plato 2.0

Transcript

plato 2.0
PLATO 2.0
(PLAnetary Transits and Oscillations of stars)
Heike Rauer (Principal Investigator)
Don Pollacco (Science coordinator)
and the PLATO Team
1
Outline
 Introduction
 PLATO 2.0 science:
• Planet diversity and implications for:
− habitability & life
− planet formation
− comparative planetology
• Stellar science
 PLATO 2.0 mission:
• How we do it
2
PLATO 2.0 Scientific Motivation
• How do planets and planetary systems form and evolve?
• Is our Solar System special? Are there other systems like ours?
• What makes planets habitable?
• Is the Earth unique or can life also developed elsewhere?
PLATO 2.0 addresses the ESA Cosmic Vision science questions:
• What are the conditions for planet formation and the emergence of life?
• How does the Solar System work?
PLATO 2.0 follows the recommendations of ESA’s Exoplanet Roadmap
Advisory Team (EPRAT)
3
Methods for detection and
bulk characterization of planets
Transit Method
Radial velocity method
 Orbit parameters
 Orbital parameters
 Orbital inclination, i
 Minimum planet mass, m sin i
 Planet radius
True planet mass and mean density
4
PLATO 2.0: Exoplanets and Stars
Characterization of exoplanets … needs characterization of stars
• Mass + radius  mean density
(gaseous vs. rocky, composition, structure)
• Orbital distance, atmosphere
(habitability)
• Age
(planet and planetary system evolution)
• Stellar mass, radius
(derive planet mass, radius)
• Stellar type, luminosity, activity
(planet insolation)
• Stellar age
(defines planet age)
5
Planet detection today
Kepler planet candidate statistics
•
•
Radial velocity surveys
Current status: ~3000 planet candidates and ~1000 confirmed exoplanets
Kepler mission and radial-velocity surveys  small and low-mass planets are numerous
However, only few detections of small planets in the
habitable zone, and no characterization.
6
PLATO 2.0 science:
Planet diversity and implications for
habitability & life
= „super-Earth“
= „super-Earth“
7
© Petigura/UC Berkeley, Howard/UH-Manoa, Marcy/UC Berkeley
Diversity of „super-Earths“
• Masses vary
by a factor of ~4
(with large errors)
• Radii vary
by a factor of ~3
Wagner et al., 2012
8
Diversity of „super-Earths“
• Masses vary
by a factor of ~4
(with large errors)
• Radii vary
by a factor of ~3
PLATO error bar
 We need both:
Accurate masses
& radii to separate
terrestrial from
mini-gas planets.
Wagner et al., 2012
9
„Super-Earths“: diversity and
implications on habitability
Solar System planets are NOT the general rule:
small ≠> rocky, large ≠> gaseous
• Small exoplanets are very diverse:
from Earth-like to mini-gas planets
• Mini-gas planets are likely not habitable
• Silicate-iron planets are prime targets for atmosphere spectroscopy
 PLATO 2.0 will identify potentially habitable planets
 PLATO 2.0 will characterize targets for atmosphere spectroscopy
10
Status: Characterized „super-Earths“
in their habitable zone
Detected super-Earths
• Goal: Detect and
characterize superEarths in habitable
zones
• Status: very few
small/light planets in
habitable zones
detected
11
Status: Characterized „super-Earths“
in their habitable zone
„Super-Earths“ with characterized
radius and mass
• Goal: Detect and
characterize superEarths in habitable
zones
• Status: very few
small/light planets in
habitable zones
detected
 No characterized
„super-Earths“ in its
habitable zone
12
The need for bright stars
Known planets from radial velocity and transit surveys
Why have so few targets been
characterized?
 Transit surveys targeted faint
and distant stars to maximize
detection performance.
 Radial velocity surveys need
bright stars (≤11 mag) to keep
telescope resources limited.
Lessons learned:
 Future transit missions must target bright stars
13
Upcoming transit missions
Transit missions until 2020 monitoring bright stars:
•
TESS (NASA):
scan the whole sky, ~1 month/field,
2% of the sky covered for 1 year
 focus on short-period planets
•
CHEOPS (ESA):
follow-up of detected (RV-)planets,
biased towards short-period planets
by transit probability
•
K-2 (Kepler 2) (NASA):
observe fields in the ecliptic plane
for ~40-80 days/field
 mainly short- period planets
 upcoming transit missions
focus on planets with orbital periods up to ~ 80 days
14
Prospects: Characterized „super-Earths“
in their habitable zone
„Super-Earths“ with characterized
radius and mass
• No rocky planets in the
habitable zone known
with certainty
• TESS, CHEOPS, K2 will
cover orbital periods up
to ~80 days
• In Solar-System
analogues:
No planets characterized
outside Mercury‘s orbit
without PLATO 2.0!
15
Prospects: Characterized „super-Earths“
in their habitable zone
„Super-Earths“ with characterized
radius and mass
PLATO 2.0 will
detect and bulk
characterize small
planets up to the
habitable zone of
solar-like stars.
16
Planets, planetary systems and
their host stars evolve.
PLATO 2.0 will for the first time
provide accurate ages for a large
sample of planetary systems.
Formation in proto-planetary
disk, migration
Loss of primary,
atmosphere
Stellar radiation, wind
and magnetic field
Cooling,
differentiation
life
Secondary
atmosphere
Cooling,
differentiation
(plate)tectonics
17
© H. Rauer (DLR)
PLATO 2.0 science:
planet diversity and implications for
planet formation
© Avi M. Mandell (NASA GSFC)
18
Planet diversity and planet formation
• Mean density varies by
two orders of magnitude
for a given mass
• Planets of Earth mass
and below remain to be
detected and
characterized
19
Planet diversity and planet formation
Earth
5.5 g/cm3
GJ1214b
1.6 g/cm3
Mini gas planets
<~1 g/cm3
Low-mass planets have a range of compositions and
interior structures for similar masses.
20
Planet diversity and planet formation
Test planet formation
models:
• What is the observed
critical core mass?
• Can super-massive
rocky planets exist?
How are they formed?
• Are light planets with
H2-dominated
atmospheres
common?
21
Planet diversity and planet formation
PLATO 2.0 will provide
thousands of
characterized planets at
intermediate orbital
distances, down to
Earth size/mass.
 Study planets where
they form!
Temperate planets, P>80 days
 No characterized (radius, mass,density) low-mass
planets outside a Mercury-like orbit today.
22
Planet diversity and planet formation
Observations
Planet formation model predictions
Mordasini et al.
PLATO 2.0 will allow us to:
• Measure how planet density and mass vary with
• orbital distance and planetary system architectures
• host star parameters (spectral type, composition, age…)
 gain new insights into planet formation and evolution processes
23
PLATO 2.0 science:
planet diversity and implications for
comparative planetology
24
© Lucianomendez
Planet diversity & comparative
planetology
PLATO 2.0 will provide planets with:
Secondary
atmospheres?
Primary
atmospheres?
• mean density
 composition and structure (rocky, mini-gas)
 constrain atmosphere scale heights
• albedo and its diversity
 indicative for clouds, hazes
• accurate ages
 evolutionary pathways
• characterized host stars
 incident flux, stellar activity
PLATO 2.0 will
 explore the wealth of planets, systems,
host stars
 provide well-characterized targets for
atmosphere spectroscopy
(Sanchis-Ojeda et al., 2013)
25
PLATO 2.0 science: stellar science
© G. Perez Diaz, IAC (MultiMedia Service)
26
Structure and evolution of the galaxy
with PLATO 2.0
• Gyrochronology of stars via agerotation relationship:
 seismic age versus rotation
period
from spots
Miglio et al. (2013)
• PLATO 2.0 & Gaia:
•
•
seismic + astrometric distances
seismic age-metallicity relations
for giants
 Provide accurate ages
 Calibrate stellar evolution
theories
 Calibrate Galactic agemetallicity relationship
 Probe the structure and the
evolution of our Galaxy
Meibom et al. (2011)
27
PLATO 2.0 mission: How we do it
Image Copyright: Mark A. Garlick. Science Credit: Carole Haswell & Andrew Norton (The Open University)
PLATO 2.0 instrument
Two designs studied:
Multi-telescope approach:
-
•
Large FOV (Large number
of bright stars)
•
Large total collecting area
(provides high sensitivity
allowing asteroseismology)
•
Redundancy
•
•
Cameras are in groups
Offset to increase FoV
32 «normal» 12cm cameras, cadence 25 s, white light
2 «fast» 12cm cameras, cadence 2.5 s, 2 colours
dynamical range: 4 ≤ mV ≤ 16
L2 orbit
Nominal mission duration: 6 years
Field-of-View: 48.5°x 48.5°(2250 square degrees)
29
PLATO 2.0 instrument
Two designs studied:
Multi-telescope approach:
BreadBoard
of one
• Large FOV (Large number
PLATO
2.0 stars)
of bright
• Large total collecting area
Telescope
(provides high sensitivity
allowing asteroseismology)
• Aspheric feasibility
• Redundancy
demonstrated
• CaF lenses
• demonstrated
Cameras are in groups
• Alignment•in Offset
warm to increase FoV
demonstrated
-
32 «normal» 12cm cameras, cadence 25 s, white light
2 «fast» 12cm cameras, cadence 2.5 s, 2 colours
dynamical range: 4 ≤ mV ≤ 16
L2 orbit
Nominal mission duration: 6 years
Field-of-View: 48.5°x 48.5°(2250 square degrees)
30
The Method
Characterize bulk planet
parameters
Accuracy around solarlike stars for PLATO 2.0:
Techniques
Example: Kepler-10 b (V=11.5 mag)
Photometric transit
 radius ~2%
RV – follow-up
 mass ~10%
 age known to
~10%
For bright stars (4 – 11 mag)
Asteroseismology
Asteroseismology
CoRoT and Kepler have demonstrated that the
required accuracies can be met
with seismic measurement,
2.1 – 2.7 Gyr, Δage/age:13%
(Lebreton 2013)
no seismic measurement,
0.8 – 5.9 Gyr, Δage/age: 75%
Example: HD 52265 (CoRoT), a G0V type,
planet-hosting star, 4 months data
(Gizon et al. 2013)
Seismic parameters: Radius: 1.34 ± 0.02 Rsun,
Mass: 1.27 ± 0.03 Msun,
Age:
2.37 ± 0.29 Gyr
Baseline observing strategy
6 years nominal science operation:
• 2 long pointings of 2-3 years
• step-and-stare phase (2-5 months per pointing)
 covers ~50% of the sky
PLATO 2.0: Number
of Light Curves
For the baseline observing strategy:
Noise level
Magnitude
limit
(ppm/√hr)
mV
4300 deg2
(long stare
fields)
20,000 deg2
(plus step and
stare fields)
Number of cool Number of cool
stars
stars
34
11
22,000
85,000
80
13
267,000
1,000,000
Detection of Earthsized planets
+ asteroseismology
+ radial velocity
+ Detection of Earthsized planets
+…
PLATO 2.0: Potential for
characterized ‘super-Earths’
Short-period planets
Habitable zone of solar-like stars
Earth to super-Earth detections around stars bright enough for
RV follow-up and asteroseismology
PLATO 2.0 will provide >1000 Earths to „super-Earths“
for characterization
Total numbers of characterized
planets in core sample
Number of characterized planets (Earth to Neptune mass) after detailed
model of radial velocity efforts and the impact of stellar activity:
Habitable zone
(
mass MEarth)
20
>1000
265
100
30
>800
540
210
70
>300
300
78
30
10
3
0
0.5
Separation (a /aHZ)
1.0
Follow-up time needed
Full follow-up of the expected planet yield from core sample
Radial
velocity
precision
Telescope
Type of objects
Example time
distribution
10m/s
1-2m
Giant planets on
short/medium orbits
50 nights/yr for
6 yrs on 3 tel.
1m/s
4m
Giant planets, long orbits.
Super-Earths on short
medium orbits
40 nights/yr for
6 yrs on 3 tel.
<20cm/s
8m
Earths/Super-Earths on
long orbits
40 nights/yr for
6 yrs on 1 tel.
Few hardest cases (eg faintest hosts with Earths in the habitable zone) will need E-ELT
Follow-up time needed
Full follow-up of the expected planet yield from core sample
Radial
velocity
precision
Telescope
Type of objects
Example time
distribution
10m/s
1-2m
Giant planets on
short/medium orbits
50 nights/yr for
6 yrs on 3 tel.
Follow-up is tractable with existing/planned
1m/s
4m
Giant planets, long orbits. 40 nights/yr for
Super-Earths onallocation
short
6 yrs onof
3 tel.time
facilities with reasonable
medium orbits
<20cm/s
8m
Earths/Super-Earths on
long orbits
40 nights/yr for
6 yrs on 1 tel.
Few hardest cases (eg faintest hosts with Earths in the habitable zone) will need E-ELT
PLATO 2.0 Science and Legacy
• Understanding rocky
planet diversity
• Test formation and
evolution Models
• Circumbinary planets, exomoons/rings/comets/misaligned planets
• Stellar and Galactic
evolution  Gaia synergy
Gaia: radius, distance, proper
motion, luminosity, Teff, log g
PLATO 2.0: masses, ages
 1 000 000 high quality light curves of stars
 Decades of work in Exoplanet and Stellar astrophysics
 PLATO 2.0 data are open access to the community
PLATO 2.0 Community
Australia: Martin Asplund (ANU/MPA), P. Cally (Monash Univ.), L. Casagrande (Mt. Stromlo Obs.), D. Stello (Univ. Sydney), R. Mardling (Monash Univ.); Austria: J. Alves (Univ. Vienna), R. Dvorak (Univ. Venna), M. Guedel (Univ. Vienna),
Th. Kallinger (Univ. Vienna), F. Kerschbaum (Univ. Vienna), M. Khodachenko (OEAW), K.G. Kislyakova (OEAW), F. Kupka (Univ. Vienna), R. (Univ. Vienna), H. Lammer (SSI Graz), Th. Lüftinger (Univ. Vienna), M. Netopil (Univ. Vienna), R.
Ottensamer (Univ. Vienna), E. Paunzen (Univ. Vienna), E. Pilat-Lohinger (Univ. Vienna), W. Weiss (Univ. Vienna); Belgium: C. Aerts (KU Leuven), P.M. Arenal (KU Leuven), P. Beck (KU Leuven), St. Bloemen (KU Leuven), R. Blomme
(Royal Observatory Belgium), M. Briquet (Univ. of Liège), L. Carone (KU Leuven), A. Chiavassa (Univ. of. Bruxelles), K. Clémer (KU Leuven), J. Cuypers (Royal Obs. Belgium), P. De Cat (Royal Obs. Belgium), K. De Munck (IMEC), J. De
Ridder (KU Leuven), J. Debosscher (KU Leuven), L. Decin (KU Leuven), P. Degroote (KU Leuven), P. Demoor (IMEC), R. Drummond (BIRA-IASB), M. -A. Dupret (Univ. Liège), Y. Fremat (Royal Obs. Belgium), M. Gillon (Univ. Liège), E.
Gosset (Univ. Liège), M. Grosjean (Univ. Liège), L. Hermans (CMOSIS), E. Huygen (KU Leuven), P. Lampens (Royal Obs. Belgium), A. Lemaitre (Univ. Namur), G. Lepage (CMOSIS), A.-S. Libert (Univ. Namur), P. Magain (Univ. Liège), J.
Montalban (Univ. Liège), E. Moravveji (KU Leuven), Th. Morel (Univ. of Liège), L. Noack (Royal Obs, Belgium), A. Noels (Univ. Liège), R. Oestensen (KU Leuven), P. Papics (KU Leuven), P.R. Ramachandra (IMEC), G. Raskin (KU Leuven),
G. Rauw (Univ. Liège), D. Reese (Univ. Liège), S. Regibo (KU Leuven), E. Renotte (CSL), P. Rochus (CSL), P. Royer (KU Leuven), S. Salmon (Univ. Liège), S. Scaringi (KU Leuven), R. Scuflaire (Univ. Liège), A. Thoul (Univ. Liège), A.
Tkachenko (KU Leuven), S. Vanaverbeke (KU Leuven–KULAK), A.C. Vandaele (BIRA-IASB), B. Vandenbussche (KU Leuven), Bram Vandoren (KU Leuven), V. Van Grootel (Univ. Liège), K. Zwintz (KU Leuven); Brazil: E. Janot-Pacheco
(Univ. Sao Paulo), J.-D. do Nascimento (UFRN), J. Melendez (Univ. São Paulo), V. Parro (Mauna Inst. of Technology), A. Silva-Valio (Univ. Mackenzie); Canada: M. Bonavita (Univ. Toronto), S. Talon (Quebec Univ.); D. Valencia (Univ.
Toronto); Chile: S. Sale (Valparaiso Univ.); Czech Republic: J. Krticka (Masaryk Univ.), J. Liška (Masaryk Univ.), M. Skarka (Masaryk Univ.), M. Svanda (AUUK), M. Zejda (Masaryk Univ.); Denmark: L. Buchhave (Niels Bohr Institute), J.
Christensen-Dalsgaard (Aarhus Univ.), F. Grundahl (Aarhus Univ.), G. Houdek (Aarhus Univ.), Ch. Karoff (Aarhus Univ.), H. Kjeldsen (Aarhus Univ.); France: G. Alecian (LUTH), F. Allard (CRAL), J.M. Almenara (OAMP), L. Alvan (CEA), Th.
Appourchaux (IAS), K. Baillie (CEA), J. Ballot (IRAP), C. Barban (OBSPM), F. Baudin (IAS), K. Belkacem (LESIA), L. Bigot (OCA), Th. Böhm (LATT), X. Bonfils (IPAG), F. Bouchy (IAP), P. Boumier (IAS), J. -C. Bouret (OAMP), A. Brahic
(CEA), A.S. Brun (CEA), C. Catala (OBSPM), T. Cellier (CEA), G. Chabrier (CRAL), M. Chadid (Univ. Nice), S. Charnoz (CEA), St. Charpinet (LATT), A. Chiavassa (OCA), O. Creevey (IAS), P. de Laverny (OCA), C. Damiani (LAM), F. De
Oliveira Fialho (LESIA), M. Deleuil (LAM), X. Delfosse (IPAG), P.-A. Desrotour (IMCCE/CEA)B. Dintrans (Univ. Toulouse), J.-F. Dinati (LATT), D. Ehrenreich (IPAG), Th. Fenouillet (LAM), Th. Forveille (IPAG), S. Fromang (CEA), R.A. Garcia
(CEA), M.-J. Goupil (LESIA), M. Guenel (CEA), T. Guillot (Univ. Nice), G. Hebrard (IAP), L. Jouve (Univ. Toulouse), P. Kervella (OCA), A.-M. Lagrange (IPAG), J. Laskar (IMCCE), V. Lainey (IMCCE). Y. Lebreton (OBSPM), A. Lecavelier des
Etangs (IAP), A. Leger (IAS), J.-F. Lestrade (LERMA), C. Leponcin (SYRTHE), P. Levacher (OCA), R. Ligi (OCA), F. Lignières (Univ. Toulouse), D. Marshall (CESR), L. Marheut (CEA), St. Mathis (CEA), J.-C. Meunier (OAMP), N. Meunier
(IPAG), E. Michel (LESIA), C. Moreau (LAM), K. Morel (CEA), B. Mosser (LESIA), D. Mourard (OCA), C. Moutou (LAM), C. Neiner (LESIA), R.-M. Ouazzani (OBSPM), N. Nardetto (OCA), A. Palacios (Univ. Montpellier), G. Perrin (LESIA), P.
Petit (OMP), B. Pichon (OCA), P. Plasson (LESIA), B. Plez (Univ. Montpellier), N. Rambaux (IMCCE), A. Recio-Blanco (OCA), D. Reese (OBSPM), F. Remus (IMCCE), V. Reville (CEA), M. Rieutord (LATT), D. Rouan (LESIA), C. Reyle
(Obs. Becancon), D. Salabert (OCA), P. Robutel (IMCCE), R. Samadi (LESIA), J. Schneider (OBSPM), F. Selsis (Univ. Bordeaux), E. Taillefet (CEA), C. Soubiran (Univ. Bordeaux), P. Stee (OCA), F. Thevenin (Univ. Nice), S. Turck-Chieze
(CEA), S. Vauclair (LATT), J.-P. Zahn (LUTH); Germany: P. Amaro-Seoane (AEI) , M. Ammler von Eiff (TLS), W. Ball (Univ. Göttingen), S. Barnes (AIP), J. Bartus (AIP), S. Berdyugina (KIS), M. Bergemann (MPA), A. Birch (MPSSR), G.
Bihain (AIP), D. Breuer (DLR), M. Bruns (MPSSR), R. Burston (MPSSR), J. Cabrera (DLR), C. Chiappini (AIP), R. Collet (MPA), Sz. Csizmadia (DLR), I. Di Varano (AIP), St. Dreizler (Univ. Göttingen), C. Dreyer (DLR), P. Eigmüller (DLR), A.
Erikson (DLR), K. -P. Förster (KT), M. Fridlund (DLR), L. Gizon (MPSSR), M. Godolt (DLR), Th. Granzer (AIP), L. Grenfell (DLR), D. Griessbach (DLR), S. Grziwa (Univ. Cologne), E. Guenther (TLS), R. Haarmann (KT), A. Hatzes (TLS), P.
Hauschildt (Univ. Hamburg), S. Hekker (MPSSR), F. v. Hessmann (Univ. Göttingen), H. Hussmann (DLR), W. Kley (Univ. Tübingen), U. Koehler (DLR), K. Lind (MPA), H.-G. Ludwig (Univ. Heidelberg), Z. Magic (MPA), J. Marques (Univ.
Göttingen), H. Michaelis (DLR), H. Michels (MPSSR), H. Moradi (Monash/MPSSR), Ch. Mordasini (MPIA), J. Morin (Univ. Göttingen), R. Müller (MPSSR), M.B. Nielsen (Univ. Göttingen), A. Ofir (Univ. Göttingen), M. Pätzold (Univ. Cologne),
G. Peter (DLR), R. Redmer (Univ. Rostock), A. Quirrenbach (Univ. Heidelberg), H. Rauer (DLR), S. Reffert (Univ. Heidelberg), J. Schou (MPSSR), S. Schuh (Univ. Göttingen), H. Schunker (MPSSR), M. Sobol (MPSSR), F. Sohl (DLR), T.
Spohn (DLR), K. Strassmeier (AIP), F.W. Wagner (DLR), J. Weingrill (AIP), R. Titz-Weider (DLR), S. Wolf (Univ. Kiel), G. Wuchterl (TLS); Hungary: A. Derekas (Konkoly Obs.), M. Hareter (Konkoly Obs.), L. Kiss (Konkoly Obs.), L. Molnár
(Konkoly Obs.), E. Plachy (Konkoly Obs.), A.E. Simon (Konkoly Obs.), L. Szabados (Konkoly Obs.), G. Szabo (GAO, Konkoly Obs.), R. Szabo (Konkoly Obs.), A. Szing (Konkoly Obs.); Israel: R. Helled (Tel Aviv Univ.), T. Mazeh (Tel Aviv
Univ.); Italy: E. Antonello (INAF-OAB), L. Affer (INAF-OAPA), M. Barbieri (Univ. Padova), St. Basso (INAF-OAB), L. Bedin (INAF-OAPD), A. Bellini (Univ. Padova), M. Bergomi (INAF-OAPD), I. Boisse (OAMP), A. Bonanno (INAF-OACT), F.
Borsa (INAF-OAB), R. Bonito (Univ. Palermo), G. Bono (INFN), A.S. Bonomo (INAF-OATO), L. Borsato (Univ. Padova), E. Brocato (INAF-OAR), A. Bressan (INAF-OAPD), A. Brunelli (INAF-OAPD), R. Buonanno (INAF-OACTe, INFN), D.
Cardini (INAF-IAPS), E. Carolo (INAF-OAPD), S. Cassisi (INAF-OACTe), M. Castellani (INAF-OAR), R. Cerulli (INAF-IAPS), R. Claudi (INAF-OAPD), R. Cosentino (INAF-OACT, FGG), G. Cutispoto (INAF-OACT), M. Damasso (Univ.
Padova, INAF-OATO), M. Rosaria D'Antonio (ASDC), D. De Martino (INAF-OAC), S. Desidera (INAF-OAPD), S. Di Franco (Univ. Florence), M. Dima (INAF-OAPD), A.M. Di Giorgio (INAF-IAPS), M.P. Di Mauro (INAF-IAPS), J. Farinato
(INAF-OAPD), E. Flaccomio (INAF-OAPA), M. Focardi (Univ. Florence), P. Giommi (ASDC), L. Girardi (INAF-OAPD), G. Giuffrida (ASDC), M. Ghigo (INAF-OAB), V. Granata (Univ. Padova), A.F. Lanza (INAF-OACT), M.G. Lattanzi (INAFOATO), G. Leto (INAF-OACT), D. Magrin (INAF-OAPD), L. Malavolta (Univ. Padova), M. Marconi (INAF-OAC), G. Marcucci (Univ. Florence), P. Marigo (Univ. Padova), P.M. Marrese (ASDC), F. Marzari (Univ. Padova), D. Mesa (INAFOAPD), S. Messina (INAF-OACT), M. Munari (INAF-OACT), U. Munari (INAF-OAPD), V. Nascimbeni (OAPD-INAF), R. Orfei (INAF-IAPS), S. Ortolani (Univ. Padova), E. Pace (Univ. Florence), I. Pagano (INAF-OACT), F. Palla (INAF-OAA),
M. Pancrazzi (Univ. Florence), St. Pezzuto (INAF-IAPS), G. Picogna (Univ. Padova), A. Pietrinferni (INAF–OACTe), G. Piotto (Univ. Padova), E. Poretti (INAF-OAB), L. Prisinzano (INAF-OAPA), R. Ragazzoni (INAF-OAPD), G. Raimondo
(INAF-OACTe), M. Rainer (INAF-OAB), V. Ripepi (INAF-OAC), G. Scandariato (INAF-OACT), S. Scuderi (INAF-OACT), R. Silvotti (INAF-OATO), R.Smart (INAF-OATO), A. Sozzetti (INAF-OATO), D. Spiga (INAF-OAB), P. Ventura (INAFOAR), V. Viotto (INAF-OAPD); Netherlands: I. Snellen (Univ. Leiden); Norway: St. Werner (Univ. of Oslo); Poland: W. Dziembowski (Warsaw Univ.), G. Handler (CAMK), A. Niedzielski (Univ. Torun); Portugal: V. Adibekyan (CAUP), M.
Bazot (CAUP), I.M. Brandão (CAUP), A. Cabral (CAAUL), A. Correia (Aveiro Univ.), M. Cunha (CAUP), P. Figueira (CAUP), J. Gomes da Silva (CAUP), J. Martins (CAUP), M.Montalto (CAUP), M. Monteiro (CAUP), A. Mortier (CAUP), M.
Oshagh (CAUP), J. Rebordão (CAAUL), B. Rojas-Ayala (CAUP), A. Santerne (CAUP), N. Santos (CAUP), S. Sousa (CAUP); Romania: D. Pricopi (Romanian Academy), M.D. Suran (Romanian Academy); Slovenia: T. Zwitter (Univ.
Ljubljana); Spain: C. Allende (IAC), P. J. Amado (IAA-CSIC), R. Alonso (IAC), A. Claret (IAA), H. Deeg (IAC), A. Garcia Hernández (IAA-CSIC), R. Garrido (IAA-CSIC), J.I. Gonzáles-Hernández (IAC), P. Klagyivik (IAC), S. Meszaros (IAC),
M. Mas-Hesse (CAB-INTA), A. Moya (CAB), R.U. O’Callaghan (CAB-INTA), A.Serenelli (ICE), I. Skillen (Isaac Newton Group), E. Solano (INTA), J. Carlos Suarez (IAA-CSIC), H. Voss (DAM); Sweden: A. Brandeker (Stockholm Univ.), R.P.
Church (Lund Obs.), M.B. Davies (Lund Obs.), S.Feltzing (Lund Obs.), A. Johansen (Lund Obs.), O. Kochukhov (Univ. Uppsala), G. Olofsson (Stockholm Univ.); Switzerland: Y. Alibert (Univ. Bern), W. Benz (Univ. Bern), C. Charbonnel
(Obs. Geneva), R. Diaz (Univ. Geneva), P. Eggenberger (Univ. Geneva), D. Ehrenreich (Univ. Geneva), W. Hayek (AF-Consult Baden), K. Heng (Univ. Bern), Ch. Lovis (Univ. Geneva), D. Naef (Univ. Geneva), F. Pepe (Univ. Geneva), D.
Segransan (Univ. Geneva), St. Udry (Obs. Geneva); UK: S. Aigrain (Univ. Oxford), M. Burleigh (Univ. Leicester), W. Chaplin (Univ. Birmingham), A. Collier Cameron (Univ, St Andrews), Y. Elsworth (Univ. Birmingham), D.W. Evans (Univ.
Cambridge), F. Faedi (Univ. Warwick), R. Fares (Univ. of St Andrews), R. Farmer (Open Univ.), Y. Gomez (Warwick University), E. Gonzalez-Solares (Univ. Cambridge), C. Haswell (Open Univ.), S. Hodgkin (Univ. Cambridge), M. Irwin
(Univ. Cambridge), U. Kolb (Open Univ.), A. Miglio (Univ. of Birmingham), R. Nelson (Univ. London), M. Niederste-Ostholt (Univ. Cambridge), A. Norton (Open Univ.), D. Pollacco (Univ. Warwick), I.W. Roxburgh (Univ. London), G. Rixon
(Univ. Cambridge), M. Salaris (Univ. Liverpool), J. Southworth (Keele Univ.), A. Smith (University College London), M. Thompson (Univ. Sheffield), Y. Unruh (Imperial College London), D. Walton (University College London), N. Walton (Univ.
Cambridge), C. Watson (Univ. Belfast), R. West (Univ. Warwick), P. Wheatley (Univ. Warwick); USA: S. Basu (Yale Univ.), A. Bhagatwala (Stanford Univ.), E. Depagne (Las Cumbres Obs.), J. Fortney (Univ. Santa Cruz), S. Hanasoge
(Princeton Univ.), M. Havel (ORAU), J. Jenkins (SETI Inst.), D. Latham (Harvard Univ.), J. Linsky (Colorado Univ.), S. Mathur (SSI), N. Nettelmann (Univ. of Santa Cruz), M. Pinsonneault (Ohio State Univ.), I. Ramirez (Univ. Texas), Ch. Sotin
(JPL), R. Trampedach (Univ. Colorado), Amaury Triaud (MIT)
The PLATO community includes scientists across
different research fields:
• Planet and planetary system formation,
evolution, habitability, interior, atmospheres,
star-planet interactions
• Stellar evolution, activity, clusters, …
• Evolution of our Galaxy
In total >500 scientists from 21 countries
A time line of exoplanet
characterization
CoRoT
Kepler
VLT/Espresso
2016
JWST
HARPS
HARPS-N
HIRES
SOPHIE
NGTS
Mearth-S
PLATO 2.0
2022/24
TESS
2017
Now - 2014
ESA
2020
L-mission
?
E-ELT
GAIA
“Warm’’
HST
Spitzer
CHEOPS
VLT
CRIRES, FORS,
FLAMES, K-MOS
New IR spectrographs
2017-2020
SPICA?
A time line of exoplanet
characterization
CoRoT
Kepler
VLT/Espresso
2016
JWST
HARPS
HARPS-N
HIRES
SOPHIE
Now - 2014
NGTS
Mearth-S
PLATO 2.0
2022/24
TESS
2017
ESA
2020
L-mission
?
E-ELT
Terrestrial planets
from PLATO
will be prized
GAIA
targets for JWST, E-ELT, SPICA studying
“Warm’’
HST
CHEOPS
Spitzer
atmospheres
and prepare for future
VLT
missions looking for signs of life
CRIRES, FORS,
FLAMES, K-MOS
New IR spectrographs
2017-2020
SPICA?
PLATO 2.0:The Habitable Zone Explorer
We shall not cease
from exploration.
In the end of all our
exploring will be to
arrive where we
started.
T.S. Eliot
PLATO 2.0 will transform our knowledge of habitable zone
rocky planets and pave the way for the detection of life
beyond the Solar System