Lecture 3: Ensemble photometry and transit detection

Transcript

Lecture 3: Ensemble photometry and transit detection
Lecture 3: Ensemble photometry
and transit detection!
Ensemble differential photometry!
Systematics and decorrelation methods!
Transit detection by box least-squares!
Noise and completeness!
Vietri Sul Mare 2015!
The Transit Method!
Detrending – the PyKE way!
http://keplerscience.arc.nasa.gov/PyKE.shtml!
Vietri Sul Mare 2015!
The Transit Method!
Kepler SAP and PDC-SAP!
Simple Aperture Photometry (SAP)!
Pre-search Data Conditioning (PDC)!
http://keplerscience.arc.nasa.gov/DataAnalysisProducts.shtml!
Vietri Sul Mare 2015!
The Transit Method!
WASP data reduction pipeline!
Flatfield
Bias
Preprocessed
Raw
Dark
Current
Exposur
e Map
16h43+31d26 field 2004 May-Aug
1
Flux-RMS
RMS scatter (mag)
0.1
Series1
Field
recognition,
astrometry,
aperture
photometry,
calibration/
de-trending
0.01
12 Sul Mare 2015!
Vietri
0.001
9
10
11
12
WASP V magnitude
13
14
The Transit Method!
Catalogue-driven photometry!
•  Step 1: Object detection!
–  e.g (S)EXTRACTOR!
–  Catalogue all objects on frame to detection threshold!
•  Step 2: Establish astrometric solution!
–  Many standard algorithms available, e.g. astrometry.net!
–  Cross-match with astrometric catalogue!
–  Write world coordinate system to image.!
•  Step 3: Aperture photometry!
–  Optimise aperture – many ways to do this!!
–  Use frame catalogue to exclude faint objects in sky annulus!
Vietri Sul Mare 2015!
The Transit Method!
Ensemble differential photometry!
•  Mean magnitude of star j:!
Additional intra-frame variance!
(downgrades poor images)!
•  Zero-point correction for frame i:!
Vietri Sul Mare 2015!
Additional stellar variance!
(downgrades variable objects)!
!
The Transit Method!
Frame quality and stellar variability I!
•  Define data vector X and model µ: !
!
•  Assuming Gaussian errors:!
!
•  Likelihood of entire data vector for star j:!
•  Where:!
Vietri Sul Mare 2015!
The Transit Method!
Frame quality and stellar variability II!
•  Maximise likelihood w.r.t. σ2s(j) and σ2t(i):!
–  Solve iteratively for σ2s(j) holding σ2t(i) constant:!
–  Solve iteratively for σ2t(i) holding σ2s(j) constant:!
!
^!
^!
2
2
•  Iterate m
j, zi, σ s(j) and σ t(i) to convergence.!
Vietri Sul Mare 2015!
The Transit Method!
Decorrelation/ systematics removal!
Tamuz et al 2005!
16h30+28 field
300 stars
2549 observations 100 days
782
903
Aspen 2005!
Vietri Sul Mare 2015!
The Transit Method!
Systematics and correlated noise!
•  References:!
– 
– 
– 
– 
– 
Tamuz, Mazeh & Zucker 2005, MNRAS 355, 1466 (SysRem)!
Kovacs, Bakos & Noyes 2005, MNRAS 356, 537 (TFA)!
Pont, Zucker & Queloz 2006, MNRAS 373, 231!
Carter & Winn 2009, ApJ 704, 51!
Gibson 2014, MNRAS 445, 3401!
Vietri Sul Mare 2015!
The Transit Method!
SysRem!
•  Many patterns of systematics are common to all
stars!
–  Secondary extinction: dependence on stellar colour!
–  Sky brightness: Dependence on target brightness!
–  Ambient temperature and focus drift: position dependent?!
•  SysRem: PCA with error bars!!
–  Construct common temporal basis functions!
–  Compute optimal scaling coefficient per star!
–  Remove and repeat.!
Vietri Sul Mare 2015!
The Transit Method!
SysRem algorithm!
•  SysRem produces a corrected magnitude given by:!
•  Search for the best cj that minimises:!
X
(k 1) 2
Si =
((k 1) x̃i,j (k) ci (k) aj )2 wi,j
i,j
(k)
cj =
X (k
1)
j
Vietri Sul Mare 2015!
1)
ai wi,j
(k 1) a2 w
i i,j
i
•  Similarly!
X (k
(k)
ai =
x̃i,j (k
1)
x̃i,j (k
1)
cj wi,j
(k 1) c2 w
j i,j
The Transit Method!
SysRem basis functions vs HA!
0.05
0.04
0.06
0.03
ai . <(2)cj2>1/2 (magnitude)
0.08
0.04
0.02
0
-0.02
-0.04
(2)
(1)
ai . <(1)cj2>1/2 (magnitude)
0.1
0
-0.01
-0.02
-0.03
-0.08
-0.04
-0.05
-4
-3
-2
-1
0
1
2
3
4
-4
Hour Angle
0.05
-3
-2
-1
0.04
0.03
0.03
ai . <(4)cj2>1/2 (magnitude)
0.04
0.02
0.01
0
-0.01
-0.02
1
2
3
4
1
2
3
4
0.02
0.01
0
-0.01
-0.02
-0.03
-0.03
-0.04
-0.04
-0.05
0
Hour Angle
0.05
(4)
ai . <(3)cj2>1/2 (magnitude)
0.01
-0.06
-0.1
(3)
0.02
-0.05
-4
-3
-2
-1
Vietri Sul Mare 2015!
0
Hour Angle
1
2
3
4
-4
-3
-2
-1
0
The Transit Method!
Hour Angle
Decorrelation/ systematics removal!
Tamuz et al 2005!
16h30+28 field
300 stars
2549 observations 100 days
782
Vietri Sul Mare 2015!
903
The Transit Method!
Decorrelation/ systematics removal!
Tamuz et al 2005!
16h30+28 field
300 stars
2549 observations 100 days
782
Vietri Sul Mare 2015!
903
The Transit Method!
Decorrelation & Detection!
•  Decorrelation:!
–  4-stage SysRem!
–  TFA with reconstruction!
•  Detection: Cameron et al
2006 MNRAS 373, 799 !
–  Accelerated BLS algorithm!
–  Coarse grid search !
–  Newton-Raphson peak-up on
5 strongest peaks!
–  Box width varies with period!
•  Example: WASP-1!
Vietri Sul Mare 2015!
The Transit Method!
Box Least-Squares transit search!
•  References!
–  Kovacs, Zucker & Mazeh 2002, A&A 391, 369!
–  Aigrain & Irwin 2004, MNRAS 350, 331!
–  Collier Cameron et al 2006, MNRAS 373, 799!
•  Step 1: Compute inverse variance-weighted mean
flux, subtract and precompute χ20, t :!
•  Step 2: set up frequency grid!
–  phase of each observation must change by less than transit
duration between adjacent frequencies!
•  Step 3: estimate range of transit duration!
–  Use stellar density!
Vietri Sul Mare 2015!
The Transit Method!
Box Least-Squares transit search!
•  Step 3: Phase-fold and partition:!
–  Mean light level in-transit (L):!
–  Mean light level out of transit (H):!
–  Fitted transit depth (δ):!
Vietri Sul Mare 2015!
The Transit Method!
Box Least-Squares transit search!
•  Step 4: Badness-of-fit:!
–  Signal-to-noise ratio of transit depth!
–  Improvement in fit relative to constant model is (S/N)2:!
–  Goodness of fit outside transit:!
Vietri Sul Mare 2015!
The Transit Method!
Box Least-Squares transit search!
•  Step 5: BLS periodogram!
Vietri Sul Mare 2015!
The Transit Method!
Box Least-Squares transit search!
•  Step 5: BLS periodogram!
Vietri Sul Mare 2015!
The Transit Method!
Planet search!
•  SysRem+BLS!
•  Tamuz, Mazeh & Zucker
2005!
•  Kovacs, Zucker & Mazeh
2002!
Vietri Sul Mare 2015!
•  Skype-linked network
of human neuro-visual
processors.!
•  Each processor
allocated several
thousand candidate
light curves +
associated statistics
from main database.!
•  Motivated by promises
of food, postdoc
employment, fame,
glory, etc.! The Transit Method!
Systematics and red
noise!
RMS scatter!
RMS scatter (real data, 2.5-hr bins)!
RMS scatter (white noise, 2.5-hr bins)!
•  Systematics:!
–  Secondary extinction!
–  Temperature-dependent
focus!
–  Sky brightness-dependent
bias in background
subtraction!
–  SysRem: Tamuz et al 2005!
–  TFA: Kovacs et al 2005!
•  Red noise:!
–  Pont et al 2006!
–  Smith et al 2006!
Vietri Sul Mare 2015!
RMS scatter!
RMS scatter (real data, 2.5-hr bins)!
RMS scatter (white noise, 2.5-hr bins)!
The Transit Method!
Red noise and detection threshold!
Smith, A M S et al, 2006!
80 nights!
80 nights!
130 nights!
130 nights!
Vietri Sul Mare 2015!
The Transit Method!
Red noise and planet catch!
Season 1!
Season 2!
Vietri Sul Mare 2015!
The Transit Method!
Summary!
•  Systematics and astrophysical variability mask
transits!
•  Not all systematics are understood!
•  PCA-like methods (e.g. SysRem, PDC-MAP)
remove systematics while preserving astrophysical
variability!
•  More aggressive detrending (e.g. TFA) removes
astrophysical variability too!
•  Box least-squares method is efficient!
•  Correlated noise must be taken into account when
assessing detection thresholds.!
Vietri Sul Mare 2015!
The Transit Method!