Harmonic Pinnacles in the Discrete Gaussian Model

Transcript

Harmonic Pinnacles in the Discrete Gaussian Model
Harmonic Pinnacles in the
Discrete Gaussian Model
JOINT WORK WITH E. LUBETZKY AND A. SLY
Inhomogeneous Random Systems 2015
Fabio Martinelli
1
The Discrete Gaussian model
● 2
Inhomogeneous Random Systems, 2015
Fabio Martinelli, Univ. Roma Tre
The Discrete Gaussian model
• Family of surfaces models in the ’50 • Dubbed Discrete Gaussian Model by [Chui-­‐Weeks ’76] • Dual of the Villain XY model [Villain ’75] • Related by duality to the Coulomb gas model • its R-­‐valued analogue: β scales out Discrete Gaussian Free Field
3
Inhomogeneous Random Systems, 2015
Fabio Martinelli, Univ. Roma Tre
DG surface: basic questions
4
Inhomogeneous Random Systems, 2015
Fabio Martinelli, Univ. Roma Tre
DG surface: predicted behavior
● β < βR
β > βR
5
Inhomogeneous Random Systems, 2015
Fabio Martinelli, Univ. Roma Tre
High temperature DG vs. the DGFF
● 6
Inhomogeneous Random Systems, 2015
Fabio Martinelli, Univ. Roma Tre
Low temperature DG
● 7
Inhomogeneous Random Systems 2015
Fabio Martinelli, Univ. Roma Tre
Intuition to the BEF’86 results ● 8
Inhomogeneous Random Systems, 2015
Fabio Martinelli, Univ. Roma Tre
Progress for SOS in recent years
[Caputo, Lubetzky, M, Sly, Toninelli ’12, ’13, ’15] :
1
log L ;
• maximum concentrates on
2
1
log L ;
• average height above a floor concentrates on
4
• deterministic scaling limit of the level lines loop ensemble;
• L1/3 fluctuations exponent of the largest loop around its limit.
[Caputo, M, Toninelli ’14] : Large deviations without the floor:
⇡⇤ (⌘⇤ > 0) ⇣ exp( ⌧ L log L)
surface tension
Inhomogeneous Random Systems, 2015
9
Fabio Martinelli, Univ. Roma Tre
Low temperature DG:
Previous work: [Bricmont, El-­‐Meloukki, Frohlich ’86]: •Maximum XL : E[XL ] ⇣
p
1
log L
•Theorem [Lubetzky,M. Sly]: p
∃ M=M(L) ~ (1/2⇡ ) log L log log L such that XL ∈ {M,M+1} w.h.p.
Remark •for a.e. L (log density) XL=M w.h.p. p
•Extra log
log
L
due to nature of large deviations. •in DG: “harmonic pinnacles” preferables to spikes.
10
Inhomogeneous Random Systems, 2015
Fabio Martinelli, Univ. Roma Tre
Low temperature DG
Central ingredient: Large Deviation estimate on ∞-volume DG:
Proposition [Lubetzky, M., Sly] :
⇡(⌘0
h2
h) = exp( (2⇡ + o(1))
)
log h
(cf. exp( ch2 ) for a spike of height h.)
• M:= max integer such that ⇡(⌘0
M
L
2
log5 L)
11
Inhomogeneous Random Systems, 2015
Fabio Martinelli, Univ. Roma Tre
Low temperature DG
• Previous work [Bricmont-El Meloukki, Frohlich] : av. height with floor ~
p
1
log L
p
• Theorem [Lubetzky, M, Sly] : conditioned on η > 0 9H ⇠ (1/4⇡ ) log L log log L
such that :
(i) #{x : ⌘x 2 {H, H + 1} }
(1
.
✏( ))L2
(ii) For any h < H : single macroscopic loop with area L2(1-o(1));
(iii) Height H : single macroscopic loop with area (1
✏( ))L2
(iv) No (H+2) macroscopic loop;
(v) No negative macroscopic loops
12
Inhomogeneous Random Systems, 2015
Fabio Martinelli, Univ. Roma Tre
Low temperature DG
Roughly put: with the floor, w.h.p. :
• DG surface is a plateau at height H ~ 1/√2 M
• Plateau is approx a raised (by H) version of the surface without floor
• the floor raises the maximum by a factor (1+1/√2).
Theorem [Lubetzky, M, Sly]
Conditioned on η>0 :
1
9M ⇠ (1 + p )M such that, w.h.p. XL 2 {M ⇤ , M ⇤ + 1, M ⇤ + 2}
2
⇤
13
Inhomogeneous Random Systems, 2015
Fabio Martinelli, Univ. Roma Tre
Generalizations to p-Hamiltonians
Extensions to surface models with H(⌘) =
X
x⇠y
SOS
⌘y | p ,
|⌘x
DG
RSOS
Example: LD in infinite volume :
2
1
p 2 [1, +1]
log (⇡(⌘o
h)
Inhomogeneous Random Systems, 2015
14
Fabio Martinelli, Univ. Roma Tre
15
Inhomogeneous Random Systems, 2015
Fabio Martinelli, Univ. Roma Tre
From LD in RSOS to the # of alternating sign
matrices (ASMs)
● AMS =
16
Inhomogeneous Random Systems, 2015
Fabio Martinelli, Univ. Roma Tre
Height large deviations in the DG
LD dominated by “harmonic pinnacles”, integer approximations to the
Dirichlet problem :
X
Ir (h) = inf{
('x 'y )2 : ' Brc = 0, '0 = h}
x⇠y
• real solution: harmonic function 𝜙:
✓
log |x| + O(1)
x = Px (⌧0 < ⌧@Br )h = 1
log r
P
2
P
(⌧
<
⌧
)
h
x
0
@B
r
Ir (h) = 4h2 x
⇠ 2⇡
E0 (⌧@Br
log r
Inhomogeneous Random Systems, 2015
◆
17
Fabio Martinelli, Univ. Roma Tre
From the real to the discrete Dirichlet problem
● 18
Inhomogeneous Random Systems, 2015
Fabio Martinelli, Univ. Roma Tre
DG with floor
● Main building block : Fix two integers (h, k) such that 4 + 2  k⇡(⌘0
h)  4 + 4
Then, w.h.p. the DG with floor & boundary height (h-­‐1) on a square of side k will contain a h-­‐level loop whose interior fills almost everything. The relation between (h, k) embodies the “entropic repulsion”.
Inhomogeneous Random Systems 2015
Fabio Martinelli Roma Tre 19
DG with floor
● Use the building block to recursively raise the surface from height 0 ➞ 1 ➞ 2 ➞ ……. ➞ H where L ⇡(⌘0
H) ⇡ 4
by tiling the original L x L box with boxes of side k = k(h) ⇡
4
⇡(⌘0
h)
,
h = 1, 2, . . .
● An important point is to check that in this process the loss of area near the boundary is negligible. Inhomogeneous Random Systems 2015
Fabio Martinelli Roma Tre 20
Open problems
● Thank you
21
Inhomogeneous Random Systems, 2015
Fabio Martinelli, Univ. Roma Tre