Incontro referee – upgrade fase 1 - Indico

Transcript

Incontro referee – upgrade fase 1 - Indico
Incontro referee – upgrade fase 1 Breve quadro stato generale e R&D fase 2 8 luglio 2013 -­‐ Roma3 Compact Muon Solenoid – sommario a>vita’ INFN •  Stato a>vita’ LS1 -­‐ Muoni: DT e RPC -­‐ Tracciatore: raffreddamento – 25 0C •  Proge> di fase 1 -­‐ Pixel IN COSTRUZIONE -­‐ DT: rifacimento ele<ronica readout/trigger off-­‐detector dal 2014 -­‐ Trigger L1 Nuova richiesta -­‐ GEM NUOVO PROGETTO -­‐ CMS-­‐TOTEM: fisica in avanG e banco di prova R&D Nuova richiesta -­‐ BRIL, Magnete, RP shield Nuove a@vita’ •  Strategia upgrade fase2: prospe>ve R&D in Italia 2 Piano Upgrades Fase 1: A>vita’ previste per LS1 ü  Completamento Endcap Muoni: CERN/LHCC 2007-­‐014 15 March 2007 CMS Expression of Interest in the SLHC •  RPC (quarto strato) è INFN •  CSC (quarto strato) ü  SosGtuzione fotorivelatori Technical Proposal •  HF, HO ü  Inserimento nuova beampipe ü  DT: rifacimento ele<ronica readout/
trigger off-­‐detector è INFN Luglio 2011 ü  Nuovo trigger L1 è INFN TS 2016-­‐17 ü  Installazione nuovo PIXEL è INFN LS2 ü  GEM GE1/1 è INFN TDR Pronto ü  SiPM per HCAL R&D FASE 2 (Addendum) In preparazione è Preparazione TP 2014 è  TDR 2016 3 Prima Money Matrix presentata RRB di ON 2011 CMS programma upgrade LS1 Projects: in produc]on •  Completes muon coverage (ME4) •  Improve muon operaGon (ME1), DT electronics •  Replace HCAL photo-­‐detectors in Forward (new PMTs) and Outer (HPDàSiPM) •  DAQ1 à DAQ2 LS1
LS2
Phase 1 Upgrades (TDRs) •  New Pixels, HCAL electronics and L1-­‐Trigger •  GEM cost review completed •  Preparatory work during LS1 -  New beam pipe -  Install test slices -  Pixel (cooling), HCAL, L1-­‐trigger -  Install ECAL opGcal spli<ers -  L1-­‐trigger upgrade, transiFon to operaFons LS3
Phase 2: Now being defined •  Tracker Replacement, Track Trigger •  Forward : Calorimetry and Muons and tracking •  Further Trigger upgrade •  Further DAQ upgrade •  Shielding/beampipe for higher aperture Sviluppo temporale e fase finanziamento LS1 A>vita' 2013 2014 2015 TPfase2 TDR L1 TDR GEM RPC DT -­‐ CuOF DT -­‐ TWINmux L1 -­‐ global mu trigger BRIL -­‐ BHM+PLT M&O-­‐B CMS-­‐TOTEM PIXEL RP shield ??? ??? MAGNET è
è
TP R&D fase 2 GEM LYE 2016 2017 TDR TK è
è
è
è
LS2 2019 2018 LS3 2022 …….. è
Finanziamento proge<o approvato aprile 2011 in conGnuazione Nuova richiesta finanziamento in conGnuazione Cosa c’e’ di nuovo???? •  GEM è presentazione dedicata (Anna Colaleo) da approvare •  PIXEL è presentazione dedicata (GianMario Bilei) approvato •  BRIL è nuovo proge<o di luminometria in CMS Piccola richiesta per 2014 Bologna su Beam Halo Monitor come IsGtuto Torino (interesse) Pixel Luminosity Telescope come manpower •  Trigger L1 è 2% costo come riconoscimento aavita’ trigger mu •  PPS è proposta CMS-­‐TOTEM in via di definizione •  A>vita’ magnete è in corso gia’ ricaonosciuta @ giugno •  R&D fase 2 è grande aavita’ per call/progea in CSN5 Vitale per il Technical Proposal da preparare nel 2014 HPS: High Precision Spectrometer @ CMS Un rivelatore per misurare protoni ad alta rapidita’
Proposta sottomessa a CMS
Risposta preliminare il 30/06
Discussione ulteriore durante CMS week
Configurazione dopo LS1:
2 or 3 Roman Pot per parte, con strip al silicio di TOTEM
2015: Upgrade a rad-hard 3D pixel
2016: Aggiunta di rivelatori di Tempo
Contributo italiano:
Management
3D pixel& test of front-end detector
Richieste PPS (da valutare) 2014-­‐15 sensori 3D e relaGvo front-­‐end da me<ere nei pot di TOTEM probabilmente a fine 2015. o) sensori 3D: 60-­‐70 kEur (fonte Dalla Be<a) o) Bump-­‐bonding, incluse maschere, deposizione indio (fonte Selex): 70-­‐80 kEur [de<agli: -­‐ Bump bonding 80 Eur/chip. Per O(200) chip circa 20 kEur -­‐ Maschera litografica per deposito indio: 1-­‐2 kEur -­‐ Deposizione indio: avevamo pagato 10 kEur/4wafer; quindi per 12-­‐20 wafer 30-­‐40 kEur -­‐Eventuale indio su wafer di chip (se usiamo il chip vecchio abbiamo gia' fa<o la deposizione): 10 kEur -­‐Costo di eventuale ulteriore wafer di chip, da acquistare da PSI: 2 kEur] Totale 130-­‐150 kEur su un paio di anni. non include materiale di lab (eg forse un nuovo laser) L1 trigger attuale
L1 Trigger Mo]vazione •  Aumento della luminosità ben oltre il valore di design per LHC •  Necessità di mantenere acceNanza per la fisica alla scala dell’Higgs L1 update Miglioramen] necessari •  SoNrazione del Pile Up per le primi]ve calorimetriche (eleNroni, jets, HT) e per l’isolamento •  Miglioramento della risoluzione in pT dei muoni, muoni isola] •  Algoritmi finali più flessibili e sofis]ca] (e.g. mass invarian] ) Trigger Upgrade: Plan Upgrade the Calo, Muon and Global Triggers -  architecture highly configurable, based mainly on 3 boards (with large FPGA, high bandwidth op]cs, memory for LUTs) use standard µTCA boards with large FPGAs -  parallel commissioning of new trigger while for new algorithms opera]ng present trigger -  goal to provide improvements for 2015, commission full func]onality for 2016 Overview: calorimeter
•  Calo Trigger ! Two
trig
architectures proposed
–  LS1: op]cal split (oSLB & oRM) and operate slice of upgrade in parallel –  2015: use prototype boards to implement improved τ, e isola]on –  2016: grow slice to full upgrade TMT architecture baseline HCAL
energy
ECAL
energy
HF
energy
Regional
Calo Trigger
EM
candidates
Layer 1
Calo Trigger
Region
energies
Global
Calo Trigger
HCAL
energy
oSLB
oRM
Layer 2
Calo Trigger
Upgrade L1 Trigger System
Current L1 Trigger System
Overview: calorimeter trigger
10 Necessary to install oSLB/oRM during LS1 (complex operation)
A>vità e interessi italiani •  (DT BO-­‐TO) Trasferimento del sector collector in USC (CuOF), aavità di LS1 •  (DT PD) Realizzazione fan-­‐out veloci (TwinMux) per distribuire i daG ai nuovi Track Finders” •  (Trigger) Partecipazione alla realizzazione del nuovo Track Finder, comune ai 3 so<osistemi dei muoni •  Studio di algoritmi combinaG •  Implementazione in Firmware •  Installazione, commissioning etc. Muon Track Finder basato su processori comuni a Muoni e Calorimetro, basaG su standard micro-­‐TCA (sviluppaG da USA+UK, per CALO + CSC-­‐TF) •  Xilinx Virtex 7 con 80 input veloci a 10GB/s •  Flessibilità a ridondanza (possibile aggiungere nuovi inputs, e.g. GEMs) Upgrade del L1 muon trigger detectors electronics (responsibilty of detector projects) CSC
MPC
DT
SC
RPC
LB
CSCTF
DTTF
PAC
CSC sorters DT sorters RPC sorters Global Muon Trigger Global Trigger Trigger (responsibility of L1 trigger project) Roberto Carlin •  Situazione a<uale •  Tre sistemi separaG fino agli ulGmi stadi • 
• 
DT, RPC, CSC Ridondanza usata a livello di global muon trigger •  Per la parte “trigger” Italia coinvolta in • 
• 
DTTF DT sorters Upgrade del L1 muon trigger • 
Sistemi combinati
direttamente nel track finder
•  Ridondanza più efficace
•  Track finders separati per
zone in η
•  Barrel (RT+RPC)
•  Overlap (DT+RPC-CSC)
•  Endcap (RPC+CSC)
• 
Interesse italiano
• 
• 
Algoritmi barrel track finder
Sorting e global muon
trigger
detector Upgrade
Twin mux
trigger • 
Probabilmente combinaG Upgrade del L1 muon trigger •  CosG e isGtuzioni del L1 trigger upgrade L1 calorimeter trigger: 2200 kCHF •  USA, UK, Portugal, France •  L2 muon track finders: 2800 kCHF •  USA, Austria, Greece, Poland, Russia, China •  Global muon trigger e global trigger: 650 kCHF Countrywise Breakdown •  Austria, Italia Italy • 
COSTO TOTALE 5674 kCHF France 6% Russia 5% 2% China 6% US 33% Poland 6% Portugal 3% Greece 9% Austria 17% UK 13% Italia: 109 kCHF ∼ metà HW Global Muon Trigger L1 upgrade TDR approvato TDR soNomesso LHCC giugno 2013 approvazione informale CERN-­‐LHCC-­‐2013-­‐011 ; CMS-­‐TDR-­‐012 hNps://cds.cern.ch/record/1556311 Goal to complete hardware and ini]al trigger firmware/soqware for 2016 Nuova richiesta:109 kCHF Mo]vazione: forte coinvolgimento della comunita’ INFN (responsabilita’ e progeNazione) Upgrade del L1 muon trigger •  2015 • 
Test di una slice di ciascun sistema In parallelo al trigger a<uale Per i DT 6 se<ori su due ruote • 
• 
• 
• 
• 
•  2016 • 
Spli<er oaci Twin mux ProtoGpo processore e GMT Aavazione nuovo sistema Twin
mux
Upgrade del L1 muon trigger Richieste anGcipi 2014 • 
• 
• 
• 
Processor Card (MP7) CHF 14,953 AMC13 (interfaccia clock e DAQ) CHF 5,000 Crate μTCA+ Power supply CHF 7,759 importante per avere l’upgrade
dell'intera colonna L1 da
qualificare con la slice DT gia'
all'inizio della presa dati nel 2015
•  Prototipo Virtex 7 processor
•  72+72 10 Gb/s links
RPC @ LS1 (28/90 FTE INFN: BA, LNF, NA, PV) RPC access for repara]on and installa]on will start on May-­‐June according to CMS schedule and will finish Feb 2014. RPC repara]on ac]vi]es will overlap not only with other detectors but also with upscope ac]vi]es. 1) Endcap upscope : -­‐ RE4 chambers: complete construcGon / installaGon/ commissioning -­‐ link board construcGon / commissioning -­‐ new infrastracture (racks/gas/cooling/ pipes/ cables) 2) RPC maintenance (97.7% canali funzionan], 1% dead]me): -­‐ reparaGon of chambers in Single Gap /off (task 1 see backup slide) -­‐ reparaGon of chambers with threshold problems (noise control) (task 2 see backup slide) -­‐ reparaGon of gas problems and dead chambers -­‐ Gas gain monitor : reparaGon of chambers. -­‐ Aging test in Pavia on RPC barrel type gaps (from the stock of old barrel gaps stored in GT) CharacterizaGon of radiaGon damage in electronics, measurement of survival lifeGmeà Portable tesGng staGon to study Single Event Upset PRIN2012 project submi<ed RICHIESTA PV: 30 keu -­‐ Schedule: 2013-­‐2014 M.Abbrescia et al. : “Neutron-­‐induced SEU on the RPC front-­‐end chips for the CMS experiment” , NIM A 484 (2002) 494–502 18
Gaps built in Korea: RE4 upscope 3 construcGon sites (CERN,U.GENT,BARC MUMBAI) 17/144 RE4 chambers built so far: cosmics test ok INSTALLATION milestones:
•  Plus Endcap@Oct 2013
Needed 72 chambers or 36 SM
•  Minus Endcap @Feb 2014
CERN 904 assembly&test site
Needed 144 chambers or 72 SM
The present schedule is “just in time” to achieve the installation milestones
Link Board INFN responsabilty: •  50% del sistema a maggio a Napoli -­‐ fine maggio al CERN •  50% del sistema a fine giugno a Napoli -­‐ luglio al CERN •  Installazione della prima Lbox completa di schede -­‐ fine Giugno 2013 •  In schedula Sensori temperatura INFN responsabilty: •  In fase di test a LNF •  In schedula 19 Driq Tubes – DT (58% INFN: BO, PD, TO) 3 anni dall’ul]mo accesso a camere e FE 98.8% canali opera]vi – down]me da problemi DT <1% Rate estrapolato a luminosita` 1-­‐2 1034 /sec/cm2 entro specifiche di funzionamento Eccellente stabilita` del rivelatore DT misura estremamente lineare del trigger rate da muoni da collisione pp al crescere della luminosita` sfruRate per misurare on-­‐line luminosita` LHC
FASE 1 -­‐ LS1 (2013-­‐2014): incrementare durata e flessibilita’ -­‐ Sos]tuzione trigger board Theta nei minicrate sulle camere è in produzione -­‐ SPOSTAMENTO SECTOR COLLECTOR dalla caverna alla sala controllo 2013-2014
DT: stato a>vita’ finanziate Da] TDC primi]ve trigger di 250 camere DT disponibili in USC su fibre o>che: T base di ogni futuro upgrade del sistema D
Tests de<agliaG di trasmissione sui protoGpi dei nuovi link oaci: Dic 12 e Feb 13 è72 links installaG per prendere daG cosmici e test pulses a alto rate per giorni INIZIATA produzione di massa dell’ele<ronica e installazione delle fibre •  Costo totale DT upgrade Fase 1: –  1770 keu (2200 kCHF) per trasferimento Sector Collector –  TTRB finanziate in MOFB •  Contributo italiano 800 keu (1000 kCHF) •  Padova (TTRB, TWINMUX) •  Torino (CuOF) •  Bologna (OFCu-­‐trigger) •  Profilo temporale 2500 TOTAL
INFN
2000 1500 •  2012 proto TTRB, CuOF,OFCu 1000 •  2013 install TTRB,CuOF,OFCu, proto TWINMUX •  2014 commission TTRB,CuOF,OFCu, install 500 TWINMUX 6 sectors 0 •  2015 commission TWINMUX 6 S, install 2012 TWINMUX all 150 
•  2016 commission TWINMUX all 2013 290
2014 150
2015 >2015 210 keu
total DT Upgrade Phase 1 and Phase 2 PHASE 1 (not strictly related to LHC shutdown) (2015-­‐2017) Exploit opGcal fibers bringing all chambers data in USC for running also a concurrent system for track finding using TWINMUX (track segments) •  Replacement of DTTF (new firmware) TDR upgrade L1 trigger •  Redesign of TSC and ROS boards •  Op]mize DT op]cal links for the new trigger upgrade electronics PHASE 2 (LS3) (2018 and beyond) •  Insert connecGon with the tracker in the L1 trigger system •  Par]al replacement of Minicrate electronics which do not survive HL-­‐LHC LS1 Muon Upgrade -­‐ No new detectors in the barrel -­‐ DT barrel: replace electronics and a substanGal migraGon of electronics to USC -­‐ New CSC/RPC staGons in YE-­‐4/2 -­‐ CSC ME-­‐1/1: replace electronics ( including FE) to maintain trigger and avoid deadGme LS2 -­‐ New system at 1.6<|η|<2.1 to improve L1 and HLT muon momentum resoluGon to reduce trigger rate and ensure high trigger efficiency in high PU environment GEM-­‐based detector in sta]ons 1 LS3 -­‐ R&D on new super-­‐high eta detectors: GEM/GRPC for staGons further away è hooks to interconnect muons with inner tracking trigger -­‐ DT: new minicrates 23 CMS-­‐TOTEM – High Precision Spectrometer Two op]ons for forward physics è UNDER REVIEW PHASE 1 è LS1 NEED proton tracking and Gming detectors: 1)  Use of TOTEM Roman Pots at 200-­‐225m sides from the CMS IP 2)  Install a moving Beam Pipe secGons at ˜ 240m sides from the CMS IP COSTI NON FINALI Silici ~ 300 kCHF Timing ~ 150 kCHF Reference Clock ~ 100 kCHF Total ~ 550 kCHF New Roman Pot = 200 kCHF Richiesta: ~ 100 keu da discutere è OTTIMA OPPORTUNITA’ TEST R&D TK Istallazione LS2: 1 o 2 stazioni a 420m da CMS Sviluppo rivelatori al silicio ed ele<ronica ultraveloce per misurare posizione e tempo ERC advanced grant, “4-­‐DimenGonal Silicon Detector” FutureEmergingTechnologies: network grant, “UltraFastSilicon Detector” PRIN: UltraFast Silicon detector 24 ERC consolidator grant, “Silicon Space-­‐Time Tracker” Roman Pots for HPS-­‐TOTEM Nicolo’ Cartiglia
(presenting materials from the TOTEM collaboration)
Very recent additional material from TOTEM can be found in the
following presentations:
LTEX meeting: http://indico.cern.ch/conferenceDisplay.py?confId=233134
LHCC: https://indico.cern.ch/conferenceDisplay.py?confId=239117
FWD-WG:
https://indico.cern.ch/conferenceOtherViews.py?view=standard&confId=250487
5/21/13 Nicolo CarGglia INFN Turin 25 Roman Pots for HPS-­‐TOTEM In the following slides I will summarize the Roman Pot
proposal as “detector carries” for the HPS-TOTEM project.
Leveraging on the TOTEM experience, the HPS-TOTEM
project can be considered an “upgrade”, where the previous
experience of the past 10 years is used to produce the next
version of a detector.
RP – 200 m Timing
5/21/13 CMS ip5 RP + 200 m Tracking
Tracking
Nicolo CarGglia INFN Turin Timing
26 2012 Roman Pot situaGon at IP5 ~ 147 m TOTEM RP-­‐147 m (near-­‐far) Near 2 verGcal RP top/bo<om 1 horizontal RP Far 2 verGcal RP top/bo<om 1 horizontal RP removed
~ 220 m TOTEM RP-­‐220 m (near-­‐far) Near 2 verGcal RP top/bo<om 1 horizontal RP ~ 1.5 m 5/21/13 Far 2 verGcal RP top/bo<om 1 horizontal RP Q6 ~ 5 m Nicolo CarGglia INFN Turin 27 Roman Pots for HPS-­‐TOTEM A simplified version of the HPS-TOTEM project in 3 steps…
~ 220 m ExisGng TOTEM RP-­‐220 m Relocated staGons from 147 m New RP staGons New collimator TCL-­‐4 ç New collimator RELOCATED: POT FOR TRACKING Detector RELOCATED: POT FOR TRACKING Detector ~ 10 m OLD TOTEM POT NEW: POT FOR TIMING Detector NEW: POT FOR TIMING Detector OLD TOTEM POT TCL-­‐6 Q6 ~ 5 m STEP 1: The pots from 147 m are relocated at ~ 204 and 214 meter to house tracking
detectors
STEP 2: The new collimators are installed
STEP
3: Two new pots are installed
~ 220
to house the timing detectors
5/21/13 Nicolo at
CarGglia INFN meter
Turin 28 RP posiGons HPS-TOTEM operation
TCL-­‐4 RELOCATED: POT FOR TRACKING Detector OLD TOTEM POT OLD TOTEM POT NEW: POT FOR TIMING Detector RELOCATED: POT FOR TRACKING Detector NEW: POT FOR TIMING Detector New collimator TCL-­‐6 Q6 TOTEM operation
RELOCATED: POT FOR TRACKING Detector NEW: POT FOR TIMING Detector RELOCATED: POT FOR TRACKING Detector TCL-­‐4 NEW: POT FOR TIMING Detector New collimator OLD TOTEM POT OLD TOTEM POT Combined operation, physics and calibration
TCL-­‐4 RELOCATED: POT FOR TRACKING Detector RELOCATED: POT FOR TRACKING Detector OLD TOTEM POT TCL-­‐6 NEW: POT FOR TIMING Detector New collimator NEW: POT FOR TIMING Detector OLD TOTEM POT TCL-­‐6 Roman Pots infrastructure Main work packages for RP installaGon TOTEM à consolidaGon extracGon & service of RP147 m re-­‐installaGon of RP147 m at 210 m (upstream of RP220 m near) extension of services from 147 m to 210 m extracGon & re-­‐installaGon of RP220 m & service work
service work on RP 220 m vacuum service work on RP 220 m motor drive (hardware & so‚ware) service work on RP (ferrite, RF housing) TOTEM à upgrade installaGon of 2new RP horizontal staGons on each side of IP5 (downstream of RP 220 m near, upstream of RP 220 m far) adaptaGon of horizontal RPs to be used for low β* producGon new RP housing, opGmized for RF heaGng and beam feedback installaGon of electrical services for new detectors (standard services will be re-­‐used from RP147) installaGon of new tracking/Gming detectors LHC beam line modificaGons at +/-­‐ 220 m à consolidaGon + upgrade adaptaGon of beam line for installaGon of RP147m at 210m (consolidaGon) and new horizontal RPs (upgrade) LHC collimators àconsolidaGon + upgrade installaGon of TCL4 (4/5, 5/6) installaGon of TCL6 (4/5, 5/6) + relocaGon of cooling components close to +/-­‐ RP220m far. 5/21/13 Nicolo CarGglia INFN Turin 31 QuarGc integraGon in cylindrical RP Quartic
5/21/13 Nicolo CarGglia INFN Turin 32 RP simulaGon: heaGng Rotated to house Quartic
Nicola Minarta - TOTEM
The heating of the
cylindrical is
predicted to be much
smaller
Current RP
Cylindrical RP
5/21/13 Nicolo CarGglia INFN Turin 33 Roman Pot -­‐> IntegraGon study -­‐ cylindrical RP in horizontal staGon Double Quartic
5/21/13 Nicolo CarGglia INFN Turin 34 Cylindrical RP Status RF optimization of new cylindrical RP finished
Production drawing ready and under approval
Prototype production scheduled for May-June 2013
Mechanical and vacuum tests will follow the prototype
production
RP stations with standard dimensions
Production (Vacuum Praha) possible – production drawing
for 2 two independent horizontal RP are ready
Study of material budget with GEANT4 simulation
5/21/13 Nicolo CarGglia INFN Turin 35 Summary The reposiGoning of the RP at 147m is on schedule All services to operate addiGonal RP at 220 meters are being installed The collimator to protect Q6 is being installed Cylindrical RP to house Gming detector under development. SimulaGon shows very good impedance and heat load. The system will be ready to house detectors by the end of LS1. 5/21/13 Nicolo CarGglia INFN Turin 36 Formalizzata a maggio 2013 in un progeNo CMS “standard” la sinergia BRIL Beam Radia]on Monitoring/Luminosita` ProgeNo comune: rappresentanza Is]tuzionale e struNura manageriale come per i sub-­‐detectors BRM and Luminosity measurement share a common relaGonship with the LHC machine setup and the requirement of conGnuous operaGon independent of CMS data-­‐taking state. In addiGon the detector systems of BRM are in themselves fast luminosity detectors and they share the physical infrastructure of the Pixel Luminosity Telescope. Upgrades: New-­‐detector technologies are required to respond to the: Environment challenges of background and radiaGon measurements at LHC (& HL-­‐LHC)Precision physics measurements require precision Luminosity measurement at high rates and pileup. Beam Radia]on Instrumenta]on and Luminosity (BRIL) è LHC è CMS TC Ø  MoGvaGon for a Common Project è CMS RC è CMS POGs TLD’s, dosimetry RadiaGon SimulaGon BHM Halo Counters BPTX <-­‐-­‐-­‐-­‐-­‐ VDM Scans MediPix HF RADMON BCM2L Abort HF Lumi BCM1L BCM1F PLT Abort Bkd/Lumi Lumi Beam Radia]on Instrumenta]on and Luminosity (BRIL) •  LS1 is an opportunity to implement this new project: a chance for consolidaGon, coherent Upgrades ( BCM1F, PLT, BPTX) –  LHC prepares for extended running at 25ns, –  pileup will become even more important •  New detector systems: use commonaliGes, minimize resources, opGmize/uniformize GUIs, create experGse able to operate/handle the diverse instruments – 
– 
– 
– 
BCM1F (fast diamonds), BHM (large radius machine background), PLT a new frontend systems for the HF Storia precedente Al gruppo di Bologna, in virtu` dell’experGse posseduta e del manpower specifico disponibile in tempi brevi, fu proposto nell’o<obre del 2011 di partecipare alla costruzione “lampo” (Nov 2011 – Gen 2012) del Beam Halo Counter (BHC) da uGlizzare nel run del 2012/13, per sosGtuire il precedente detector (BSC), non piu` uGlizzabile per via dell’alta luminosita` prevista. NB. I cosG del materiale e delle trasferte furono sostenuG da CMS, e non dall’INFN. Tiles di scinGllatore accoppiate a fibre WLS e fibre chiare, le<e da PMT convenzionali. Costruite a Bologna. Testate al CERN. BHM e` stato usato nel run del 2012 (pp) e del 2013 (pPb), anche come MinBias Trigger di backup Scri<a anche una tesi triennale da uno studente di Bologna che ha partecipato alla costruzione (discussa nel marzo 2012). NB. Importanza dei piccoli progea di Hardware per la formazione di nuovi giovani “detector oriented” Vorremmo partecipare alla realizzazione del nuovo Beam Halo Monitor (BHM), da installare al pozzo entro la fine del 2014, contribuendo ai seguenG tasks: 1.  Sviluppo del firmware (FPGA) di frontend e backend del detector 2. Proge<o e costruzione di una scheda ele<ronica per la calibrazione del sistema (VME o backplane custom, in fase di discussione). 3. Realizzazione della meccanica di supporto dei rivelatori (cristalli + PM) 4. Partecipazione al test beam dei protoGpi compleG •  Purpose: BHM Detector MoGvaGon To provide an on-­‐line measurement of the Machine Induced Background(MIB) in CMS . -  At High Radius with overlapping acceptance with the CMS CSC chambers -  During both colliding and circulaGng beams -  Separate B1 and B2 measurements •  Aqer LS1: - 
- 
- 
- 
- 
•  Why? - 
- 
- 
- 
Exceeding nominal luminosity. 25ns bunch spacing. Increasing bunch charge. Tighter LHC collimators seangs. Electron cloud effects. Higher MIB expected, Beam Halo & Beam Gas. MIB contaminates Level 1 trigger rate and results in low data taking efficiency. At High radius, to complement BCM1F MIB measurement at small radius. VerificaGon of FLUKA model. Flag poor beam condiGons for CMS and LHC by lumi-­‐secGon. 23th April 2013 Orfanelli Stella 42 Principle of DetecGon: DirecGonality DIRECTIONALITY: property of the detector to disGnguish between parGcles coming from different direcGons => suppress background signal while selecGng parGcles parallel and consistent with the direcGon of the incoming beam. 23th April 2013 forward Time [ns] Amplitude [V] Amplitude [V] Tested fused quartz Cherenkov radiators during test beam (July 2012). Orfanelli Stella backward Time [ns] 43 Detector LocaGon in CMS cavern Golden loca]ons: Must sit in one of the golden loca]ons. where it’s easier to discriminate the MIB products from the collisions products based on the fact they are arriving well separated in Gme. For the 25ns this maximum Gming separaGon corresponds to 25/2=12.5ns. GL6 68.75ns GL5 56.25ns GL4 43.75ns GL3 31.25ns GL2 18.75ns GL1 6.25ns t = 0.0 ns Beam2 B1 B1 B1 IP COLLISION=1 Beam1 23th April 2013 Orfanelli Stella 44 Golden LocaGon 6 GOLDEN LOCATION 6 : the most promising loca]on. GL7 GL6 GL5 GL4 GL3 GL2 GL1 Ø  Golden locaGon: MIB – pp products maximum ]me separa]on Ø  Good environmental condiGons Ø  Available space around the rotaGng shielding. Ø  Absolute MIB flux is higher w.r.t. other golden locaGons closer to the IP. 23th April 2013 φ
+z 0deg Orfanelli Stella Golden LocaGon 6 IP 45 BHM locaGon Persone coinvolte Fisici: F.Fabbri (50%), A.Montanari (50%), T. Rovelli (50%), N.Tosi (Do<. 3 anno, 100%) Tecnologi: 1 tecnologo Lab. Ele<ronica, esperto di firmware (50%) Tecnici: V.Giordano, V.Cafaro, M.Boldini (tecnici coinvolG in CMS dall’inizio della costruzione) 1 tecnico Lab. Ele<ronica Richieste per il 2014 * 15 Keuro (sGma) per la costruzione della scheda di calibrazione (componenG, costruzione protoGpo, scheda finale) * ?? Keuro (sGma) per la costruzione della meccanica di supporto * 5 m.u. al CERN (sGma) per sviluppo e test firmware, riunioni, test beam, installazione IsGtuG a<ualmente partecipanG o interessaG a BRIL CERN Francia: Lyon Germania: DESY Hamburg, DESY Zeuthen, Karlsruhe India: Kolkata Italia: Bologna, Torino New Zealand USA: FNAL, Minnesota, MIT, Northwestern, Princeton Rutgers, Tennessee, Vanderbilt Russia: Moscow, Protvino Svizzera: ETH Zurich Governance •  Basic assumpGon is that insGtutes joining the project will sign a MOA taking responsibility to specific deliverables/tasks ( which might entail ESP credits, but the commitment is by insGtuGon on specific tasks) •  Given that several of the deliverables are linked to formal obliga]ons of CMS towards LHC , Tech. CoordinaGon is represented formally in the IB of the new project. Common items Phase 1 •  Common Fund (6.5 MCHF) shared according to PhD count of 2010 INFN 803 kCHF •  ContribuGons to specific Items PROPOSTA INFN CONTRIBUTO in-­‐kind (vedi seguito) MoU Addendum è richiesta firma INFN è NON FIRMIAMO •  Extension of the Construc]on MoU è leNera FIRMATA @RRB aprile 2013 con Bedeschi e Zoccoli: *** INFN ha comunicato a CMS l’OK al pagamento Common Fund – Upgrade fase 1 Richiesta: 803 kCHF è 670 keu CASH 50 Radia]on Protec]on shielding BARREL Radia]on Protec]on Shielding – INFN contribu]on in kind Valore s]mato 400 kCHF è RICHIESTI @CSN1 SeE 12 300 keu PREPARAZIONE STRUTTURE DI RADIOPROTEZIONE PER ATTIVITA’ LS2-­‐LS3 2013: finalizzazione disegni esecu]vi Costruzione primo supporto e aNrezzature 2016-­‐17: completamento struNure di schermatura e aNrezzatura di posizionamento 51 Radia]on Protec]on shielding BARREL Radia]on Protec]on Shielding – INFN contribu]on in kind Disegno e revisione tecnico INFN è RICHIESTI 40 keu nel 2013 per costruzione prime struEure 2013: finalizzazione disegni esecu]vi Costruzione primo supporto e aNrezzature 2016-­‐17: completamento struNure di schermatura e aNrezzatura di posizionamento 52 Magne]c field studies Studi invecchiamento magnete: Proposta di P. Fabbricatore al CERN Stress meccanici e so<o corrente del cavo RICHIESTA: 30 keu Simulazioni di campo magne]co cruciali è NUOVO IMPEGNO GENOVA Legate metodo ricostruzione tracce nei rivelatori Esistono due modelli (OPERA-­‐TOSCA) : 1)  basato sull'estrusione di piani, ovvero da un modello 2D si costruisce 3D (ulGmi 10 anni) 2)  basato su OPERA Modeller: si costruiscono oggea solidi uGlizzaG dal processore 3D-­‐TOSCA LAVORO IN CORSO: entrambe i programmi in consegna da un giovane di Genova Interesse da parte di un gruppo di Ingegneria di Napoli è giovane do<orando è ATTIVITA’ RICONOSCIUTA come IN-­‐KIND ASSEGNATI a giugno 2013 13.5 keu (licenza Opera e worksta]on) RICHIESTA: 7 keu/anno licenza Opera 53 R&D per FASE 2 54 INFN Pixel and Tracker R&D 4 main areas of R&D ac]vi]es in Italy 1. Pixel Readout Chip (plan 2012-­‐2017) –  65 nm CMOS technology for future pixel chip –  TO, PG, PI, PD (CERN, FNAL) –  CollaboraGon with ATLAS (EPIX ITN EU project submi<ed) 2. Pixel Sensors (Different technologies and material under consideraGon) –  Pixel Silicon (FI), 3D (TO, BA, FI, MIB), Pixel Diamond (MIB, FI, CT) –  CollaboraGon with many groups in CMS (FNAL, Purdue, KIT, CERN etc.) and ATLAS 3. Track Trigger with AM –  Develop a L1 triggering system based on AM (new generaGon of faster and denser) –  INFN (PI, PG, PD and FI), France (Lyon and Strasbourg), FNAL and CERN –  Common ATLAS and CMS R&D since the last PRIN 2010 and next PRIN 4. Simula]ons –  Phase 1 Pixel (CT, FI) and Phase 2 Pixel and Tracker (CT, FI) upgrade –  Track trigger (PD, PI, FI) Phase 2 trigger Parameter Scenarios •  Surveyed subsystems, DAQ, CompuGng led to consideraGon of following basic parameter scenarios (so far): –  Actual: L1 rate = 100 kHz, L1 Latency = 6.4 μs (present = 4 μs) •  Used up to now to guide Phase 2 Tracker –  Scenario 2 (“non-­‐invasive”): L1 rate = 150 kHz, L1 Latency = 6.4 μs •  Survey among sub-­‐systems, (e.g. ECAL), suggests that L1 trigger rate can go up to 150 kHz without change of front-­‐end electronics (to be further confirmed). –  Scenario 3: L1 rate = up to 1MHz, L1 Latency: up to 20 μs •  Survey suggests feasible IF significant upgrades are carried out •  To set the scale: Task Force on EB FEE replacement à ~10M CHF and 26 months of shutdown •  Clearly any such change requires good physics jus]fica]on, and es]mates of work/cost for each subsystem •  Aim for final decision on this by early 2014 •  In the interim, propose that ongoing work for Phase 2 be compaGble with all scenarios •  Implies design changes for upgrade electronics (e.g. Tracker) Detector Upgrades •  Muons –  robust trigger to match scope of track trigger, out to η ~ 2.2 –  improve Muon momentum measurement out to η = 2.4 if the B-­‐field permits* –  extend Muon tagging beyond η = 2.4 ? *Bucking coil to improve B-­‐field in forward region? •  OpGons for Possible Calorimeter Replacements
–  EE: Evaluate Shashlik opGons + others –  HE: Keep exisGng absorber, replace scint plates -­‐ higher granularity, at least high η Other opGons include replacing exisGng absorber; Čerenkov/
IonizaGon readout –  HF: Replace with similar (replace fibers?), or more compact detector inside plug •  PU miGgaGon: consider two approaches –  Extend tracking to η~4 with system of pixel disks, integrate with Phase 2 tracker –  Add precision Gming: consider EM pre-­‐shower a possible straw man calo-­‐TOF (~20ps resoluGon) – most effecGve in endcap and forward, could be barrel too (might also give improved π0 rejecGon, as well as poinGng resoluGon) 57 Richiesta sblocchi sj ü  PIXEL è  sblocco 10 keu PI bump bonding è  sblocco 47 keu PG ROC & HDI ü  Sviluppo di sensori a pixel per la fase 2: diamanG policristallini è sblocco 15 keu MIB Acquistabili dalla II-­‐VI Infrastru<ura test beam Fermilab anche per risultaG pubblicaG su JINST: h<p://iopscience.iop.org/1748-­‐0221/8/06/P06006/ 59 Un po’ di con]…… A>vita' [keu] TOTALE RPC DT CuOF-­‐OFCu DT TWINmux L1 -­‐ global mu trigger BRIL -­‐ BHM+PLT CMS-­‐TOTEM PIXEL RP shield MAGNETE R&D fase 2 -­‐ chip 65nm R&D fase 2 -­‐ diaman] R&D fase 2 -­‐ 3D/planari R&D fase 2 -­‐ ECAL GEM proto]pi camere GEM proto]pi front-­‐end GEM prot power supply GEM camere GEM front-­‐end kCHF GEM power supply keu 588 2011 60 300 440 360 91 25 150 773 40 26 35 15 0 100 73 135 45 315 115 300 1000 109 963 ?? ?? COMMON FUNDS 803 670 TOTALE APPROVATO TOTALE nuovo GEM TOTALE nuovo ALTRO TOTALE APPROVATO TOTALE RICHIESTO GEM TOTALE RICHIESTO ALTRO TOTALE 2012 50 2013 150 150 172.5 152 40 13.5 35 15 30 49 15 110 472.5 1949 983 406 3338 90 290 300 2014 2015 2016 2017 2018 2019 con]n/sj 150 210 28 63 25 100 50 398.5 70 24 20 100 10 25 10 105 105 105 115 50 125 125 370 608 548.5 64 54 70 223 210 230 113 280 230 125 96 70 call 65nm 120 call sensori