scarica il file in PDF

Transcript

scarica il file in PDF
Modello atomico di Bohr – ulteriori approfondimenti
www.fulviobaldanza.it
MODELLO ATOMICO DI BOHR - ULTERIORI APPROFONDIMENTI
Se riscaldiamo un qualsiasi elemento chimico ponendolo ad esempio su una fiamma,
notiamo che esso emette un colore caratteristico. Ad esempio riscaldando alcuni grani di un
sale di litio (LiCl, cloruro di litio) prelevati con un filo di platino, si genera una fiamma di
colore rosso viola, riscaldando dei cristalli di un sale di potassio (KCl, cloruro di potassio),
la fiamma è di colore verde, mentre un sale di sodio (NaCl, cloruro di sodio) la fiamma è di
colore viola.
Il gas idrogeno (H2) portato ad incandescenza emette luce rossa. Analizzando per mezzo di
uno spettroscopio la luce emessa dall’idrogeno otteniamo uno spettro a righe di emissione,
detto spettro atomico dell’idrogeno. I composti gassosi formano spettri più complessi in
cui appaiono gruppi di righe che conferiscono un caratteristico aspetto a bande.
Lo spettro dell’idrogeno (serie di Balmer) presenta una evidente riga nel rosso, una riga
nell’azzurro e due righe nel violetto (ricordo che la luce emessa dall’elemento corrisponde
al colore della riga spettrale più luminosa). Presenta inoltre, serie di righe spettrali
nell’ultravioletto (serie di Lymann) e nell’infrarosso (le serie di Paschen, Brackett e Pfund)
La spettroscopia, può essere quindi considerata un mezzo di analisi. Essa infatti consente di
identificare ciascun elemento chimico mediante analisi spettroscopica.
GLI SPETTRI DI DUE ELEMENTI CHIMICI POSSONO ESSERE SIMILI MA MAI
UGUALI.
Ritorniamo all’idrogeno.
Le righe del suo spettro di emissione obbediscono alla seguente legge espressa in termini
matematici:
ν = R (1/na2 – 1/nb2)
dove:
R = 3,29x1015 Hz
na = 1 per le righe nell’ultravioletto
na = 2 per le righe nel visibile
na = 3 per le righe nell’infrarosso
Inoltre per na ed nb vale la seguente relazione: na + 1 ≤ nb ≤ ∞
Quindi nb è compreso tra na + 1 e ∞.
Prof. Fulvio Baldanza
Pagina 1
Modello atomico di Bohr – ulteriori approfondimenti
www.fulviobaldanza.it
In pratica, questa legge descrive le frequenze (ν) delle diverse righe spettrali dell’idrogeno.
Per ottenere le frequenze nel visibile si pone na = 2 ed nb in tal caso può assumere i valori da
3 a ∞.
Per le righe spettrali nell’ultravioletto si porrà na = 1 e i valori di nb saranno allora da 2 a ∞.
Infine, per le righe spettrali nell’infrarosso: na = 3 e nb potrà assumere i valori da 4 a ∞.
La legge suesposta rappresenta una relazione molto importante che tuttavia è stata trovata
empiricamente, in pratica solo descrittiva ed i suoi parametri (na, nb, R)sono da
considerarsi, per il momento, privi di significato fisico. Successivamente, questa legge
matematica verrà interpretata in maniera corretta da Bohr e servirà da supporto per la
descrizione del suo modello atomico.
Per poter comprendere il modello atomico di Bohr prima bisogna capire l’ipotesi quantica di
Planck.
Un corpo riscaldato emette radiazioni elettromagnetiche con un massimo di emissione ad
una lunghezza d’onda (λ) inversamente proporzionale alla temperatura assoluta (T) del
corpo, secondo la relazione
λ = k/T (Legge di Wien)
Ad esempio, noi esseri umani, con una temperatura corporea di circa 36 – 37°C (pari a
309,15 – 310,15 K) emettiamo onde elettromagnetiche in prevalenza nell’infrarosso.
Questo fenomeno non era interpretabile secondo la teoria elettromagnetica classica, per la
quale doveva aumentare solo l’intensità dell’emissione elettromagnetica all’aumentare della
temperatura.
Planck interpretò il fenomeno ipotizzando che l’emissione di energia del corpo caldo non è
continua ma avviene a pacchetti o quanti ed è multipla di una quantità minima
corrispondente ad un quanto di energia pari a:
Prof. Fulvio Baldanza
Pagina 2
Modello atomico di Bohr – ulteriori approfondimenti
www.fulviobaldanza.it
E = hν oppure E = hc/λ
(Ricordare che esiste una relazione tra lunghezza d’onda e frequenza dell’onda
elettromagnetica data da λν = c dove c è la velocità della luce pari a 299792458m/s cioè
all’incirca 300000000m/s).
h = 6,626 x 10-34Js (costante di Planck)
Inoltre, Einstein spiegò l’effetto fotoelettrico e chiamò Fotone il quanto di luce.
(Ricordare che intensità di un raggio luminoso si riferisce al numero di fotoni presenti nel
raggio stesso).
La luce quindi, e qualsiasi tipo di radiazione elettromagnetica ha una doppia natura,
corpuscolare e ondulatoria.
Infatti sussiste la relazione E = hc/λ, da cui λ = hc/E.
Poiché per Einstein E = mc2, sostituendo otteniamo λ = hc/mc2. Semplificando si ottiene
alla fine
λ = h/mc
MODELLO ATOMICO QUANTICO DI BOHR
Il modello quantico di Bohr è importante perché giustifica la stabilità dell’atomo, superando
le difficoltà insite nel modello atomico di Rutherford. Bohr ipotizzò l’atomo servendosi
della teoria quantica di Planck.
Per Bohr l’elettrone si muove su orbite circolari concentriche appartenenti a gusci
sferici ad energia costante, chiamati stati stazionari.
Finchè l’elettrone rimane nel suo stato stazionario, la sua energia rimane costante. Se
l’elettrone si sposta da un guscio all’altro, la sua energia cambia.
Inoltre, non tutte le orbite sono possibili ma solo quelle che rispettano la seguente relazione
empiricamente trovata da Bohr:
r = nh/2πmv
con n ( chiamato da Bohr numero quantico principale) che può assumere come valori solo
numeri interi da 1 a ∞.
Tuttavia, per il momento n rimane senza significato fisico.
Prof. Fulvio Baldanza
Pagina 3
Modello atomico di Bohr – ulteriori approfondimenti
www.fulviobaldanza.it
Inoltre, facendo considerazioni sull’equilibrio tra le forze coulombiane attrattive tra nucleo
ed elettrone e la forza centrifuga, Bohr determinò e calcolò il raggio delle orbite
dell’elettrone (vedi alla fine di questo paragrafo per saperne di più):
r = a0n2
dove a0 = 0,529 Å.
Dunque, il raggio dell’orbita dipende da n e con n = 1 sarà r = (0,529 x 12) Å = 0,529 Å.
Con n = 2 il raggio dell’orbita elettronica sarà r = (0,529 x 22) Å = (0,529 x 4) Å = 2,12 Å. E
così via.
Tenendo conto che l’energia totale dell’elettrone è data dalla somma della sua energia
cinetica e della sua energia potenziale determinò l’energia delle varie orbite, trovandola
pari a:
E = -2,18x10-18/n2 (J)
Dove E = energia totale dell’elettrone
Quindi anche l’energia dell’elettrone dipende da n.
Ponendo E0 = 2,18x10-18 (J) la relazione precedente diventa
E = - E0/n2 (J)
Il segno meno nell’ultima relazione sta a significare che all’aumentare del numero n, il
valore assoluto del rapporto diminuisce ma il valore di E aumenta poiché il rapporto è
negativo. Il valore massimo teorico di E si raggiunge per n = ∞: in questo caso E = 0 e ciò
corrisponde all’elettrone isolato, cioè libero dall’atomo.
Se invece n = 1, l’energia dell’elettrone è minima con E = -E0 = -2,18x10-18 (J).
In questo caso si dice che l’elettrone si trova nel suo stato fondamentale.
Ci tengo ancora una volta a puntualizzare il motivo del segno meno: Perché al massimo di
energia posseduta dall’elettrone isolato viene assegnato il valore 0. Tutti gli altri valori
corrispondenti alla presenza dell’elettrone nei diversi stati stazionari corrispondono quindi,
essendo di minore entità a valori negativi.
Tracciando il diagramma dei livelli energetici (o stati stazionari) per l’elettrone nell’atomo
di idrogeno di Bohr, calcolati con la formula E = -E0/n2 (J), otteniamo il seguente
diagramma:
Prof. Fulvio Baldanza
Pagina 4
Modello atomico di Bohr – ulteriori approfondimenti
www.fulviobaldanza.it
Dunque, l’elettrone che assorbe energia passa ad un livello successivo (transizione) ma
rimane in questo stato eccitato per poco tempo, ricadendo (transizione) nei gusci ad
energia minore ed emettendo una quantità di energia pari alla differenza di energia fra i due
stati stazionari:
cioè: transizione Eeccit. Estaz. dove Eeccit. > Estaz.: emissione di energia pari a:
∆E = Eeccit.– Estaz. = -E0/ne2 – (-E0/ns2) =
= -E0/ne2 + E0/ns2 = E0/ns2 -E0/ne2 = E0(1/ns2 -1/ne2)
Dove ns = numero quantico principale dello stato stazionario e ne = numero quantico
principale dello stato eccitato.
Dunque:
∆E = E0(1/ns2 -1/ne2)
Essendo per Planck E = hν e quindi ν = E/h, avremo che:
ν = ∆E/h = E0/h (1/ns2 -1/ne2)
Passando alle misure avremo:
ν = 2,18x10-18J/6,626x10-34Js (1/ns2 -1/ne2) = 3,29x1015 (1/ns2 -1/ne2) Hz = R (1/ns2 -1/ne2)
Quindi:
ν = R (1/ns2 -1/ne2)
formula identica a quella trovata sperimentalmente per descrivere le frequenze delle righe
spettrali dell’idrogeno (confronta inizio appunti) con R = 3,29x1015 Hz.
Prof. Fulvio Baldanza
Pagina 5
Modello atomico di Bohr – ulteriori approfondimenti
www.fulviobaldanza.it
Quindi, se nell’equazione di Bohr poniamo ns=1 otteniamo le stesse frequenze sperimentali
trovate nella relazione per le righe spettrali che cadono nell’ultravioletto (serie di Lymann).
Per ns=2 troviamo le frequenze emesse nel visibile (serie di Balmer). Per ns=3 troviamo le
frequenze emesse nell’infrarosso (serie di Paschen).
Bohr dunque, spiega le frequenze delle righe spettrali e giustifica l’emissione
nell’ultravioletto durante la ricaduta dell’elettrone sul livello n = 1.
Per concludere, è intuibile che:
Le frequenze delle radiazioni emesse dai corpi riscaldati corrispondono a transizioni
elettroniche tra livelli energetici quantizzati.
CALCOLO DI BOHR DEL RAGGIO DELL’ORBITA ELETTRONICA. BREVE
DESCRIZIONE
Bohr considerò che un elettrone che ruota intorno al suo nucleo, è soggetto a due forze:
1) Forza elettrica di attrazione tra nucleo carico positivamente ed elettrone carico
negativamente di tipo coulombiano, cioè descritta dalla legge di Coulomb:
Fc = k (q1q2)/r2
La forza che si genera è dunque direttamente proporzionale al prodotto delle cariche (q1 e
q2) e inversamente al prodotto del quadrato della loro distanza (r2). K è la costante
dielettrica assoluta.
2) Forza centrifuga repulsiva pari a:
Prof. Fulvio Baldanza
Pagina 6
Modello atomico di Bohr – ulteriori approfondimenti
www.fulviobaldanza.it
Fr = mv2/r
dove m è la massa dell'elettrone v è la sua velocità lineare ed r è la sua distanza dal nucleo.
Le due forze devono avere lo stesso valore perchè la distanza dal nucleo dell'elettrone
rimanga invariata nel tempo.
Inoltre, poichè la carica del protone e quella dell'elettrone sono uguali in valore assoluto, la
relazione di Coulomb diventa
Fc = e2/r2
Infatti, in questo caso è possibile scrivere ee = e2 al posto di q1q2, dove e è la carica
dell'elettrone. k in questo caso ha valore 1.
Per le considerazioni appena fatte si può scrivere (equazione 1):
e2/r2 = mv2/r
Dato il primo postulato di Bohr:
r = nh/2πmv
ricavandone la velocità otteniamo (equazione 2):
v = nh/2πmr
Ma dall'equazione 1:
r = mv2r2/e2
Sostituendo nell'ultima relazione la velocità dall'equazione 2, otteniamo dopo alcuni
semplici passaggi algebrici che (equazione 3):
r = n2h2/4π2e2m
Si ottiene in questo modo, il raggio dell'orbita elettronica in funzione di n (numero quantico
principale). Tutti gli altri parametri sono costanti. Il loro valore può quindi essere indicato
con
h2/4π2e2m = a0 = 0,529 Å ( in Angstrom)
L' equazione 3 si semplifica quindi in: r = a0n2
Il raggio dell'orbita elettronica è dunque direttamente proporzionale al quadrato del numero
quantico principale.
Prof. Fulvio Baldanza
Pagina 7