Polymers from renewable resources: state of the art and

Transcript

Polymers from renewable resources: state of the art and
Polymers from renewable resources: state
of the art and perspectives. Part 1
Mariastella Scandola
Dipartimento di Chimica ‘G. Ciamician’, Università di Bologna
Sustainable development:
"development that meets the needs of the present without
compromising the ability of future generations to meet their own
needs”
World Commission on Environment and Development’s
(the Brundtland Commission) report Our Common Future (1987)
problems associated with the intensive use of oil
global warming (greenhouse gas, ozone depletion)
fossil resources depletion
Use of renewable resources
M. Scandola - Alma Mater Università di Bologna
(2006)
L.Shen, J.Haufe,M.K.Patel “Product overview and market projection
of emerging bio-based plastics”, PRO-BIP, final report (June 2009)
M. Scandola - Alma Mater Università di Bologna
Scientific publications
Patents
Bio-based polymers
(from Web of Science)
M. Scandola - Alma Mater Università di Bologna
Production of Bio-based polymers
Directly from agro-resources by
extraction/separation
POLYMER
through biotechnology
(fermentation)
monomers
(building blocks)
POLYMER
Ex: bacterial polyesters
Ex: cellulose, starch,
natural ruber
Organic synthesis
POLYMER
Ex: polyamides, poleysters, PE, PET
M. Scandola - Alma Mater Università di Bologna
Quantification of Bio-based Carbon
ASTM D6866: Standard Test Methods for Determining the Biobased
Content of Solid, Liquid, and Gaseous Samples Using Radiocarbon Analysis
M. Scandola - Alma Mater Università di Bologna
Production of Bio-based polymers
Directly from agro-resources by
extraction/separation
POLYMER
through biotechnology
(fermentation)
monomers
(building blocks)
POLYMER
Ex: bacterial polyesters
Ex: cellulose, starch,
natural ruber
Organic synthesis
POLYMER
Ex: polyamides, poleysters, PE, PET
M. Scandola - Alma Mater Università di Bologna
Historically, industrially exploited biopolymers cellulosics
natural rubber
M. Scandola - Alma Mater Università di Bologna
Production of Bio-based polymers
Directly from agro-resources by
extraction/separation
POLYMER
through biotechnology
(fermentation)
monomers
(building blocks)
POLYMER
Ex: bacterial polyesters
Ex: cellulose, starch,
natural ruber
Organic synthesis
POLYMER
Ex: polyamides, poleysters, PE, PET
M. Scandola - Alma Mater Università di Bologna
60-year-old polymer
Polyamide 11 (nylon11)
PA11
11-aminoundecanoic acid
Oil
Ricinus communis
Polyamide 11:
• resists swelling when exposed to water
• highly resistant to hydrocarbons
is used to make:
•
•
•
•
gas distribution pipes
natural gas pipelines
pressure barriers for offshore oil pipelines
fuel tanks and air brake hoses.
M. Scandola - Alma Mater Università di Bologna
Production of Bio-based polymers
Directly from agro-resources by
extraction/separation
POLYMER
Ex: cellulose, starch,
natural ruber
through biotechnology
(fermentation)
monomers
(building blocks)
POLYMER
Ex: bacterial polyesters
Organic synthesis
POLYMER
Ex: polyamides, poleysters, PE, PET
M. Scandola - Alma Mater Università di Bologna
Bacterial polyesters
Polyhydroxyalkanoates (PHAs)
intracellular granules
(biosynthesized as C and energy source)
Polyhydroxybutyrate (PHB) homopolymer
(highly crystalline)
(Tg = 0°C, Tm = 175°C)
-(O-CH-CH2-CO)nCH3
M. Scandola - Alma Mater Università di Bologna
PHAs
-(O-CH-CH2-CO)n-
R
where R = (CH2)m-CH3
with m = 0…8
some microorganisms are very versatile
bioreactors for the synthesis of PHA copolymers
properties greatly change
with unit type and composition
High modulus rigid materials
rubbers
> 100 different monomers incorporated in PHAs (research!)
Steinbuchel, A.; Valentin, H. E. FEMS Microbiol. Lett. 1995, 128, 219-228
M. Scandola - Alma Mater Università di Bologna
Production of Bio-based polymers
Directly from agro-resources by
extraction/separation
POLYMER
through biotechnology
(fermentation)
monomers
(building blocks)
POLYMER
Ex: bacterial polyesters
Ex: cellulose, starch,
natural ruber
Organic synthesis
POLYMER
Ex: polyamides, poleysters, PE, PET
M. Scandola - Alma Mater Università di Bologna
Monomer from biomass fermentation
(100% % ‘bio-based’)
+
(x % ‘bio-based’)
M. Scandola - Alma Mater Università di Bologna
PLA
2 configurations: D, L
(from fermentation: L monomer)
P(L)LA (homopolymer)
chain regularity
can crystallize
Tg = 60°C
Tm = 175°C
P(D,L)LA (copolymer)
chain irregularity
crystallization inhibited
M. Scandola - Alma Mater Università di Bologna
Tmelting
amount of
crystal phase
Tmelting
function of
D-unit
content
PLA
D.W. Grijpma, A.J. Pennings, Makromol Chem. Phys. 1994
a large polymer family
M. Scandola - Alma Mater Università di Bologna
P(L)LA
P(D)LA
+
Tm = 170°C
Tm = 230°C
M. Scandola - Alma Mater Università di Bologna
GLOBAL POLYLACTIC ACID (PLA) MARKET SHARE FOR 2012 –
% BREAKDOWN BY END-USER
Market Research Report
http://www.researchandmarkets.com/research/42glsg/polylactic_acid
Polylactic Acid (PLA) - A Global Market Watch, 2011 - 2016
M. Scandola - Alma Mater Università di Bologna
FEEDSTOCK
historically
alternative
Strong debate: food conflict??
alternative feedstocks
Bio-ethylene
combustion to produce heat
fertilizer
M. Scandola - Alma Mater Università di Bologna
Green-PE
Green polyethylene plant (200kt/year)
(September 2010, Brazil, Rio Grande do Sul)
Up to 400kt/year in 2015
“each ton of green polyethylene removes 2.5 tons of CO2 from the atmosphere”
JV
Announced production:350kt/year in 2015 (Brazil)
Many large companies interested in the bioethylene business
M. Scandola - Alma Mater Università di Bologna
R&D
Paulien F. H. Harmsen et al.Biofuels, Bioprod. Bioref. 8:306–324 (2014)
R&D
Bio-3HP (3-hydroxypropionic acid)
Bio-acrylic acid
+
+
M. Scandola - Alma Mater Università di Bologna
Bio-based monomers for rubbers
Genetically modified
microorganisms grow on
glucose, sucrose, glycerol
or plant oils to produce
Bio-isoprene
(MacGregor Campbell, New Scientist, 29 March 2010)
M. Scandola - Alma Mater Università di Bologna
Routes to bio-based rubbers
Bio-based rubbers
Goodyear and Genencor (part of DuPont )
Michelin and Amyris
bio-isoprene
Bridgestone Corp. and Ajinomoto Co., Inc.
Lanxess and GEVO
bio isobutylene
Eni/Versalis and Genomatica
bio-butadiene
M. Scandola - Alma Mater Università di Bologna
Monomer from biomass fermentation
(100% % ‘bio-based’)
+
(x % ‘bio-based’)
M. Scandola - Alma Mater Università di Bologna
bio-based di-amine/di-acid for Nylons
1,5 pentamethylenediamine monomer
Sebacic acid (C10)
M. Scandola - Alma Mater Università di Bologna
Bio-based Polyamides
Bio-PDO (1,3-propandiol)
in nature: 2 microorganisms
Products: SusterraTM , ZemeaTM
by genetic engineering
a single bacterium (E.coli)
M. Scandola - Alma Mater Università di Bologna
Polymers from Bio-PDO
HO
C
C
C
+
OH
1,3-Propanediol
(3G)
O
HO
C
O
C
OH
O
C
C
C
O
Terephthalatic Acid
O
O
C
C
O
O
O
C
C
C
O
C
Polypropylene terephthalate
(3GT)
3GT (Sorona®) DuPont
HO
C
C
OH
+
C
O
O
O
O
HO
C
C
OH
O
C
C
O
C
C
C
O
C
O
O
Terephthalatic Acid
C
O
Polyethylene terephthalate
(PET, 2GT)
PET OR 2GT (polyester)
Sorona
fibres
Sorona EP
engineering plastics applications
(electric, electronic connectors, housings)
M. Scandola - Alma Mater Università di Bologna
Bio-succinic acid
Glucose
Enzymatic process
Recombinant E.coli in
anaerobic conditions
succinic acid plant (France, 3000 ton/year)
(350,000 liter commercial-scale fermenter)
BioAmber and Mitsui & Co
joint venture to build a bio-succinic plant
in Ontario 30kton/year (2014)
M. Scandola - Alma Mater Università di Bologna
http://www.icis.com/blogs/green-chemicals/2011/11/bioamber-mitsui-jv-to-build-su/
M. Scandola - Alma Mater Università di Bologna
Bio-PET???
Ethylene glycol from bio-ethanol….OK
Bio-routes to terephthalic acid
Terephtalic acid???
«BioForming process for converting plant-based sugars and agricultural
residues into a full range of products»
The first commercial plant - 2015
paraxylene (PX).
Production capacity - from 30kt/year to 225 kt/year
CH3
O
OH
O
OH
O2
-H2 O
CH3
Paraxylene is converted into
Terephthalic Acid
M. Scandola - Alma Mater Università di Bologna
Bio-routes to terephthalic acid
Converting fermentation-derived isobutanol to paraxylene
by using traditional chemical processes:
1. dehydration
2. dimerization
3. cyclization
Commercial production of bio-paraxylene – expexted
M. Scandola - Alma Mater Università di Bologna
More green routes to terephthalic acid
single-step catalytic fast pyrolysis process to
convert biomass to benzene, toluene and
xylene;
convertion of sugar-based muconic acid to
phtalic acic
patent - production of para-xylene from terpenes
(i.e. limonene from citrus fruits)
biomass gasification and "syngas-to-green"
patented processing
up to 80% aromatics.
http://www.icis.com/Articles/2012/03/12/l
M. Scandola - Alma Mater Università di Bologna
Furan dicarboxylic acid
as an alternative to terephthalic acid
New sugar-based 2,5-furandicarboxylic acid (FDCA), which can be
reacted with EG to make polyethylene furanoate (PEF), as
an alternative to PET resin
 PEF bottle (better oxygen and carbon dioxide barrier than PET)
Commercial production of FDCA and PEF - 2017
M. Scandola - Alma Mater Università di Bologna
http://greenchemicalsblog.com/2012/10/01/coca-cola-picks-2nd-bio-eg-supplier/
(Plant Bottle: 2014 Sustainable Bio Awards)
Multi-million dollar partnership agreements with
Virent, Gevo and Avantium
M. Scandola - Alma Mater Università di Bologna
Bio-based polymer
Biodegradability ???
EN 13432 - plastic product compostability
ASTM D5338 - 98(2003) Standard Test
Method for Determining Aerobic
Biodegradation of Plastic Materials Under
Controlled Composting Conditions
ASTM D6400 - 04 Standard
Specification for Compostable Plastics
Etc….
M. Scandola - Alma Mater Università di Bologna
ASTM definition
Biodegradable plastic: a degradable plastic in which
the degradation results from the action of
naturally-occurring micro-organisms such as
bacteria, fungi and algae.
POLYMER
CO2
fragments
outside of
the cell
enzyme
FRAGMENT
within
the cell
(mineralization)
BIOMASS, H2O, CO2 and/or CH4
M. Scandola - Alma Mater Università di Bologna
L.Shen, J.Haufe,M.K.Patel “Product overview and market projection
of emerging bio-based plastics”, PRO-BIP, final report (June 2009)
M. Scandola - Alma Mater Università di Bologna
A very misleading definition!!!
M. Scandola - Alma Mater Università di Bologna
Conclusions
Bio-based polymers
Org. Biomol. Chem. 2014, 12, 2834-2849
Polym. Deg. Stab. 2013, 98 1898-1907
ACS Macro Lett. 2013, 2, 550−554
Macromol. Chem. Phys. 2013, 214, 159−174
Green Chem. 2014, 16, 950-963
M. Scandola - Alma Mater Università di Bologna
Expected remarkable growth
M. Scandola - Alma Mater Università di Bologna
M. Scandola - Alma Mater Università di Bologna
Bio-based
sustainable?
M. Scandola - Alma Mater Università di Bologna
Life cycle assessment for bio-based polymers is DIFFICULT!
cradle-to-gate
RESOURCES
- Fossil
- Renewable
PRODUCTION
+
MANUFACTURE
USE
DISPOSAL
cradle-to-grave
cradle-to-cradle
LCA data are mostly ONLY cradle-to gate
(lack of data after company gate!)
M. Scandola - Alma Mater Università di Bologna
Trends (sustainability)
Synthesis of traditional polymers using bio-based building blocks (saving
oil resources, ‘carbon footprint’)
Synthesis of new polymers from bio-resources with additional
functionalities for specific applications (health, agriculture, marine
ecc.)
Optimization of bio-based polymers production processes aimed
at drastic cost reduction
Innovation in feedstock
Selection of uncommon non-food crops to be cultivated in lowfertility abandoned land (land recovery)
Use of waste (waste valorization!)
Interest towards the use of gas as feedstock alternative to biomass
M. Scandola - Alma Mater Università di Bologna