LA STIMOLAZIONE ELETTRICA A 448 kHZ - 2014 (IT

Transcript

LA STIMOLAZIONE ELETTRICA A 448 kHZ - 2014 (IT
LA STIMOLAZIONE ELETTRICA A 448 kHZ
PROMUOVE LA PROLIFERAZIONE DELLE CELLULE
STAMINALI MESENCHIMALI UMANE.
HERNÁNDEZ-BULE, PAÍNO CL, TRILLO MA, ÚBEDA A. CELL PHYSIOL BIOCHEM 2014;34:1741-1755
(Riassunto autorizzato. Articolo originale disponibile all’indirizzo http://www.karger.com/Article/FullText/366375)
INTRODUZIONE
MATERIALI E METODI
Le cellule precursori svolgono un ruolo fondamentale nella rigenerazione dei tessuti. Dopo la proliferazione, le nuove cellule recuperano
la funzione originale del tessuto. Le cellule staminali mesenchimali
(MSC) costituiscono una popolazione cellulare fondamentale coinvolta nella fase proliferativa della rigenerazione delle lesioni e sono
presenti in quasi tutti i tessuti adulti.
Coltura cellulare
Le cellule staminali derivate dal tessuto adiposo sono state isolate
da campioni di grasso sottocutaneo provenienti da quattro donatori
sani (due uomini, di età compresa tra 65 e 69 anni e due donne,
di età compresa tra 29 e 35 anni). Negli esperimenti sono state
utilizzate le ADSC dai passaggi 3-8.
Le terapie fisiche basate sulla stimolazione elettrica o elettromagnetica solitamente utilizzate hanno dato risultati soddisfacenti nella rigenerazione delle lesioni tissutali traumatiche o degenerative
e in medicina estetica (1-7). Tra queste terapie, il Trasferimento
energetico capacitivo resistivo (TECAR) è una strategia elettro-termica non invasiva basata sull’applicazione di correnti elettriche
nell’intervallo di radiofrequenza compreso tra 400 kHz e 450 kHz.
Recenti risultati in vitro indicano che, quando viene somministrata
a densità di corrente termica, la TECAR causa citotossicità nelle cellule tumorali umane, effetto termico che è potenziato dall’iniezione
di microparticelle metalliche all’interno dei tessuti tumorali bersaglio (8). A livello cellulare, gli effetti della Tecarterapia non sono
limitati soltanto a quelli termici. La stimolazione della TECAR a
dosi subtermiche (senza calore) può indurre risposte anti-proliferative e citotossiche in linee cellulari tumorali umane coltivate, ma
non in colture primarie di cellule mononucleate di sangue umano
periferico (9-13). Questi risultati sperimentali avvalorano l’evidenza disponibile secondo la quale gli effetti della Tecarterapia non
dipendono esclusivamente dall’aumento della temperatura, ma
anche dalle risposte cellulari dirette allo stimolo elettrico stesso. In
merito alla rigenerazione dei tessuti, la Tecarterapia è attualmente
utilizzata nella riabilitazione fisica e nella medicina sportiva per
curare le lesioni muscolari, ossee, legamentose e tendinee (14-16).
Le lesioni sottoposte a Tecarterapia guariscono più rapidamente e
mostrano una riduzione generale dell’area danneggiata, associata
a processi antiflogistici, effetti analgesici e recupero della funzionalità muscolare (17-20).
Esposizione alla TECAR
L’esposizione cellulare (come illustrato nella Figura 1) alle correnti
TECAR consisteva in impulsi di 5 minuti di corrente a 448 kHz a
una densità subtermica di 50 μA/mm2, separati da periodi di inter-impulsi di 4 ore, per una durata complessiva di 48 ore. Studi
precedenti condotti dal nostro gruppo avevano dimostrato che tali
parametri di esposizione influenzavano la proliferazione cellulare
(9-13). Le colture sono state effettuate in incubatrici e monitorate
costantemente. Per l’esposizione simulata le coppie di elettrodi inserite nei piatti di controllo sono state collegate al generatore, ma
non energizzate.
L’obiettivo di questa ricerca è studiare se la promozione della proliferazione cellulare sia uno dei fenomeni coinvolti nella rigenerazione dei tessuti indotta da Tecarterapia a densità di corrente subtermica nelle cellule staminali derivate dal tessuto adiposo (ADSC),
un tipo di MSC.
Fig. 1. Esposizione in vitro a una corrente di 448 kHz con flusso tra due
elettrodi. La densità di corrente è omogenea sulla superficie del piatto
collocata nello spazio vuoto tra gli elettrodi (area esposta/a esposizione
simulata; 1065 mm2). Le cellule rigettate sono state raschiate via dai
piatti e immediatamente eliminate al termine del trattamento.
Cellule
rigettate
Cellule esposte / sottoposte a esposizione simulata
Cellule
rigettate
Valutazione della proliferazione cellulare
L’effetto della TECAR sulla proliferazione cellulare è stato determinato mediante il saggio colorimetrico XTT e la quantificazione della
sintesi di DNA attraverso la rivelazione dell’immunofluorescenza
della 5-bromodeossiuridina (BrdU) incorporata.
Analisi del ciclo cellulare
Gli effetti potenziali del trattamento sul ciclo cellulare sono stati
valutati mediante la citometria a flusso utilizzando le colture ai
passaggi P3 e P4. Per analizzare le cellule che subiscono la fase del
ciclo cellulare S e G2 è stato utilizzato l’antigene nucleare di proliferazione cellulare (PCNA) che è un marcatore proteico associato
alla DNA polimerasi (21).
RISULTATI
Saggio di fluorescenza
Número de cellule in
% rispetto ai controlle
A
Passaggio
Saggio XTT
B
% di assorbanza
rispetto ai controlle
Saggio di differenziamento per la caratterizzazione mesenchimale
Per valutare la multipotenzialità differenziativa delle ADSC ottenute,
le cellule sono state incubate in un terreno adipogenico, condrogenico o osteogenico. Al 15° giorno di incubazione nei rispettivi terreni
differenziativi, le ADSC sono state fissate per valutare il differenziamento adipogenico, condrogenico od osteogenico.
La stessa procedura di valutazione del differenziamento è stata
applicata per analizzare se la multipotenzialità delle ADSC poteva
essere influenzata dall’esposizione alla TECAR.
Passaggio
Fig. 3. Saggi di proliferazione. (A) Conteggio al microscopio a fluorescenza
di nuclei di cellule colorate di bisbenzimide nei passaggi di coltura P2-P8.
I dati sono normalizzati sui rispettivi campioni di controllo. (B) Saggi XTT
per la proliferazione cellulare nei passaggi di coltura P3-P7. *: 0.01  p 
0,05; **: 0.001  p  0,01: ***: p <0,001 (Test t di Student).
Differenziamento adipogenico, condrogenico e osteogenico delle
ADSC
Le ADSC hanno mostrato modelli evidenti di differenziamento nelle tre
discendenze cellulari studiate: adipociti, condrociti od osteociti (Fig. 2).
Dif.
ND
Adipociti
Condrociti
Osteociti
Fig. 2. Se integrate con terreni adipogenici, condrogenici o osteogenici (Dif.) le cellule isolate dal tessuto adiposo si differenziavano nelle
discendenze cellulari corrispondenti, mentre in assenza di integrazione (ND) le cellule rimanevano non differenziate. Scala graduata = 100 μm.
Proliferazione TECAR
L’effetto della TECAR dipendeva dal passaggio della coltura.
Le ADSC trattate nei passaggi P3-P5 mostravano aumenti statisticamente rilevanti del numero di cellule, raggiungendo un
incremento del 25% sui controlli sottoposti a esposizione simulata nel passaggio P5 (Fig. 3A). Il saggio colorimetrico XTT ha
confermato un aumento del numero di cellule fino al 20% rispe-
tto ai controlli nelle colture trattate ai passaggi P3-P5 (Fig. 3B)
La proporzione di BrdU+ cellule nel gruppo trattato presentava un
significativo aumento del 38 % rispetto a quella dei controlli (p <
0,001)..
Analisi del ciclo cellulare
Riguardo agli effetti della TECAR sul ciclo cellulare, nei passaggi
% over controls
P3-P5 si è verificato un calo modesto (3%), ma statisticamente rilevante, nella proporzione di cellule nella fase G0/G1, accompagnato
da aumenti statisticamente rilevanti (21% e 10% sui controlli) di
cellule nelle fasi S e G2/M, rispettivamente (Fig. 4). Tali dati sono
stati avvalorati dal conteggio PCNA di cellule positive, dove la TECAR
produceva un incremento statisticamente significativo (35%) rispetto ai controlli.
Multipotenzialità delle ADSC dopo il trattamento di Tecarterapia
Dopo due settimane di incubazione post-esposizione in presenza
dei corrispondenti terreni differenziativi, i modelli di differenziamento nei campioni esposti alla TECAR non differivano molto da
quelli dei controlli (Fig. 5).
Differenziamento adipogenico
Controllo
Fig. 4. Efectos de la CRET sobre el número de células en diferentes fases
del ciclo; porcentaje respecto a los controles (100%). *: 0,01  p  0,05.
B
CRET
Densità oticca (media)
A
Cell cycle phases
Differenziamento condrogenico
CRET
Controllo
CRET
Controllo
CRET
CRET
Densità oticca (media)
Controllo
Controllo
Differenziamento osteogenico
CRET
Densità oticca (media)
Controllo
Fig. 5. Multipotenzialità delle ADSC dopo il
trattamento di Tecarterapia. Dopo l’esposizione alla TECAR o esposizione simulata, le
colture cellulari nei passaggi P3 e P4 sono
state coltivate per 14 giorni in presenza
di terreni differenziativi. (A) Micrografi
rappresentativi di campioni mantenuti in
terreni adipogenici (in alto), condrogenici
(al centro) od osteogenici (in basso) e colorati con Oil Red, Alcian Blue o Alizarin Red,
rispettivamente. Scala graduata: 100 μm.
(B) Il differenziamento delle ADSC è stato
valutato mediante la quantificazione della
colorazione attraverso l’analisi computerizzata delle immagini. Gli istogrammi mostrano che le medie ± SEM delle densità ottiche nei campioni esposti alla TECAR non
differivano in modo significativo da quelle
nei controlli corrispondenti (p > 0,05).
CONCLUSIONI
Questi risultati indicano che l’esposizione intermittente a uno
stimolo elettrico di 448 kHz di Tecarterapia (Trasferimento energetico capacitivo resistivo) aumenta le percentuali di cellule nelle fasi S, G2 e mitosi e promuove la proliferazione nelle cellule
staminali mesenchimali umane. I risultati ottenuti evidenziano che
la Tecarterapia promuoveva la rigenerazione dei tessuti mediante l’attivazione della proliferazione di cellule staminali quiescenti
(ADSC) presenti nell’area danneggiata senza compromettere la
multipotenzialità delle cellule staminali per il successivo differenziamento adipogenico, condrogenico od osteogenico. Questi dati, unitamente all’evidenza sperimentale precedentemente
pubblicata, avvalorano fortemente l’ipotesi che i meccanismi
molecolari e cellulari diversi da quelli termici possano essere
fondamentali per l’efficacia terapeutica dei trattamenti con Tecarterapia, compresi quelli applicati alla riparazione dei tessuti.
Riassumendo, tutti i risultati contenuti nel presente lavoro indicano
che la Tecarterapia può promuovere o accelerare la riparazione delle lesioni stimolando la proliferazione delle cellule staminali già in
espansione. Ne consegue che la Tecarterapia può essere applicata
come valido adiuvante per il recupero di numerose lesioni tissutali
o vascolari o come trattamento opzionale per i pazienti che sono
sensibili agli effetti collaterali di alcune chemioterapie. La Tecarterapia potrebbe anche essere utile nei trattamenti antiflogistici.
BIBLIOGRAFIA
1 Messerli MA, Graham DM: Extracellular electrical fields direct wound healing and regeneration. Biol Bull 2011;221:79-92.
2 Pilla AA: Nonthermal electromagnetic fields: From first messenger to therapeutic applications. Electromagn Biol Med 2013;32:123-136.
3 Belenky I, Margulis A, Elman M, Bar-Yosef U, Paun SD: Exploring channeling optimized radiofrequency energy: A review of radiofrequency history
and applications in esthetic fields. Adv Ther 2012;29:249-266.
4 Boyette MY, Herrera-Soto JA: Treatment of delayed and nonunited fractures
and osteotomies with pulsed electromagnetic field in children and adolescents. Orthopedics 2012;35:e1051-1055.
5 Whipple TL: From mini-invasive to non-invasive treatment using monopolar radiofrequency: The next orthopaedic frontier. Orthop Clin North Am
2009;40:531-535, x.
19 Arnedo F, Andrew A, Till L, Sendrós S, Hellín S: Radiofrecuencia monopolar
capacitiva/resistiva 448 kHz (indiba activ therapy) en el tratamiento rehabilitador de lesiones de la musculatura isquitibial derivada de la práctica
deportiva: XIV Congreso Nacional de la Federación Española de Medicina
del Deporte. Santander, Spain, 2012, XXIX, pp 915.
20 Sust F, Linde X, Sendrós S, Figueras G, Till L: Radiofrecuencia monopolar
capacitiva/resistiva 448 kHz (indiba activ therapy) en el tratamiento de
lesiones músculo-tendinosas: XIV Congreso Nacional de la Federación Española de Medicina del Deporte. Santander, Spain, 2012, XXIX, pp 915.
21 Woods AL, Hall PA, Shepherd NA, Hanby AM, Waseem NH, Lane DP, Levison
DA: The assessment of proliferating cell nuclear antigen (PCNA) immunostaining in primary gastrointestinal lymphomas and its relationship to
histological grade, S, G2, M phase fraction (flow cytometric analysis) and
prognosis. Histopathology 1991;19:21-27.
6 Conner-Kerr T, Isenberg RA: Retrospective analysis of pulsed radiofrequency energy therapy use in the treatment of chronic pressure ulcers. Adv Skin
Wound Care 2012;25:253-260.
7 Lolis MS, Goldberg DJ: Radiofrequency in cosmetic dermatology: A review.
Dermatol Surg 2012;38:1765- 1776.
8 San BH, Moh SH, Kim KK: Investigation of the heating properties of platinum nanoparticles under a radiofrequency current. Int J Hyperthermia
2013;29:99-105.
9 Hernandez-Bule ML, Trillo MA, Bazan E, Martinez-Pascual MA, Leal J, Ubeda A: Nonthermal levels of electric currents applied in capacitive electric
transfer therapy provokes partial cytotoxic effects in human neuroblastoma cultures. Neurocirugia (Astur) 2004;15:366-371; discussion 371.
10 Hernandez-Bule ML, Trillo MA, Cid MA, Leal J, Ubeda A: In vitro exposure
to 0.57 MHz electric currents exerts cytostatic effects in HepG2 human
hepatocarcinoma cells. Int J Oncol 2007;30:583-592.
11 Hernandez-Bule ML, Cid MA, Trillo MA, Leal J, Ubeda A: Cytostatic response
of HepG2 to 0.57 MHz electric currents mediated by changes in cell cycle
control proteins. Int J Oncol 2010;37:1399-1405.
12 Hernandez-Bule ML, Roldan E, Matilla J, Trillo MA, Ubeda A: Radiofrequency currents exert cytotoxic effects in NB69 human neuroblastoma cells but
not in peripheral blood mononuclear cells. Int J Oncol 2012;41:1251-1259.
13 Hernandez-Bule ML, Trillo MA, Ubeda A: Molecular mechanisms underlying
antiproliferative and differentiating responses of hepatocarcinoma cells to
subthermal electric stimulation. PLoS One 2014;9:e84636.
14 Ganzit GP, Stefanini L, Stesina G: Nuove methodice nei trattamento della patología muscolo-articolare dell´atleta: La tercaterapia. Med Sport
2000;53:361-367.
15 Melegati G, Volpi P, Tornese D, Mele G: Rehabilitación en patologías del
tendón. Revista del Deporte, Investigación de traumatología e investigaciones afines 1999;21:66-83.
17 Takahashi K ST, Onodera M, Hirabayashi S, Tsuzuki N, Zhong-Shi L: Clinical effects of capacitive electric transfer hyperthermia therapy for lumbago. J Phys Ther Sci 1999;11
18 Takahashi K ST, Onodera M, Hirabayashi S, Tsuzuki N, Zhong-Shi L: Clinical effects of capacitive electric transfer hyperthermia therapy for cervico-omo-brachial pain. J Phys Ther Sci 2000;12:43-48.
MKT-2014-187 V1-2014.12.15 - IT
16 Mondardini P, Tanzi R, Verardi L, Briglia S, Maione A, Draco E: Nuove metodología nel trattamento della patología muscolare traumática dell´atleta.
Med Sport 1999;52:201-213.