team management. modeFRONTIER offers a good tool to
to various industrial sectors. Reaching an optimal solution
create very comprehensive process simulations and
ensures the success of any project, so that with these tools,
optimization calculations managing other software programs
we can become even more empowering and reliable.
so it is necessary that students know and understand this
software tool.
13. Epsilon, together with other companies, has developed
a new electric car concept called "Hiriko, Diving Mobility"
7. Logical, but was there were some notable non-technical
that is sure to revolutionize the automotive industry and
aspects?
urban mobility in the future. What has been the role of
JV: The close relationship we have with AperioTec was a
Epsilon Euskadi in this project?
major reason to opt for this software. The tool itself is not
JV: Our role is to lead the "city car" prototype production of
useful unless there is a leading technology partner guiding
the new urban concept vehicle that MIT has developed,
and helping users to best use it.
contributing our technical knowledge and integrating the
expertise of different automotive industry providers. This
8. Were your expectations met with this new section of the
requires development and production, via a new
course?
decentralized model, of the first vehicle of its kind in the
JV: We have reached the point where we have closed the
world. Without doubt, the research and development of
development cycle by using automatic optimization
innovative products and technologies fits perfectly within
techniques instead of just using experience and knowledge.
the Epsilon philosophy, which goes beyond that of the
It is still early to assess with certainty, but our primary
competition. It is a challenge that goes beyond mere
expectation has been fulfilled by obtaining optimal solutions
technology, also appealing to social responsibility.
to engineering problems which traditionally would not have
been possible.
14. What results have Epsilon Euskadi achieved in the
various competitions?
9. Each student must complete a final master project; have
you any idea of possible projects to be undertaken by
students using modeFRONTIER?
JV: There are six projects that will use modeFRONTIER with a
total of ten students working with this tool. I could mention
one or two, but they are all very interesting, so it is difficult
to highlight any in particular.
10. What is the overall impression that the students had
of this new section?
JV: Their initial assessment was very positive but they have
requested to have more time with the tool, something which
we sort of anticipated. Being the first year, we consider this
our first trial, but next year we will surely double number of
58
- Newsletter EnginSoft Year 7 n°4
JV: Epsilon Euskadi participates with
four cars in the Eurocup Formula Renault
2.0 and with two cars in the Formula
Renault 3.5 or World Series. The Renault
2.0 would be a natural first step for
young people moving from karting to
cars. Here the cars are simple but
certainly provide a great school. Our four drivers have done
very well and three of the four have been on the podium on
occasion. Substitute drivers were also on the podium and
won some races, which gives an idea of the team's
competitiveness. The World Series would be the next step and
is generally the prelude to Formula 1.
Drivers such as Kubica
and Alguersuari grew up
within Epsilon, but
others
like
Vettel,
Kovalainen and Alonso
have also driven here. In
the Renault 3.5 category
we currently have Albert
Costa who is one of the
most promising young Spanish motorsport drivers and winner
of the Eurocup and WEC (West European Cup) with Epsilon in
2009. Despite some physical problems he had this season he
has had an extraordinary first year in the category, with
several podiums to his credit.
15. And finally, your expectation was to enter F1 in 2010
but this did not come about. Is there some expectation
that Epsilon could enter this competition next year?
JV: Entering Formula 1 is one of our goals, but not the only
one. And this license enabled direct entry, but neither will it
be the only one. Epsilon will continue with its industrial and
automotive projects. And among these projects is that of
entering Formula 1 because it is the ultimate expression of
motor racing and technology, basic principles of our
company. While working on a new opportunity, we will always
continue with our educational projects, competition,
manufacturing and R&D.
AperioTec and modeFRONTIER in
facebook and twitter
The original Spanish version of the ”Interview with Joan
Villadelprat, President of Epsilon Euskadi” can be found
in the Aperiotec webpage and was even published on
th
17 October 2010 in the official pages of Epsilon
Euskadi on Facebook and Twitter.
Newsletter EnginSoft Year 7 n°4 -
59
RIGANTI SpA
Acciaio stampato al maglio dal 1891
Riganti è una delle realtà più importanti in
Italia per quanto riguarda la produzione di particolari in acciaio mediante forgiatura al maglio. Nello stabilimento di Solbiate Arno (VA) si
producono fin dal lontano 1891 particolari da
un minimo di 5kg ad un massimo di 1500kg in
acciai comuni al carbonio ed inox, ma anche in leghe speciali
(Monel, Inconel, Chromium-Duplex, Incoloy, etc.) per ogni settore della meccanica: veicoli industriali, impianti petrolchimici,
ferrovie, motori marini e industriali, ruote dentate e cambi, aeronautica, … L’attività ruota attorno
al processo di stampaggio al maglio,
con le linee da 10.000 kgm, 16.000
kgm, 25.000 kgm, 2 linee da 32.000
kgm, 2 linee da 35.000 kgm e l’ultima installata da ben 40.000 kgm,
che consentono con diversi colpi di
ottenere particolari di diametro fino a 1m e forme molto complesse, particolari che poi sono trattati termicamente e lavorati
al grezzo o al finito.
Visitate il sito di Riganti all’indirizzo: www.riganti.com
L’utilizzo di FORGE nella progettazione
Riganti è sempre stata sensibile alle innovazioni tecnologiche in
grado di implementare e ottimizzare la produzione ed il “service” relativo.
Fra le prime ditte ad implementare l’uso del CAD 3D per la progettazione degli stampi è stata anche la prima industria di stampaggio in Italia, a credere nella simulazione di processo, scegliendo sin dal 1999 Transvalor e l’assistenza tecnica e formativa di EnginSoft. L’uso di magli di medie-grandi dimensioni, è una
delle caratteristiche che distinguono il prodotto Riganti ed il
software Forge è stato personalizzato ed implementato secondo
le particolari necessità del processo di formatura con magli a
contraccolpo e doppio effetto.
Il continuo affinamento del programma, ha reso i risultati delle
simulazioni sempre più realistici, rendendo Forge insostituibile
sia in fase di valutazione preventiva che nella fase di ottimizzazione. Possiamo dire che l’esperienza analitico-scientifica con
Forge, non sostituisce completamente la conoscenza pratica dell’esperto forgiatore, ma la affianca e la sostiene, dando logica e
spiegazione ad un patrimonio quasi esoterico, frutto di tramandate conoscenze e di svariati anni di lavoro sul campo, legate
però al singolo individuo e non al know-how aziendale. Se al momento della scelta di Forge, l’obiettivo primario era quello del-
l’eliminazione dei difetti di stampaggio (ripieghe, cricche per
elevato scorrimento interno, mancanze), sono subito apparse
utili altre caratteristiche legate alla simulazione di processo.
L’uso di Forge si è rivelato fondamentale nell’esame di fattibilità preventiva dando così modo alla parte commerciale di esplorare nuovi mercati e nuove tipologie di prodotto, con la sicurezza di soddisfare una fornitura, anche al limite delle possibilità
produttive dei magli a disposizione. Forge si è dimostrato indispensabile sia per l’ottimizzazione di commesse ad elevato numero di pezzi, ma ancor di più per lotti di produzione con basso numero di particolari di grossa dimensione, per i quali non è
fattibile una fase di prototipazione e per i quali un errore progettuale è inaccettabile, per il grosso dispendio economico e per
i conseguenti ritardi nella consegna dei pezzi.
Perché EnginSoft e FORGE in Riganti
L’uso costante di Forge consente di creare un data base suddiviso per famiglie di prodotto, a disposizione di quei clienti che si
avvicinano per la prima volta alla Riganti ed ai suoi prodotti.
L’ottima visualizzazione dei risultati facilita la comprensione anche a persone meno esperte del settore, diventando un ottimo
strumento di comunicazione con il cliente finale, soddisfando le
esigenze relative alla previsione dell’andamento fibre e permet-
tendo la tracciabilità del nucleo billetta, consentendo in alcuni
casi, a pari qualità, l’uso di acciai da colata continua in sostituzione dei più costosi in laminato. Il dott. Marco Riganti ci ha
detto: “Ho visitato la Transvalor nel 1999 per rendermi conto
personalmente del livello tecnico di questa azienda e del suo
software Forge, prima di deciderne l’acquisto. L’impressione di
eccellenza che ne ricavai allora si è confermata negli anni e per
questo continuo a sostenere l’importanza di questa scelta per il
progresso della mia azienda”. “La piena soddisfazione nei risultati e nell’affidabilità, hanno reso nel tempo insostituibile
Forge. Ogni anno siamo impazienti di ricevere la nuova versione
per applicare nel concreto le diverse migliorie sempre presenti
(miglioramento dei contatti e tracciatura delle ripieghe, ottimizzazione, strumenti per rendere più rapida la soluzione e più precisa l’analisi dei risultati, …). Il continuo lavoro di sviluppo del
programma, a cura di Transvalor, e l’assistenza continua di
EnginSoft nell’implementazione di progetti sempre più complessi, sono elemento essenziale per utilizzare quotidianamente questo strumento e trarne il massimo vantaggio”, dichiarano Dario
Bressan, responsabile dell’Ufficio Tecnico e Franco Cermisoni,
l’utilizzatore del programma.
60
- Newsletter EnginSoft Year 7 n°4
For the growth of MONOZUKURI
in Japan
activities are hosting lecture meetings as well
as publishing journals and collecting
technical papers. The last lecture meeting
was held at Kyushu University last May and it
drew to a successful close with more than 300
lectures from different fields. The quarterly
JSCES was founded in 1995 by its
published journal is very well accepted
first president T.Kawai and the
because of the timely feature articles. The
organizers of WCCM III (The Third
collection of papers builds a reputation for its
World Congress on Computational
high quality, and is a breakthrough as the
Mechanics). JSCES has been
first electric journal intended to the readers’
affiliated to the International Union
convenience.
of Theoretical and Applied Mechanics
In addition to these activities, JSCES also
(IACM) since 1995. JSCES has
conducts activities that are aimed at
currently over 900 members, all of
“computational
engineering
for
which are automatically registered
MONOZUKURI” to draw a new road map of
as international members of IACM.
MONOZUKURI. It includes “Send and Receive”
The purpose of JSCES is to promote
advances
in
education
and Mr. Koichi Ohtomi, President of JSCES and Chief between computational engineering and
Research Scientist of the Corporate Research &
MONOZUKURI and thus widens research and
technology
in
computational Development Center ofToshiba Corporation.
technology of the MONOZUKURI study group
engineering by providing a platform
and backups activities of the engineers’ educational system
for communication to the members of JSCES and the related
by offering qualification certificates. To realize all this and
organization. In addition, JSCES contributes to
to run a smooth and effective operation, we are open to
advancements in these fields widely through international
collaborate with other societies and associations both
activities.
domestic and overseas.
We had the pleasure to interview Mr. Koichi Ohtomi, who
What are the benefits and problems of CAE simulation?
became the president of JSCES in April 2010, about the
We can get the output very fast by using CAE. Experienced
challenges of CAE in Japan, the JSCES’s efforts and the
engineers understand the calculated value very quickly by
opportunity for collaboration with the CAE community in
comparing it with physical and theoretical answers. In other
Europe. Mr. Ohtomi also holds the position of Chief Research
words, if the right person uses CAE properly, it can have a
Scientist of the Corporate Research & Development Center
great effect. Various success stories can be witnessed in
at Toshiba Corporation.
different industries, such as a 1 year design cycle has been
reduced to only 1 month or all necessary data can be
*Toshiba, a world leader in high technology, is a diversified
obtained without prototype testing. Clearly, MONOZUKURI
manufacturer and marketer of advanced electronic and
got the great benefit of speed from CAE. Especially, the last
electrical products, spanning information & communications
20 years were a giant leap for CAE, as we have many
equipment and systems, Internet-based solutions and
excellent technologies, sophisticated capabilities and wellservices, electronic components and materials, power
programmed software products. CAE has become a keyword
systems, industrial and social infrastructure systems, and
for the world of MONOZUKURI.
household appliances.
Interview with Mr. Koichi Ohtomi,
President of JSCES - THE JAPAN
SOCIETY FOR COMPUTATIONAL
ENGINEERING AND SCIENCE
What are the main activities provided by JSCES?
Computational engineering is now an important field in
science technology that contributes a lot to MONOZUKURI
and other industries beyond science and engineering
disciplines.
JSCES provides several activities to make use of the
achievements of computational engineering. The main
However, the required drastic changes of design and
manufacturing systems which go along with the
introduction of CAE, produced a “collateral effect”. For
example, young engineers face difficulties, they sometimes
don’t know how to evaluate the answer from simulations
properly. For instance, they tend to calculate any design
case by 3D non-linear simulation, even if it can be analyzed
Newsletter EnginSoft Year 7 n°4 -
with a 2D linear simulation. All the necessary data and
functions are prepared in the CAE software; this doesn’t
challenge the engineers to use their own thoughts,
although theoretical thinking was indispensable until CAE
simulation became widely used some years ago. In the worst
cases, users believe the simulation answer without a doubt
as it does not seem right to think theoretically. Such
problems may continue to occur until a new educational
system which focuses on CAE embedded MONOZUKURI has
been established.
What are the JSCES activities in the current CAE
environment?
Recently, we started the study and promotion of 1D-CAE.
The 1D-CAE study group was established in JSCES, it
organizes regular workshops. Unlike typical 3D-CAE, 1D-CAE
can be implemented into the very early phase of the design
cycle, which describes all the functions and phenomena of
both the products’ hardware and software, and realizes the
parameter study. It also includes nonphysical phenomena,
such as consumers, society, economy and distribution. If
the engineers focus on this design concept at an early stage
and then use 3D-CAE in the structural design, it will drive
the innovation of the design and also the human resource
development.
Furthermore, JSCES provides 2 more study groups to improve
the problem we have now. The first group is the
MONOZUKURI study group which fosters the use of CAE for
MONOZUKURI and discusses computational engineering from
the viewpoint of MONOZUKURI. It holds the periodical
meeting to exchange ideas and to provide a platform for
discussion between manufacturing companies, academic
associations and vendors about, for example, simulation
quality, verification & validation, 1D-CAE & 3D-CAE, and
computational engineering and experimental engineering,
etc.
As the standard CAE software products used in Japan are
mostly produced in the US and in European countries, these
programs do not always suit the traditional Japanese design
and manufacturing system called SURIAWASE (which means
coordination). The study group’s aim is to find the right way
to use CAE in the Japanese MONOZUKURI culture.
The second group is the HQC study group. HQC means High
61
Quality Computing. Although HPC (High Performance
Computing) has been discussed for years, we need to think
more about “Quality” in the future. Maybe starting a routine
to re-evaluate the simulation result inside the hardware
would be a HQC. As far as CAE quality assurance is
concerned, our studies refer to ASME V&V and NAFEMS.
Are there any possibilities to collaborate with European
associations?
In 2010, I have visited the EnginSoft office in Padova, Italy
in April and attended the TechNet Alliance Meeting in
Aachen, Germany, in November. These were unique
opportunities to meet with CAE specialists from different
fields in Europe and to enrich both our understandings. I
was impressed to see that CAE is on center stage, and that
both users and vendors are keen to cooperate for a better
use and enhancement of CAE software in Europe. If
necessary, even a small company makes their own CAE
program by applying new technology.
I would like to introduce this positive attitude for CAE in
Europe to Japan. Although the number of CAE software
licenses used in Japan is much higher than in most other
countries, the users often tend to be very passive. I think
CAE users should be far more positive about improving their
own use of the software and the environment. With respect
to CAE quality assurance, NAFEMS’ promotional activities for
safe and reliable CAE gives us many hints. For all these
reasons, we are hoping to collaborate with NAFEMS and also
other European associations in various ways in the future.
*MONOZUKURI is being used in this article and in the future
instead of MONODUKURI which was introduced before in past
editions. Though both are used in Japan, the “Z” is more
natural in English-speaking countries. *MONOZUKURI is the
Japanese expression for “production” or “manufacturing” in
English, but it is also used often in discussions about
Japanese engineering spirit and traditional manufacturing.
For more information, please contact:
Akiko Kondoh - EnginSoft
[email protected]
62
- Newsletter EnginSoft Year 7 n°4
Enjoy your Spring with
Cherry Blossom in Kyoto
Kyoto, the most famous tourist site in Japan, is also the
favorite city of the Japanese people. In autumn, when I wrote
this article, the different kinds of trees in the city and in the
surrounding mountains are changing their colors, from green to
yellow and red. The autumn colors create a beautiful harmony
with the historical temples and shrines that have been
watching the changes of the seasons for more than a thousand
years. In spring, when this Newsletter reaches you, the cherry
trees of Kyoto will be in full blossom everywhere, and we can
again enjoy the brilliant balance between the gentle and
graceful shades, from snow white to bright pink, embracing
traditional Japanese architectures. Cherry-Blossom Viewing is
one of the things people are looking forward to in winter! In
this edition, I would like to introduce some world heritages
and beauty spots of Kyoto to you, with the scenery of Cherry
Blossom.
Fig. 1 - Togetsu-kyo Bridge in Arashiyama
To-ji Temple
This is a familiar temple for everyone who visits Kyoto because
it is located near the Kyoto station and can be seen from the
local trains and the Shinkansen express train. It rises high
showing us its wooden architecture and beauty in front of the
modern buildings of Kyoto station. To-ji gives to us 1200 years
of history, it is the only temple that remained from the Heiankyo era. The five-story, 57 meters high, pagoda is the highest
wooden tower in Japan, it is also the home of many national
treasures including several Buddhist statues. By the way, the
world’s largest game company Nintendo is just a stone’s throw
away from To-ji.
Kiyomizu-dera Temple
Kiyomizu-dera is one of the most popular temples in Kyoto. We
can reach it in just 20 minutes from Kyoto station by bus and
on foot. Apart from the heart of the temple area, also the
entrance gate and surroundings with small shops and cafes and
the mountains that enclose the temple are simply marvelous;
not to mention the breathtaking views onto the city from the
temple area. The highlight and most famous part of the temple
Fig. 2 - Cherry blossom at night: Kiyomizu-no-butai
is the stage Kiyomizu-no-butai. The stage on the mountain’s
slope was made by applying the architectural technology and
method called “Kakedukuri” which does not use any nails. All
poles and beams are just crossed and jointed. Kiyomizu-nobutai is known as the largest and the most beautiful
Kakedukuri architecture in Japan. Kiyomizu-dera is also famous
for Cherry Blossom, especially the views of the illuminated
trees at night are fabulous.
Philosopher’s Walk
At the base of Kyoto Higashiyama (East Mountain) and north
of Kiyomizu-dera, there is a walkway, along the tiny stream
from Nanzen-ji temple in the South to Ginkaku-ji Temple in
the north. It was named “Philosopher’s Walk” after a story that
says that some philosophers had been taking a contemplative
walk here. The many cherry trees along the walkway make us
feel that we walk in a Cherry Tunnel in spring. There are some
typical Kyoto cafes dotted along the course that invite us to
stop, look and relax for a while. Our point of arrival is Ginkakuji temple which hosts the beautiful Karesansui (Japanese
Garden) with its waves and the moon viewing platform made
only from sand. It is a symbolic temple of Japanese “Wabi and
Sabi”
(“Wabi and Sabi” are unique Japanese spirits based on
traditional arts, such as the Japanese tea ceremony and the
appreciation of simplicity – we avoid gaudiness!)
Kinkaku-ji Temple
If we start from Ginkaku-ji temple, it takes about a half an
hour by bus. Kinkaku-ji temple is located in the North West of
Kyoto city. The golden pavilion “Shari-den” is very famous. It
was built in 1397, but burned down in 1950 and rebuilt
afterwards to the original design. The elegant pavilion shows
three types of architecture. The 1st floor is Shinden-Zukuri, the
palace style. The 2nd floor is Buke-zukuri, the style of the
Samurai house. The 3rd floor is Zen temple style. Both the 2nd
and 3rd floors are covered with gold-leaf on Japanese lacquer.
As the gold-leaf was peeled off and the base coat “Japanese
Newsletter EnginSoft Year 7 n°4 -
63
left the city to live a simple life there on the country. This is
why we can still see and feel a lot of old Kyoto “flavor” in many
places, also in the old and small temples, shrines, holiday
houses and bamboo avenues. When you are tired after a day of
sightseeing, you may want to relax and taste Tofu Kaiseki
(Japanese cuisine) in the Japanese style restaurant
overlooking Togetsu-kyo bridge.
Fig. 3 - Shari-den in Kinkaku-ji Temple
black lacquer” got depleted by UV, another restoration was
completed in 1980’. For this restoration, fivefold gold-leaf
(0.45•0.55µm) was used while the gold-leaf of 0.1µm is
typically used. The total gold-leaf on Shari-den is 200000
sheets and 20kg. Also, 1.5 tons of Japanese lacquer have been
used for the base coating.
Ryoan-ji Temple
Another world heritage Ryoan-ji temple is located in the North
West of Kyoto city. It is famous for its Karesansui, the rock
garden style. This simple yet remarkable garden measures 30
meters from the East to the West and 10 meters from the South
to the North. The walls are made from clay boiled in oil. In the
If you visit Kyoto for the first time, I would recommend that
you to spend 2 days to explore the above places. There are
many other sights near them and it would be much fun to look
out for Kyoto gifts and enjoy different food. Also, there is
another spot that I recommend to visit on a short trip: the
world heritage Byodo-in Temple in Uji. Uji is a half an hour
south by train from Kyoto station, it is famous for high grade
tea like Gyokuro and Maccha.
Byodo-in Temple
Byodo-in has a history of thousand years, it is relatively easy
to discover because there are not many visitors usually.
Although it is a very beautiful and unique place to visit, it is
sometimes not on the tourists’ routes simply because it is in
the southern area of Kyoto while most landmarks are located
North of the city. The main hall called Phoenix Hall was
designed in the image of heaven, visitors sometimes feel like
floating on the pond in the garden. Its gorgeous views are very
different from other temples. Phoenix Hall consists of 4 parts
of the center hall and right, left and back transepts. We can see
the Amitabha Tathagata Statue through the circle window in
the front center of the main hall. The Byodo-in Phoenix hall
has been drawn on the 10 Yen coin and the Phoenix displayed
on the roof is shown on the 10,000 Yen banknote.
Fig. 4 - Rock garden in Ryoan-ji Temple
rectangular white sand garden, 15 stones are arranged by the
rule of 5,2,3,2,3. There are several legends about this design,
that it shows some tigers crossing a river or a scene of
mountains and rivers in China. However, the truth is veiled in
mystery. Still, this very simple rock garden is so calm and its
imperial section shows the Japanese Zen spirit superbly. At
Cherry Blossom time, we will be moved by the views on what
appears like a painting of weeping cherry trees in the
background of a peaceful garden.
Arashiyama
We can enjoy a beautiful scenery on a half-hour train journey
from Ryoan-ji temple or also from Kyoto Station. Arashiyama is
the famous spot for Cherry Blossom in the western part of
Kyoto. Everybody in Japan loves the landscape of differentcolored mountain surfaces, the Katsura river and the delicate
shape of Togetsu-kyo and of course, the famous traditional
architectures. Many years ago, the aristocracies and litterateurs
Fig. 5 - Byodo-in Phoenix Hall
I lived near Kyoto during my college days and walked in the
streets of Kyoto city very often. With this short article, I
wanted to introduce to you some of the beautiful and famous
sights that I would recommend to explore when you come to
Kyoto for the first time. Other articles about Kyoto will appear
in the Japan Columns of the next editions, they will tell you
more about Japan’s cultural treasure house!
Akiko Kondoh
Consultant for EnginSoft in Japan
64
- Newsletter EnginSoft Year 7 n°4
ESSS North America: the right Company for
the Oil&Gas and Offshore Industry Jobs –
ESSS & EnginSoft “Houstonventure”
EnginSoft and ESSS both
have their own individual
history as highly innovative
and
successful
organizations in virtual
prototyping,
process
simulation
and
design/production process
optimization. Additionally, both companies provide
competencies in multidisciplinary engineering skills within their
respective management and technical teams.
Convinced that there is a fast growing market for Engineering
Simulation today and that sharing and joining of experiences
and competencies strengthen the ability to propose knowledge,
ESSS and EnginSoft have given themselves a new challenge,
relying both on EnginSoft’s 25 years of experience as a leading
European CAE company and
on ESSS’ 15 years expertise
as computational modeling
solution leader in South
America for success of the
proposed operation.
In other words, there is the
belief that a strong
partnership between the two
Companies could speed up
and
enhance
the
development of a joint project to promote the growth of the
scenarios that both Companies already support in their own
mother countries.
Bearing in mind that ESSS’ primary mission has been to “close
the existing gap between the knowledge acquired in research
institutes and academia and its practical application to
industry” and that this statement also deeply reflects the very
founding principles of EnginSoft and the EnginSoft Network
(that is, the ‘dissemination of knowledge’), it was almost
‘unavoidable’ that this shared vision made ESSS and EnginSoft
ideal partners for furthering their expertise in CAE/VP
technologies and competencies in the North American market.
The idea of a partnership between EnginSoft and ESSS originated
at the beginning of 2009, on the occasion of a TechNet Alliance
(TNA) meeting. At that time, EnginSoft outlined its ‘EnginSoft
Americas’ project (wherein Oil&Gas and Offshore Industry
applications found a natural ‘place’ due to the experiences
acquired along the years with leading Italian companies), while
ESSS pointed out its interest specifically in promoting their
Oil&Gas competencies in the United States, with primary
operations in the Houston area.
From this first shared vision of the Company’s founding step
(established in the USA as ESSS North America Inc.) was, let me
say, so short that just 1.5 year after the initial discussions now
the Company is a reality. Hence, the mission of the
EnginSoft/ESSS joint operation is mainly focused on providing
Oil&Gas and Offshore Industry Companies (in the Houston area)
with Computer-Aided Engineering consulting services and
customized software sales and training, through a highly-skilled
professional team with expertise in Structural/Mechanical
Design, Finite Element Analysis, Computational Fluid Dynamics,
Multidisciplinary Optimization, Geology, Reservoir Engineering
and Microstructural Characterization.
In a nutshell, ESSS North America has the strategic objective of
combining the service and product offerings where they can
create attractive business propositions for its customers. The
Company’s presence in the Houston area has been established
and, by Q1 of 2011, the operations and activities corresponding
to the “Company introductory phase”, will finally take off. Why
Houston? Because of the city’s and area’s strategic location and
core strengths which play a vital role in meeting the US national
and global market demands.
Our (parent companies and, hence, of ESSS North America) ‘core
inspiration’ is driven by our wish to play a leading role in the
pursuit of best performances and results. To that effect, we
apply our ‘state of the art’ know-how of advanced technology
applications, bearing in mind that our primary objective is to
leverage this strength wherever there is an opportunity to
convey our enhanced engineering innovation and performance
to new markets.
What we bring is our passion, as expressed through a joined
team of highly talented and motivated engineers, analysts and
designers. In addition, we bring the expertise, the potential of
which lies in the diversity of knowledge that characterize our
skills (it is just the case of saying that diversity is wealth).
The only limitation is that you choose to believe upon it.
But this is a challenge which EnginSoft and ESSS are willing
to play.
Newsletter EnginSoft Year 7 n°4 -
65
EnginSoft al Kilometro Rosso
Un nuovo partner di prestigio per Kilometro Rosso:
arriva EnginSoft.
Kilometro Rosso, secondo il Censis una delle 10 iniziative
d’eccellenza per l’innovazione in Italia, si arricchisce di un
nuovo partner di assoluto rilievo: è stato infatti siglato
l’accordo per l’ingresso nel Parco Scientifico Tecnologico
dell’unità produttiva bergamasca di “EnginSoft”.
Kilometro Rosso è un Parco Scientifico Tecnologico che
sorge lungo l’autostrada A4 alle porte di Bergamo: un luogo che ospita aziende, centri di ricerca, laboratori, attività di produzione high-tech e servizi all’innovazione.
Ispirato alla multisettorialità ed alla interdisciplinarietà, è
un campus che valorizza il dialogo tra cultura accademica,
imprenditoriale e scientifica, la complementarietà e la
specializzazione. Si contraddistingue quale “nodo di una
rete di relazioni e connessioni”, che favorisce lo scambio
di competenze, conoscenze, informazioni, know-how non
solo tra i Partner insediati al proprio interno, ma tra questi ed il mondo esterno a livello locale, nazionale ed internazionale. Al suo interno operano aziende afferenti ai seguenti diversi cluster tecnologici: Alta Formazione,
Biomedicale
e
Salute,
Design-ProgettazionePrototipazione, Energia e Ambiente, I.C.T., Materiali
Avanzati, Meccanica-Meccatronica, e Terziario Avanzato.
EnginSoft è la 34a realtà ad insediarsi in Kilometro Rosso,
che in questo modo supera ampiamente la quota dei 1.000
addetti (ricercatori, tecnici e personale altamente qualificato) nei diversi centri, imprese e laboratori già operativi. Kilometro Rosso diventa così, per dimensioni di occupati diretti, uno dei più importanti parchi scientifici tecnologici italiani, ma le prospettive di sviluppo sono ancora più ambiziose: tra 5-6 anni nel Parco opereranno non
meno di 3.000 addetti e 50-60 saranno le realtà presenti
al suo interno.
Particolare soddisfazione è stata espressa dal Direttore
Generale e Consigliere Delegato di Kilometro Rosso,
Mirano Sancin, nel commentare la sigla dell’accordo:
“Enginsoft è stata una delle primissime realtà con cui siamo entrati in contatto sin dall’autunno 2003: da allora abbiamo
collaborato
su
numerosi
progetti
di
Ricerca&Sviluppo condivisi anche con realtà terze, abbiamo organizzato iniziative seminariali e congressuali, abbiamo partecipato assieme a numerose altre attività di
sensibilizzazione culturale verso l’Innovazione. EnginSoft
–sottolinea Sancin- ha seguito con noi un percorso che ha
visto anche la loro adesione al Consorzio di Meccatronica
“Intellimech”, altro fiore all’occhiello di Kilometro Rosso.
L’insediamento di questa prestigiosa realtà nelle nostre
strutture è il coronamento di questo percorso, ma anche
un’ulteriore opportunità per Enginsoft di proseguire sulla
strada del successo e del potenziamento ed un importante e concreto riconoscimento di Kilometro Rosso quale
Polo di eccellenza nel contesto nazionale”.
Dal canto suo Stefano Odorizzi, Presidente di EnginSoft,
ha commentato: “Il nostro obiettivo è diffondere l’utilizzo
dell’engineering simulation tramite un approccio multidisciplinare, che coniughi la necessità di innovazione con la
valorizzazione del patrimonio di conoscenze e con l’esigenza di trasferire tecnologie e know how: la nostra scelta di entrare nel Parco Scientifico e Tecnologico Kilometro
Rosso costituisce un ulteriore passo in questa direzione,
che ci apre nuove opportunità di collaborazione e di crescita”.
www.enginsoft.it
www.kilometrorosso.com
66
- Newsletter EnginSoft Year 7 n°4
EnginSoft Event Calendar
ITALY
EnginSoft is pleased to announce the next Seminars and
Webinars. For more information on the next 2011 events,
please contact: [email protected]
SWEDEN
2011 Training Courses on modeFRONTIER - Drive your
designs from good to GREAT.
EnginSoft Nordic offices in Lund, Sweden. The Training
Courses are focused on optimization, both multi- and
single-objective, process automation and interpretation of
results. Participants will learn different optimization
strategies in order to complete a project within a specified
time and simulation budget. Other topics, such as design of
experiments, metamodeling and robust design are
introduced as well. The two day training consists of a mix
of theoretical sessions and workshops: 10-11 January, 1-2
February, 2-3 March, 7-8 April, 2-3 May, 7-8 June, 11-12
August, 5-6 September, 4-5 October, 2-3 November, 1-2
December.
For more information and to register, please contact
EnginSoft Nordic, [email protected]
UK
The workshops are designed to give delegates a good
appreciation of the functionality, application and benefits
of modeFRONTIER. The workshops include an informal blend
of presentation plus ‘hands-on’ examples with the objective
of enabling delegates to be confident to evaluate
modeFRONTIER for their applications using a trial license at
no cost.
modeFRONTIER Workshops at Warwick Digital Lab
10.00 to 15:30 at the International Digital Laboratory,
University of Warwick: 10 March, 12 May, 20 July, 14
September, 22 November.
FRANCE
EnginSoft France 2011 Journées porte ouverte dans nos
locaux à Paris et dans d’autres villes de France, en
collaboration avec nos partenaires. Prochaine événement:
Journées de présentation modeFRONTIER
Pour plus d'information visitez: www.enginsoft-fr.com,
contactez: [email protected]
GERMANY
Please stay tuned to www.enginsoft-de.com
Contact [email protected] for more information.
modeFRONTIER Seminars 2011. EnginSoft GmbH, Frankfurt
am Main. Attend our regular Webinars and Seminars to learn
more on how design optimization with modeFRONTIER can
enhance your product development processes.
Seminars Process Product Integration. EnginSoft GmbH,
Frankfurt am Main. How to innovate and improve your
production processes. Seminars hosted by EnginSoft Germany
and EnginSoft Italy.
TechNet Alliance Fall Meeting 2010
The recent TechNet Alliance Fall Meeting which was held on
5th and 6th November at the Pullman Aachen Quellenhof,
welcomed over 80 Members of the Alliance and invited
guests to a most interesting program of presentations and
discussions about CAE.
CADFEM GmbH presented “Electro-thermal simulation for
EV/HEV applications”, a captivating future-oriented topic
which we are proud to feature in this Newsletter.
EnginSoft S.p.A. used the Meeting as an opportunity to
inform the audience of their expertise and services in the
area of simulation of Metal Processing.
Training Days at International Digital Lab, Warwick
University 18-19 May, 6-7 September.
About the TechNet Alliance:
The TechNet Alliance is a
unique consortium in the
Computer Aided Engineering
(CAE) or Simulation Based
Engineering
Sciences
industry. It is comprised of a large network of engineering
solution providers- dedicated to the application,
development, training, support and marketing of CAE bestof-class software.
For more information and to register, please visit
www.enginsoft-uk.com.
Contact: Bipin Patel, [email protected]
For more information, please visit:
www.technet-alliance.com or contact:
Schuhegger, [email protected]
modeFRONTIER Workshops with InfoWorks CS at Warwick
Digital Lab. 10.00 to 15:30 at the International Digital
Laboratory, University of Warwick
8 February, 26 May, 9 November.
Please register for free on www.enginsoft-uk.com
Mrs
Kristin
Newsletter EnginSoft Year 7 n°4 -
SPAIN
Programa de cursos de modeFRONTIER and other local
events. Please contact our partner, APERIO Tecnología:
[email protected]. Stay tuned to: www.aperiotec.es
5-8 June - IDDRG 2011 International Conference. Bilbao
(País Vasco). This year, apart from the stamping, materials
characterization, numerical simulation, tooling and UHSS
subjects normally covered, the IDDRG conference organizers
would like to frame the conference considering a global
concern, which is currently a target not only for industry
but also for consumers, political leaders and business
managers: Sustainability.
For more information, please visit:
http://www.iddrg2011.eu/
GREECE
9 May - 5th PhilonNet CAE Conference. Athens
If you would like to present your work with ANSYS
(including CFX, Fluent and Ansoft products), ANYBODY,
DIFFPACK,
ESACOMP,
eta/DYNAFORM,
eta/VPG,
FLOWMASTER, FTI, LS-DYNA, modeFRONTIER, MOLDFLOW,
SIMPLEWARE or ADVANTEDGE please send your abstract to:
[email protected].
For more information, please visit: www.philonnet.gr
USA
1 February - Optimization Day. Stanford University. An
invitation-only Forum to Discuss New Research Directions
and Industrial Applications. Organized by Enginsoft and the
TFSA Program. Optimization Has Become an Indispensable
Instrument in Engineering Practice, and Commercial
Packages have Achieved Wide Popularity. Applications range
from Rapid Product Development to Web searching, from
Sophisticated Multidisciplinary Analysis to Robust Design
Under Uncertainty. What are the Remaining Barriers for
Optimization Algorithms? How are Present Computational
Resources Changing the Paradigm of Engineering Design?
Are Current Optimization Methods Sufficient to Drive
Decision- Making? Presentation by Recognized Leaders in
the Field will Provide an Opportunity to Discuss the
Opportunities and Frontiers of Optimization Technology for
Real-World Applications
EUROPE, VARIOUS LOCATIONS
modeFRONTIER Academic Training
Please note: These Courses are for Academic users only. The
Courses provide Academic Specialists with the fastest route
to being fully proficient and productive in the use of
modeFRONTIER for their research activities. The courses
combine modeFRONTIER Fundamentals and Advanced
Optimization Techniques.
For more information, please contact Rita Podzuna,
[email protected]
To meet with EnginSoft at any of the above events, please
contact us at: [email protected]
67
SEMINARIO: Integrare Strumenti
e Metodi di Progettazione e
Simulazione
Un grande successo per l’incontro organizzato il 23 novembre scorso presso lo Sheraton Hotel in Roma
Commenti positivi e soddisfazione generale per il seminario
proposto e organizzato da EnginSoft in collaborazione e sotto l’egida dell’AIAD il 23 novembre 2010 presso lo Sheraton
Golf Parco de' Medici Hotel & Resort in Roma, evento che ha
richiamato l’attenzione di numerosi partecipanti e ha riunito rappresentanti di molte realtà aziendali che da anni utilizzano la simulazione in ambito aerospaziale.
Integrare Strumenti e Metodi di Progettazione e Simulazione,
questo il titolo del Seminario, è un tema di grande attualità
sia per chi opera a livello tecnico nell'industria, sia per chi
ha responsabilità manageriali ed organizzative.
L'attuale era industriale del settore aerospaziale è vibrante di
nuove opportunità sia tecnologiche che commerciali alla luce del particolare momento dell’economia mondiale.
In tale contesto economico-finanziario, il successo delle
aziende del settore può essere fortemente influenzato dai
cambiamenti che sapranno mettere in atto in relazione alle
loro metodologie progettuali, ad esempio arricchendo le proprie soluzioni di design in funzione di specifiche tecnologiche afferenti a tematiche diversificate (meccaniche, elettroniche, termiche, aerodinamiche e di processo), così da riuscire a interpretare correttamente le diverse richieste del
mercato. Scopo dell’incontro era dunque evidenziare l’importanza e la declinazione delle opportunità offerte dalla simulazione virtuale, in funzione delle esigenze di un mercato
moderno e sempre più competitivo. A dimostrazione di quanto sopra, EnginSoft ha voluto portare in campo la propria
esperienza e competenza, mettendo a disposizione dei partecipanti un bagaglio di conoscenze acquisito negli anni, attraverso l’utilizzo delle tecnologie più avanzate nella quotidianità dei compiti aziendali. Il seminario, che ha riguardato alcune applicazioni in ambito strutturale, elettronico,
fluidodinamico e per il design di sistemi con applicazioni di
modeFRONTIER®, ha visto relatori e ingegneri specializzati
EnginSoft che si sono alternati durante l’evento per proporre e illustrare attraverso casi applicativi alcuni esempi in ambito aerospaziale con modelli specifici nell’uso dei metodi di
simulazione applicati ad ambiti multidisciplinari. Gli esempi
illustrati hanno fatto riferimento a significative esperienze
tra cui quella Aerosekur. Il confronto è stato un successo,
così proficuo e vitale tanto che EnginSoft si ripropone di organizzare in futuro un nuovo incontro sul tema Aerospace.
Training Center EnginSoft
NUOVO LIBRETTO - NEW PUBBLICATION
CORSI DI ADDESTRAMENTO SOFTWARE 2011
SOFTWARE TRAINING COURSES 2011
EnginSoft è la società italiana di maggior consistenza e tradizione
nel settore del CAE ove, grazie alla multidisciplinarietà delle
competenze, è in grado di proporsi come partner unico per le
aziende.
L'attività di formazione rappresenta da sempre uno dei tre
maggiori obiettivi di EnginSoft accanto alla distribuzione ed
assistenza del software ed ai servizi di consulenza e
progettazione.
Per ciascuno dei possibili livelli cui la richiesta di formazione può
porsi (quella del progettista, dello specialista o del responsabile di
progettazione), EnginSoft mette a disposizione la propria
esperienza per accelerare i tempi del completo apprendimento
degli strumenti necessari con una gamma completa di corsi
differenziati sia per livello (di base o specialistico), che per profilo
professionale dei destinatari (progettisti, neofiti od analisti
esperti).
La finalità è sempre di tipo pratico: condurre rapidamente
all'utilizzo corretto del codice, sviluppando nell'utente la capacità
di gestire analisi complesse attraverso l'uso consapevole del
codice di calcolo. Per questo motivo ogni corso è diviso in sessioni
dedicate alla presentazione degli argomenti teorici alternate a
sessioni 'hands on', in cui i partecipanti sono invitati ad utilizzare
attivamente il codice di calcolo eseguendo applicazioni guidate od
abbozzando, con i suggerimenti del trainer, soluzioni per i
problemi di proprio interesse e discutendone impostazioni e
risultati.
Anche per il 2011 EnginSoft propone una serie completa di corsi
che coprono le necessità di formazione all'uso dei diversi software
commercializzati.
Le novità proposte confermano che l'idea che EnginSoft ha della
formazione non è una realtà statica che si ripropone uguale a se
stessa di anno in anno, ma è un divenire, guidato dall'esperienza
accumulata negli anni, dall'evoluzione del software e dalle
esigenze delle società che si affidano a noi per la formazione del
proprio personale. In tale contesto EnginSoft organizza e sviluppa
anche attività didattiche attraverso un programma formativo
personalizzato, soluzioni di Corsi su Misura progettati in
relazione alle necessità e alle specifiche esigenze aziendali del
committente.
L'offerta dei corsi ANSYS si adegua all'evoluzione del software ed
alle caratteristiche della recentissima versione 13:
• in campo elettromagnetico vengono introdotti tre corsi specifici:
ANSOFT MAXWELL 2D, ANSOFT MAXWELL 3D e ANSOFT
SIMPLORER;
• in campo fluidodinamico è da rimarcare l'introduzione, accanto
ai corsi tradizionalmente erogati, del corso ANSYS ICEPAK e di
corsi specifici per il solutore SCULPTOR.
Sono stati inoltre rivisti ed aggiornati i corsi relativi a tutti gli altri
software sostenuti da EnginSoft per adeguarli allo stato attuale
delle relative distribuzioni.
Si segnala infine l'introduzione del nuovo corso SCILAB aperto a
tutti coloro che intendono avvicinarsi ad uno strumento open
source per la risoluzione di problemi di simulazione numerica ad
ampio raggio.
Dal punto di vista organizzativo nel 2011 tutte le cinque sedi
EnginSoft saranno impegnate nella formazione, dando la
possibilità agli utenti di scegliere la location a loro più conveniente
in termini di vicinanza geografica alla propria società.
Tutto questo a riprova dell'impegno nella formazione che, per
EnginSoft, è e rimane un punto fondamentale della politica
aziendale, un impegno costante verso l'eccellenza, un servizio per
fare crescere i suoi clienti e, se lo desiderano, crescere con loro.
www.enginsoft.it/corsi
Key partner in Design Process Innovation