VM Sglavo – GlassEng - UNITN 2016 VM Sglavo – GlassEng

Transcript

VM Sglavo – GlassEng - UNITN 2016 VM Sglavo – GlassEng
V.M. Sglavo – GlassEng - UNITN 2016
Glass in buildings
V.M. Sglavo – GlassEng - UNITN 2016
Fundamental requirements to be considered in the design activity
-  safety
-  load-bearing capacity
-  light transmission
performances
-  thermal behaviour
-  thermal properties
-  acoustic insulation
-  fire resistance
presctiptions
-  assemblage
-  maintenance
norms,laws
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
Optical&thermalproperties
V.M.
Sglavo – GlassEng - UNITN 2016
•  Glass & light
•  Glass & heat
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
20
Energy consumption in buildings
Parte Prima Generalità
V.M. Sglavo – GlassEng - UNITN 2016
Lighting power
Daylighting
Heating
Lighting gains
Solar gain
Cooling
Casual gains
Conduction through glass
Conduction through opaque
Ventilation heat loss
Figura 2.1. Flussi termici che interessano l’involucro edilizio
2.2. La trasmissione del calore e la trasmittanza termica
Hot
water
14%
2.2.1. Il caloreV.M.
Sglavo – GlassEng - UNITN 2016
Quando esiste un gradiente di temperatura in un sistema o quando due sistemi
a temperatura diversa vengono messi a contatto si ha trasmissione di energia. Il
Electricity
processo
14% attraverso il quale avviene lo scambio di energia è noto come trasmissione del calore. Di conseguenza il calore è una forma energetica di “transito”
che, comparendo solo nel momento in cui in un sistema sta avendo luogo una trasformazione, non può essere misurata direttamente ma possono essere misurati
MRSBULLETIN•VOLUME33•APRIL2008
gli effetti da essa prodotti (ad esempio variazione
della temperatura di un corpo).
Il primo principio della termodinamica afferma che l’energia non può essere né
V.M. Sglavo – GlassEng - UNITN 2016
Luminous & solar characteristics
V.M. Sglavo – GlassEng - UNITN 2016
lighttransmittance–Vis
V.M. Sglavo – GlassEng - UNITN 2016
totalsolarenergytransmissionfactor(solarfactor)–IR
UVtransmittance
Glass structures, J. Wurm, Birkhäuser Verlag, 2007
V.M. Sglavo – GlassEng - UNITN 2016
!loatglass
V.M. Sglavo – GlassEng - UNITN 2016
typicalvalues
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
interlayersorplasticsheets
V.M.
Sglavo – GlassEng - UNITN 2016
PVB – (Butacite®, SentryGlas®)
PC – polycarbonate (Lexan®)
UV-B
280-315nm
UV-A
315-380nm
blue
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
trasmittance–traslucency(surface state)
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
Glass structures, J. Wurm, Birkhäuser Verlag, 2007
V.M. Sglavo – GlassEng - UNITN 2016
Thermalproperties
V.M. Sglavo – GlassEng - UNITN 2016
0.71
80-90
0.96
1.05
V.M. Sglavo – GlassEng - UNITN 2016
1.38
Wm-1K
Glass science, 2nd edition, R.H. Doremus, J. Wiley and Sons, 1994
V.M. Sglavo – GlassEng - UNITN 2016
glazing
V.M.
Sglavo – GlassEng - UNITN 2016
d1
d2
hi
Rs
s
in-door
he
V.M. Sglavo – GlassEng - UNITN 2016
out-door
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
Gasproperties
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
25
V.M. Sglavo – GlassEng - UNITN 2016
4,1+3,6=7,7
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
25
7,7
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
traditional
vertical
glazing - UNITN 2016
V.M.
Sglavo
– GlassEng
d1
d2
hi=7,7W/(m2°C)
Rs
thermal conductivity of glass
λ1 = λ2 = 1 W/(m °C)
he=25W/(m2°C)
0,25
Rs(m2°C/W)
s
thermal resistance of the cavity (gas space)
0,2
0,15
V.M. Sglavo
0,1 – GlassEng - UNITN 2016
0
10
20
thickness(mm)
V.M. Sglavo – GlassEng - UNITN 2016
−1
# 1 d1
&
d
1
thermal transmittance (W/m2 °C): U = % + + R s + 2 + (
λ1
λ2016
V.M. Sglavo – GlassEng -$ hUNITN
i
2 he '
−1
$1
'
dj 1
&
U
=
+
R
+
with>2glasses:
& h ∑N si ∑M λ + h ))
% i
j
e(
N=numberofcavities
M=numberofsheets
€
inner surface temperature:
Ti = T0i −
U
ΔTi −e
hi
Example: d1 = d2 = 4 mm, s = 12 mm, T0i = 20°C, T0e=0°C
€
V.M. Sglavo – GlassEng - UNITN 2016
U = 2.9 W/m2 °C = 58 W/m2
if windows are 100 m2, 5.8 kW are dissipated
Ti = 12.8°C
V.M. Sglavo – GlassEng - UNITN 2016
Importance of inner surface temperature
V.M.
Sglavo – GlassEng - UNITN 2016
Mollierdiagram(psycometricorhumidair)
“condensationof
watervapour”
V.M. Sglavo – GlassEng - UNITN 2016
Stefan-Boltzmannlaw
En = εσ T 4
“thermalcomfort”
emissivity(0÷1) S-Bcostant(5.67x10-8W/m2/K4)
€
V.M. Sglavo – GlassEng - UNITN 2016
advanced vertical glazing
V.M. Sglavo – GlassEng - UNITN 2016
glass sheets coated with oxides, nitrides, metals, etc. (thickness < 1 µm) –
low emissivity - & pure gas in the cavity – low conductivity -
d1
d2
hi=7,7W/(m2°C)
Rs
s
he=25W/(m2°C)
V.M. Sglavo – GlassEng - UNITN 2016
Example: d1 = d2 = 4 mm, s = 12 mm, gas = argon,
ε2 = 0.17
U = 1.6 W/m2 °C
Ti = 16°C
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
Glass structures, J. Wurm, Birkhäuser Verlag, 2007
V.M. Sglavo – GlassEng - UNITN 2016
typicalstructures
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
cushioneffect
external loads
bowingeffect
pressure/temperature
variations
V.M.
Sglavo – GlassEng
- UNITN 2016
Glass structures, J. Wurm, Birkhäuser Verlag, 2007
V.M. Sglavo – GlassEng - UNITN 2016
Coating technologies
V.M. Sglavo – GlassEng - UNITN 2016
- spray pyrolisis
- sol-gel
- CVD
- PVD
- sputtering
V.M. Sglavo – GlassEng - UNITN 2016
- on-line & off-line
V.M. Sglavo – GlassEng - UNITN 2016
Spray pyrolisis
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
Sputtering
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
Coating structures
V.M. Sglavo –
oxide(Sn,Zn,Ti,Si,ecc.)–TiO2,Ti3N4,CrN,
4,SnO2:Sb,SnO
2:F,ZnO:Al&In2O3:Sn
GlassEngZn-2SnO
UNITN
2016
metal(Ag,Au,Cu,alloy)
protective(SiO2)
glass
colour-thickness
V.M.
≈500nm
Au film
10 –
– 20
Å - yellow
Sglavo
GlassEng
30 – 40 Å – orange
50 Å – purple
60 Å - blue
Ag film
Å – purple 2016
-15UNITN
20 Å – light blue
27 Å –blue
32 Å - green
40 Å – yellow-green
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
Coatedglasscharacteristics
UVcoating(280nm-380nm)
Viscoating(380nm-780nm)
Solarcoating(300nm-2500nm)
Thermalcoating(2500nm-25µm)
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
thermalstresses
V.M. Sglavo – GlassEng - UNITN 2016
T2
T2
compression
T1
tension
T1
T1 < T2
-  high temperature on the glass (low U)
-  thermal inertia of fixing and joints
-  heat sources next to the window
V.M. Sglavo – GlassEng - UNITN 2016
-  presence of elements that modify the
thermal properties (labels, decorations, etc.)
-  presence of curtains
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
highperformanceglazings
V.M. Sglavo
– GlassEng - UNITNabsorbent/disperdent
2016
insulant
low-emissivity
solar control
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
SF=fattoresolare;LT=trasmissioneluminosa;LR=ri!lettanzaluminosa;Ug=trasmittanzatermica
V.M. Sglavo – GlassEng - UNITN 2016
energy balance value
UNIEN14438
EuropeanDirectiven.31/2010
D.Lgs.n.192/2005
LineeguidaMiSE2009
NormeUNITS11300
V.M. Sglavo – GlassEng - UNITN 2016
E=meanheatdispersion(heating)rate
energybalance(solarheatanddispersions)foracertainperiod;usefulfor
glazingcomparison,notforenergyrequirementscalculation
E =U −
€
η gf Hp
Dp
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
Trasmittanzatermica,U
V.M.
Sglavo – GlassEng - UNITN 2016
determinatadacalcolo(EN673)omisura(EN674,EN675)
Fattorediutilità,
rapporto tra l’apporto di calore utile e l’apporto di calore totale – proprietà di progetto
dell’edificio; dipende dal periodo scelto e dalla sua lunghezza; per le finestre di un
edificio in inverno varia tra 0.4 e 0.8 (di solito per il confronto si usa 0.6); può essere
determinato per calcolo o sperimentalmente (EN 832)
Fattoresolare,g
determinatocomedanormaEN410
Fattoredimanutenzione,f
dipendedall’accumulodisporcizia;disolitosiusa0.8
Radiazionesolareincidente,Hp
quantitàdiradiazionesolarenonostruita V.M. Sglavo – GlassEng - UNITN 2016
Gradigiorno,Dp
dipendonodalluogoedalperiodoconsiderato
V.M. Sglavo – GlassEng - UNITN 2016
V.M. Sglavo – GlassEng - UNITN 2016
Example:
U = 2.9 W/m2 °C
g = 0.75
orientamento = sud
h = 0.6
f = 0.8
E = 0.3 W/m2 °C
V.M. Sglavo – GlassEng - UNITN 2016