Genetica mendeliana

Transcript

Genetica mendeliana
LA GENETICA MENDELIANA
A partire dal 1856, Johann Gregor Mendel (1822 – 1884) iniziò una lunga serie di
esperimenti sulle piante di pisello (Pisum sativum), con le quali era facile effettuare
incroci ed agevole esaminare i risultati ottenuti.
Uno dei caratteri ereditari presi in considerazione fu il colore del seme maturo, che
poteva essere giallo o verde. Mendel aveva notato che piante di pisello a semi gialli,
incrociate ripetutamente tra loro, davano origine sempre e immancabilmente a piante
con semi gialli. Lo stesso risultato si otteneva incrociando piante con semi di colore
verde: le generazioni a seguire producevano sempre semi verdi. Mendel chiamò
queste piante, che differivano per il colore dei semi, linee pure. Una linea pura,
quindi, può essere definita come una successione generazionale di individui che
manifestano, senza variazioni, il carattere ereditario considerato (nel caso specifico, il
particolare colore dei semi).
Allorché egli passò ad un successivo esperimento di incrocio – piante con i due
diversi colori dei semi incrociate fra di loro – si accorse di un fatto ben strano: le
piante “figlie” – prima generazione filiale o, più brevemente, F1 –, generate da piante
di differente linea pura per il colore del seme, mostravano tutte, senza eccezione,
semi di colore giallo. Il carattere “seme verde” sembrava sparito!
Egli proseguì la sperimentazione incrociando tra di loro questa volta le piante della
F1, tutte aventi semi gialli. Aspettò che maturassero i semi della seconda generazione
(F2), dopodiché li esaminò, riscontrando un risultato ancora più sorprendente di
quello precedente: tra le piante della F2 ve ne erano circa ¼ con i semi verdi! Le altre,
circa i ¾, avevano i semi gialli.
Come potevano essere interpretati questi strani risultati?
L’unica cosa di cui egli era inizialmente certo, poiché l’aveva direttamente
sperimentata, era la modalità riproduttiva delle sue piante, tipicamente sessuata,
durante la quale il polline fungeva da “seme” maschile, mentre l’elemento femminile
si trovava in profondità nell’ovario del fiore.
Mendel si rese conto che i caratteri ereditari dovevano essere contenuti nelle cellule
responsabili del processo riproduttivo. Dai risultati dei suoi esperimenti si poteva
intuire che l’espressione dei diversi fattori ereditari, la loro manifestazione visibile –
come nel caso del colore dei semi –, non ricorreva sempre con la stessa frequenza nel
corso delle generazioni. Certi fattori genetici sembravano prevalere su altri.
Nell’esperimento appena descritto, il fattore “seme giallo” mascherava, nella F1,
l’altro fattore, quello che determina il colore verde dei semi. Mendel chiamò
dominanti i fattori ereditari che si manifestano sempre e comunque nelle successive
generazioni, mentre definì recessivi quelli che, al contrario, si manifestano solo in
certi individui di determinate generazioni.
Ma quanti sono questi fattori ereditari, per ciascun carattere, in un singolo individuo?
Se teniamo in considerazione che la riproduzione sessuata si attua normalmente
attraverso il contributo genetico di due distinti individui – uno di sesso maschile e
l’altro di sesso femminile – la risposta più logica è che i fattori ereditari che
controllano un determinato carattere in un
certo individuo devono essere due: uno, per
l’appunto, di provenienza “paterna”, l’altro
di provenienza “materna”.
Indichiamo allora con la lettera “G” il fattore
ereditario che determina il colore giallo dei
semi di pisello, e con “g” il fattore ereditario
responsabile del colore verde degli stessi
semi. Il primo dei due fattori, cioè “G”, è quello definito dominante, mentre “g” è il
fattore recessivo.
→ E’ importante capire bene la differenza che esiste fra i due fattori, per cui, se hai
ancora dei dubbi, rileggi le righe precedenti.
Bisogna ricordare che Mendel aveva utilizzato, per il primo esperimento, piante di
linea pura per queste due varianti del carattere “colore del seme”. Da quale coppia di
fattori genetici sarà stata caratterizzata la linea pura di piante con semi di colore
giallo? Senza dubbio da due fattori “G”. E quella delle piante con semi verdi? Da due
fattori “g”. Dunque, la situazione iniziale doveva essere la seguente:
G/G
=
piante di linea pura con semi gialli
g/g
=
piante di linea pura con semi verdi
Mendel incrociò ripetutamente tra loro questi due gruppi di piante. Così dovremo
scrivere:
G/G x g/g
dove il simbolo “x” indica l’incrocio, la riproduzione sessuata tra le piante.
Supponendo che ciascun individuo contribuisca alla generazione successiva con uno
solo dei due fattori genetici, avremo:
contributo genetico di G/G = G
contributo genetico di g/g = g
Al momento della fecondazione - l’unione della cellula riproduttiva maschile con
quella femminile - i due diversi contributi si uniranno per formare:
G/g
La F1 è costituita tutta da piante che possiedono un fattore dominante e uno recessivo
nelle loro cellule. Di che colore avranno, presumibilmente, i semi? Poiché “G”
domina su “g”, il colore dei semi di tutte le piante della F1 sarà giallo. Mendel
ottenne per l’appunto tale risultato.
In seguito, come detto, Mendel provò ad incrociare tra loro le piante così ottenute.
Fece cioè questo:
G/g x G/g
In questo caso i contributi genetici forniti dalle piante possono essere di due tipi:
contributi genetici di G/g = G, oppure g
Dobbiamo perciò considerarli entrambi.
Se consideriamo molti eventi riproduttivi, il risultato previsto per la F2, vale a dire per
la seconda generazione, sarà il seguente:
contributi
G
g
G
G/G
G/g
g
G/g
g/g
genetici
Si osserva che ¾ delle piante ricevono almeno un fattore “G”, e ¼ addirittura due, e
quindi avranno semi di colore giallo, mentre ¼ delle piante riceverà due fattori “g”,
manifestando il colore verde dei semi. Proprio come constatato da Mendel.
Solo agli inizi del ‘900 i risultati di Mendel furono riconosciuti come validi ed
espressi formalmente in quella legge – oggi nota come prima legge di Mendel – detta
“della segregazione dei fattori ereditari (o dei caratteri)”. Il significato di questa legge
è il seguente: i due fattori ereditari che controllano un certo carattere, in un individuo,
si separano (segregano) durante la formazione delle cellule riproduttive, i gameti, in
ognuna delle quali ve ne sarà pertanto uno solo; al momento della riproduzione, e più
precisamente durante il processo detto fecondazione, il fattore ereditario paterno e
quello materno si riuniscono nello zigote (la prima cellula del nuovo individuo),
ripristinando la coppia di fattori genetici per quel dato carattere.
Chiarito il primo degli aspetti cruciali della trasmissione dei caratteri ereditari,
Mendel si risolse ad affrontarne un secondo. Che tipo di caratteri, ed in quali rapporti,
si sarebbero manifestati nella progenie generata da piante che differivano per due
diversi caratteri ereditari?
Rispondere a questo interrogativo significava prendere in considerazione
simultaneamente due coppie di fattori genetici. Mendel scelse di studiare la
trasmissione simultanea della forma superficiale e del colore dei semi di pisello. Si
ricorderà che la superficie del seme può essere liscia (fattore dominante) o rugosa
(fattore recessivo); per quanto riguarda il colore, come già detto, esso può essere
giallo (dominante) oppure verde (recessivo).
Come nell’esperimento descritto in precedenza, Mendel incrociò inizialmente due
gruppi di piante di linea pura per entrambi i suddetti caratteri. Per cui, indicando con
“L” il fattore genetico responsabile della forma liscia del seme, con “l” l’analogo
fattore recessivo per la forma rugosa, con “G” il fattore responsabile del colore giallo
del seme, e con “g” il fattore recessivo per il colore verde, avremo:
piante con semi lisci e gialli L/L G/G x l/l g/g piante con semi rugosi e verdi
Da tali incroci, Mendel, come è facilmente intuibile, ottenne esclusivamente piante
con semi lisci e gialli, quindi piante che manifestavano ambedue i caratteri
dominanti. La F1 era così composta da piante del seguente tipo:
L/l G/g
Fin qui, nulla di diverso rispetto al caso precedentemente esaminato.
Le cose si complicavano in modo notevole quando Mendel passava a considerare la
seconda generazione (F2) prodotta incrociando, come al solito, le piante della F1 tra
loro. Le percentuali riscontrate tra piante con caratteri dominanti e recessivi si
discostavano notevolmente dal rapporto ¾ e ¼, ed inoltre la varietà della progenie si
mostrava ben più ricca. Egli infatti ottenne, approssimativamente, 9/16 di piante con
semi lisci e gialli, 3/16 di piante con semi lisci e verdi, ancora 3/16 ma di piante con
semi rugosi e gialli, infine 1/16 di piante con semi rugosi e verdi.
Come furono interpretati questi nuovi rapporti? Ancora una volta occorre ragionare in
termini probabilistici. Se supponiamo che le due coppie di fattori genetici siano
indipendenti, nel momento della formazione delle cellule riproduttive avremo la
seguente situazione: “L” e “l” si separano, finendo ciascuno in una cellula diversa, e
la stessa cosa succede a “G” e “g”.
Quali fattori potremo allora trovare in ciascun gamete?
Distinguiamo due casi:
1 – “L” segrega con “G”, di conseguenza “l” segregherà con “g”;
2 – “L” segrega con “g”, di conseguenza “l” segregherà con “G”.
Tutti e due i casi descritti hanno la stessa identica probabilità (50%) di verificarsi. Se
consideriamo un elevato numero di gameti prodotti da ciascun individuo ci
aspetteremo, a ragione, che circa ¼ delle cellule riproduttive contengano i fattori
genetici L e G, ¼ contengano i fattori l e g, un altro ¼ i fattori L e g e, infine, ¼ i
fattori l e G. Quattro diversi tipi di gameti, quindi, entrano in gioco per determinare la
composizione genetica della seconda generazione ricavata da Mendel.
Ricorrendo allo schema utilizzato in precedenza e sistemando i contributi genetici
maschili e femminili rispettivamente in orizzontale e in verticale, otteniamo:
gameti
LG
lg
Lg
lG
LG
L/L G/G
L/l G/g
L/L G/g
L/l G/G
lg
L/l G/g
l/l g/g
L/l g/g
l/l G/g
Lg
L/L G/g
L/l g/g
L/L g/g
L/l G/g
lG
L/l G/G
l/l G/g
L/l G/g
l/l G/G
Dal quale schema ricaviamo che nove piante su sedici avranno semi lisci e gialli (L/G/-), tre piante su sedici semi lisci e verdi (L/- g/g), tre su sedici semi rugosi e gialli
(l/l G/-), ed infine una su sedici semi rugosi e verdi (l/l g/g).
Mendel capì che certi fattori ereditari assortiscono indipendentemente, vale a dire che
segregano durante la formazione dei gameti e si riuniscono nel corso del processo di
fecondazione seguendo semplici leggi probabilistiche. Anche queste ultime intuizioni
furono successivamente formalizzate in una legge – la seconda legge di Mendel – che
è conosciuta appunto come “legge dell’assortimento indipendente dei fattori ereditari
(o dei caratteri)”.
Gregor Mendel
Le parole della Genetica
ALLELE = variante di un gene; può essere, ad esempio, dominante o recessivo, a
seconda che si esprima o meno in un dato fenotipo.
ETEROZIGOTE = una coppia di fattori ereditari (genotipo) diversi. Esempio: G/g.
FENOTIPO = la manifestazione di un carattere ereditario (esempio: il colore giallo o
la forma liscia dei semi del pisello).
GAMETE = la cellula riproduttiva aploide (che contiene cioè solo una delle due
varianti alleliche di ciascun carattere ereditario) che, unendosi ad un altro gamete
(processo detto "fecondazione"), dà origine allo zigote, la prima cellula di un nuovo
individuo.
GENE = il fattore ereditario mendeliano responsabile della espressione
(manifestazione) di un certo carattere ereditario. E' costituito da una o più sequenze
specifiche di DNA.
GENOTIPO = una qualunque coppia di fattori ereditari (alleli) presenti nel
patrimonio ereditario di un individuo (Esempio: G/g o L/L).
OMOZIGOTE = una coppia di fattori ereditari (genotipo) uguali. Esempio: G/G o
g/g; il primo è detto omozigote dominante, il secondo omozigote recessivo.
Problemi svolti
1) Il colore nero del corpo del moscerino della frutta (Drosophila melanogaster) è
determinato da un fattore genetico recessivo “b”, mentre il colore grigio dal
dominante “B”. Una femmina con il corpo grigio viene fatta accoppiare con un
maschio dal corpo nero e ne nascono moscerini con il corpo grigio e moscerini
con il corpo nero. Spiega tale risultato.
R.: Il risultato è possibile solo ammettendo che la femmina non sia di linea pura.
Infatti, se fosse B/B, il suo contributo genetico alla generazione successiva
sarebbe sempre e comunque B e tutti i moscerini figli, possedendo la coppia di
fattori B/b (il recessivo ereditato dal padre b/b), avrebbero il corpo di colore
grigio. La femmina quindi deve essere B/b, infatti:
B/b x b/b
dà come risultato proprio un 50% di individui con carattere dominante e un 50%
con carattere recessivo.
2) La mancanza di pigmentazione nell’uomo (e non solo) è definita albinismo e
dipende da un fattore ereditario recessivo “a”. Il dominante “A” è invece
responsabile della presenza di pigmento (melanina) nella pelle. Qual è la
probabilità che una coppia di genitori non albini, che hanno avuto un figlio
albino, generino un secondo figlio normale?
R.: I due genitori devono essere portatori del fattore recessivo, cioè devono essere
entrambi A/a. Infatti, l’incrocio fra due individui che esprimono il carattere
dominante, ma che hanno nel loro patrimonio ereditario anche il carattere
recessivo, può produrre una frazione di discendenti - esattamente ¼ - che
manifestano il carattere recessivo. La restante frazione - ¾ - sarà composta da
individui uguali ai genitori, per cui la probabilità che il secondo figlio sia
normale è ¾.
3) Il pelo corto nei conigli è determinato dal fattore genetico “L” (dominante),
mentre il pelo lungo dal recessivo “l”. Il colore nero del pelo è il risultato
dell’espressione del fattore “B” (dominante), mentre quello marrone del
recessivo “b”. Calcola la percentuale di conigli con pelo lungo e nero attesa
dall’incrocio tra un coniglio L/l B/b e un altro dal pelo lungo e marrone.
R.: Il coniglio con pelo lungo e marrone sarà evidentemente di linea pura e cioè
l/l b/b. Quindi l’incrocio è il seguente:
L/l B/b x l/l b/b
I gameti prodotti dal coniglio L/l B/b (pelo corto e nero) saranno dunque i
seguenti: LB, lb, Lb, lB, mentre quelli prodotti dal coniglio l/l b/b (pelo lungo e
marrone) tutti lb. Costruiamo il solito schema per visualizzare tutte le possibili
combinazioni dei caratteri ereditari nella progenie:
gameti
lb
LB
L/l B/b
lb
l/l b/b
Lb
L/l b/b
lB
l/l B/b
Gli unici esemplari che manifesteranno i caratteri in questione (pelo lungo e
colore nero) sono quelli l/l B/b, nella percentuale del 25%.
Quesiti a scelta multipla
1) Una serie di individui, di varie generazioni, che manifestano lo stesso
determinato carattere ereditario viene detta:
linea pura
linea dominante
generazione dominante
generazione segregante
2) I caratteri detti recessivi si manifestano solo se l’individuo possiede:
due fattori genetici recessivi
un fattore recessivo che ha ereditato dal padre
un fattore recessivo che ha ereditato dalla madre
due fattori recessivi in ogni gamete
3) L’espressione “segregazione dei caratteri” sta a significare che:
i fattori genetici si separano durante la formazione dei gameti
i caratteri si uniscono durante la fecondazione
i fattori ereditari passano dal genitore al figlio sempre in coppia
i caratteri dominanti e recessivi non si trovano mai insieme nello zigote
4) La probabilità che da due individui che manifestano entrambi un dato carattere
dominante possa nascere un individuo che esprime il carattere recessivo può
essere:
0% o 25%
0% o 50%
25% o 50%
sempre del 25%
5) La probabilità che da due individui che manifestano entrambi due caratteri
dominanti possa nascere un individuo che esprime ambedue i caratteri recessivi
può essere:
0% o 6,25%
0% o 12, 5%
12,5% o 25%
sempre del 12,5%
Problemi
1) Qual è la frazione di individui con carattere recessivo che si prevede di ottenere
incrociando un individuo A/a con un individuo a/a?
[R: ½]
2) La fenilchetonuria (PKU) è una malattia genetica determinata da un fattore
genetico recessivo. Una coppia di genitori sani ha un figlio con ritardo mentale
causato dalla PKU. Qual è la probabilità che il successivo figlio della stessa
coppia sia sano? [R: ¾]
3) Il colore nero del pelo dei cani di razza Cocker Spaniel è determinato da un
fattore genetico dominante B, mentre il colore ruggine dal recessivo b.
L’uniformità del colore è dovuta ad un altro fattore dominante S, mentre il pelo
chiazzato dal recessivo s. Un maschio nero e di colore uniforme, non di linea
pura, viene incrociato con una femmina dal pelo a chiazze e di color ruggine.
Qual è la probabilità che da tale incrocio nascano cagnolini neri con pelo
chiazzato? [R: ¼]
4) Nel pomodoro, il colore rosso (R) del frutto è dominante sul colore giallo (r), la
pianta alta (A) è dominante su quella bassa (a). Incrociando due linee pure che
differiscono per ambedue i caratteri si ottiene, come previsto, una F1 costituita
esclusivamente da piante alte con frutti rossi. Qual è la probabilità che
incrociando la F1 con il doppio recessivo si ottengano piante basse con frutti
rossi? [R: ¼]