Fascicolo 14 in formato pdf

Transcript

Fascicolo 14 in formato pdf
DISPENSE DEL CORSO DI STORIA DELLE SCIENZE SPERIMENTALI
Fascicolo 14
Lezioni 27-28
Avvertenza generale
Queste dispense sono scritte come commento e integrazione delle
diapositive proiettate a lezione.
Le dispense sono incomprensibili se non si hanno sotto gli occhi le
diapositive.
Contengono inoltre brevi passi di fonti originali e di scritti di
storia della scienza.
Se il rinvio alle diapositive è seguito dalla scritta "Nessun
commento" si intende che il contenuto è adeguato ad essere
di base per l'esame.
Tuttavia le dispense e le diapositive non
preparazione dell'esame. Occorre riflettere
lezione. Chi non li avesse presi (o
formidabile memoria) può sempre chiederli
sono sufficienti per la
sugli appunti presi a
non possedesse una
ad un collega.
Sono richiamate in modo specifico le pagine oggetto di esame dei
testi forniti agli allievi, ma una lettura più estesa degli stessi
testi non potrà che essere utile ad una migliore comprensione
della storia della scienza.
Diapositiva 1
Argomenti delle lezioni 27-28
Raggi calorifici e raggi chimici
Riscaldamento globale: una storia di lunga durata
Fourier
Tyndall
Arrhenius
Ekholm
Callendar
La curva di Keeling
Il cambiamento climatico
Diapositiva 2
Ecco il titolo narrativo del primo lavoro di Herschel sul calore radiante: Frederick William
Herschel, "Investigation of the Powers of the prismatic Colours to heat and illuminate
Objects; with Remarks, that prove the different Refrangibility of radiant Heat. To which is
added, an Inquiry into the Method of viewing the Sun advantageously, with Telescopes of
large Apertures and high magnifying Powers", Philosophical Transactions, 90 (1800), 25583.
Un titolo più sobrio:
Frederick William Herschel, "Experiments on the Refrangibility of the invisible Rays of the
Sun’", Philosophical Transactions, 90 (1800), 284-92.
Diapositiva 3
Il diagramma pubblicato da Herschel è molto interessante perché come sottolinea la
didascalia tratta da Annals of Science la figura riporta dati strumentali quantitativi (dati
oggettivi, sperimentali) insieme a dati basati sulla sensibilità percettiva dell'osservatore
(dati soggettivi, sperimentali).
Uno dei tanti esperimenti fatti da Herschel:
Herschel placed a water-filled container between the prism and thermometer and
observed that the temperature measured was lower than the one measured without the
water. Consequently, the water must partially absorb the radiation.
L'immagine e la didascalia presenti della diapositiva sono tratte da:
Hilbert, Martin (1999) "Herschel's Investigation of the Nature of Radiant Heat: The
Limitations of Experiment", Annals of Science, 56:4, 357 — 378
Diapositiva 4
Nel 1801 Ritter scoprì i raggi ultravioletti. La ricerca fu motivata dalla scoperta di William
Herschel dei raggi infrarossi avvenuta nel 1800. Ritter era convinto che la natura bipolare
dell'elettricità pervadesse tutta la natura e che quindi una radiazione invisibile oltre la luce
visibile rossa, dovesse avere un equivalente dal lato opposto dello spettro visibile cioè oltre
la luce viola. Da tempo si sapeva che il cloruro d'argento diventava scuro in presenza di
luce. Per verificare la sua teoria concepì un esperimento analogo a quello di Herschel.
Usando un prisma di vetro, divise un raggio di luce solare nei diversi colori dello spettro
sotto i quali pose del cloruro d'argento. Ritter notò che il rosso causava dei piccoli
cambiamenti mentre nella zona oltre il viola diventava scuro molto più velocemente.
Questa fu la prova dell'esistenza di una radiazione invisibile che venne chiamata, appunto,
ultravioletta. (Wikipedia, testo modificato)
Johann Wilhelm Ritter - Fisico (Samitz, Haynau, 1776 - Monaco di Baviera 1810). Dopo
studî di farmacia insegnò a Jena, Gotha e Weimar. Nel 1798, poco dopo la conclusione
degli studî universitarî, pubblicò la Prova che un costante galvanismo accompagna il
processo vitale nel regno animale. Il saggio, oltre che per le scoperte nel campo del
galvanismo (per es., l'anticipazione della possibilità di costruire una batteria galvanica di
sole sostanze inorganiche, poi dimostrata da Volta con la costruzione della pila, e la
segnalazione dell'attività chimica legata al galvanismo), è notevole per la visione filosofica
del cosmo come un sistema di catene galvaniche in cui la distinzione tra organico e
inorganico è superata in un universale processo vitale; l'identità del sistema chimico e di
quello elettrico dei corpi è un importante corollario di questa visione. Le sue ricerche sul
galvanismo sono in parte esposte nei Contributi alla più approssimata conoscenza del
galvanismo e dei risultati della sua indagine (1800-05). Scoperte e anticipazioni importanti,
come quella delle batterie secondarie (accumulatori) o della pila a secco, accompagnano
tesi che resero R. sospetto per lungo tempo ai fisici. R. tentò anche con l'amico H. C.
Oersted, di dimostrare l'influenza dell'elettricità sul magnetismo. Scoprì nel 1802 la
radiazione ultravioletta. Chiamato all'Accademia delle scienze bavarese nel 1804, si trasferì
a Monaco ove operò fino alla morte. (Testo dell'Enciclopedia Treccani)
Johann Wilhelm RITTER. Die Physik als Kunst. Ein Versuch, die Tendenz der Physik aus
ihrer Geschichte zu deuten. Zur Stiftungsfeyer der Königlich-baierischen Akademie der
Wissenschaften am 28sten März 1806. 1 p.l., 62 pp. Munich: J. Lindauer, 1806. "La fisica e
l'arte. Un tentativo di interpretare l'andamento della fisica dalla sua storia".
Questo testo appartiene alla storia della scienza come un tentativo di dimostrare l'attività
costruttrice dell'uomo anche nelle pratiche scientifiche. Soggetto ed oggetto non sono
sempre così nettamente separati come vorrebbe e limiterebbe il canone scientifico. Con
posizioni come queste Ritter offuscò il suo buon nome come fisico, e diede scandalo, ad
esempio, cercando di appurare sperimentalmente come facessero i rabdomanti a trovare
l'acqua sotto terra.
Diapositiva 5
Thomas Young - Medico, fisico ed egittologo (Milverton 1773 - Londra 1829). La figura
di Y. ha lasciato importanti contributi alla fisica, per lo studio dell'ottica, ma soprattutto per
la cosiddetta esperienza di Y., per la definizione del modulo di Y. e per lo studio dei
fenomeni della marea. Prof. di fisica alla Royal Institution (1801-04), medico al St.
George's Hospital di Londra dal 1811. Dette importanti contributi all'ottica fisiologica,
dimostrando fin dal 1793 che il potere d'accomodamento dell'occhio è dovuto al
cambiamento di curvatura del cristallino; nel 1801 descrisse il difetto visivo noto come
astigmatismo; poco tempo dopo elaborò la teoria della percezione dei colori, ripresa e
approfondita da H. Helmholtz, secondo la quale la percezione dipende dalla presenza sulla
retina di tre strutture nervose, eccitate rispettivamente dal rosso, dal verde e dal violetto.
Altri suoi contributi alla fisica furono l'introduzione del modulo di elasticità, che porta
ancora il suo nome, l'interpretazione dei fenomeni di marea; la teoria della capillarità. Ma il
maggior merito di Y. rimane la sua opera a sostegno della teoria ondulatoria della luce,
con la fondamentale esperienza dei due fori che porta il suo nome, le conseguenze
interpretative che ne seppe dedurre (colorazione delle lamine sottili, anelli di Newton) e le
prime misurazioni interferometriche di lunghezze d'onda. Questi lavori di Y. furono accolti
con freddezza da molti fisici del tempo, in parte per una certa oscurità d'esposizione e in
parte per l'insoddisfacente trattazione teorica, causata dalla limitata cultura matematica
dell'autore. Si dedicò anche all'egittologia, affrontando genialmente il problema della
decifrazione dei geroglifici e lo studio del demotico, pubblicando varie opere sui papiri,
sull'iscrizione di Rosetta. (Testo dall'Enciclopedia Treccani)
Occorre essere sempre all'erta quando si usa Wikipedia. Nella voce su Thomas Young si
legge:
"In fisica Thomas Young è meglio conosciuto per i suoi lavori in ottica, come autore di una
ricerca che stabilisce il dualismo onda-particella" Nella voce di Wikipedia in inglese non c'è
traccia di una simile sciocchezza.
Diapositiva 6
Nel 1829 L. Nobili ebbe l'idea di usare sei coppie termoelettriche poste in serie, costituite
da bismuto e antimonio, e di collegarle al suo galvanometro, molto più sensibile di quelli
usati dagli altri scienziati. Però il "termomoltiplicatore" così fatto non era ancora
sensibilissimo. M. Melloni venne a conoscenza di questa soluzione e pensò di servirsene
per le sue indagini sul "calore radiante". La collaborazione tra Nobili e Melloni fu di breve
durata. Melloni proseguì da solo nelle ricerche dal 1831 al 1837, aumentò il numero di
termocoppie, ne perfezionò le giunzioni eliminando il mastice e lasciandole completamente
scoperte. I suoi esperimenti sui raggi infrarossi lo condussero a provare che essi avevano
le stesse proprietà della luce in particolare la riflessione, la rifrazione e la polarizzazione.
(Testo da http://www.istitutomontani.it/museo/file/visstrumento.php?codice=321)
Diapositiva 7
Quasi due secoli sono un buon periodo per mettere in prospettiva storica le ricerche su un
fenomeno di impatto (sicuramente) globale.
Gli scienziati trattati in questa lezione sono ben pochi (ma si veda la n. 31) e tuttavia
rappresentano bene l'aspetto internazionale dell'impresa scientifica: un francese, due
inglesi, due svedesi e un americano.
Diapositiva 8
Jean-Baptiste-Joseph Fourier - Matematico (Auxerre 1768 - Parigi 1830). Di modesta
famiglia (il padre era sarto), F., rimasto orfano di entrambi i genitori, fece i suoi primi studî
nella scuola militare di Auxerre e tentò di intraprendere senza successo la carriera militare:
entrò poi nel collegio dei Benedettini di Saint Benoît-sur-Loire ed era avviato verso la
carriera ecclesiastica quando, nel 1789, in Francia scoppiò la Rivoluzione. F. tornò ad
Auxerre, dove occupò la cattedra di matematica dal 1789 al 1794; i suoi studî si
orientarono prevalentemente, ma non esclusivamente, verso la matematica ed egli
presentò una memoria all'Académie des sciences, in cui erano esposti i suoi primi risultati
sulla risoluzione numerica delle equazioni algebriche.
Avvicinatosi agli ambienti giacobini (fu membro autorevole della società popolare di
Auxerre) F. fu inviato a Parigi come studente dell'École normale dell'anno III, dove si fece
notare dai suoi professori Lagrange e Monge. Alla chiusura della scuola Monge lo fece
assumere (1795) all'École polytechnique. Di fatto F. venne a poco a poco ad essere il
principale responsabile dell'insegnamento di analisi matematica della scuola (i quaderni
con i suoi appunti per le lezioni, in gran parte ancora manoscritti, sono conservati nella
biblioteca dell'Institut de France e in quella dell'École des ponts-et-chaussées), mentre le
lezioni di Lagrange assumevano il ruolo di lezioni di specializzazione. Nel 1798 fu tra gli
scienziati che accompagnarono Bonaparte in Egitto (con Monge, Berthollet, Malus,
Dolomieu, Geoffroy Saint-Hilaire). Tornato in Francia nel 1801, fu nominato da Bonaparte
prefetto dell'Isère nel 1802, con sede a Grenoble. Trasferitosi a Parigi nel 1816 fu
nominato associé libre dell'Académie des sciences, ma il re non volle approvare la nomina,
cosa che fece l'anno seguente dopo una sua rielezione. F. divenne nel 1822, alla morte di
Delambre, segretario dell'Académie des sciences per la sezione di matematica. Nel 1822
(Testo
pubblicò la sua opera più famosa: Théorie analytique de la chaleur.
dall'Enciclopedia Treccani, semplificato)
Diapositiva 9
The Swiss scientist Horace Bénédict de Saussure (1740-1799) studied the variations of the
sunlight effects on air with the altitude. To do so, he designed a heliometer, composed of
five boxes of glass fitted together and containing thermometers.
Diapositiva 10 Nessun commento
Diapositiva 11
Vedi appunti
Diapositiva 11 Nessun commento
Diapositiva 13
La metafora della diga utilizzata da Tyndall è estremamente efficace, infatti fa capire
immediatamente che la quantità di energia presente nell'atmosfera aumenterà o diminuirà
in funzione dell'equilibrio che si stabilirà fra l'energia (solare) che entra nell'atmosfera e
l'energia che riemerge dall'atmosfera verso lo spazio.
Diapositive 14-15 Nessun commento
Diapositive 16-20
La trattazione di Ekholm è veramente poderosa, e va considerata in modo dettagliato
leggendo con attenzione i testi riprodotti nelle diapositive. La prospettiva di controllo del
clima da parte dell'uomo è (molto probabilmente) ottimistica.
Diapositiva 21 Nessun commento
Diapositiva 22
In questo articolo di Callendar è messa in evidenza l'analisi dei dati desunti da 200 stazioni
meteorologiche sparse in tutto il mondo. Sulle difficoltà di una simile analisi si veda il
commento alla n. 33.
Diapositive 23-24 Nessun commento
Diapositive 25-26
Vedi appunti
Diapositiva 27
Tellus è un giornale pubblicato dall'Istituto Internazionale di Meteorologia di Stoccolma,
dedicato alla oceanografia e alla meteorologia chimica e fisica
Il primo diagramma indica che la variazione annuale era ben documentata già nei primi
mesi del 1960. Il secondo diagramma dimostra che l'andamento crescente della
concentrazione della CO2 era dimostrato nel 1967.
Diapositiva 22 Nessuno commento
Diapositiva 29
Si legga con attenzione la denuncia di Keeling che risale al 1998.
Diapositiva 30
Questo passo è tratto dalla dichiarazione ufficiale della World Climate Conference tenuta a
Ginevra dal 12 al 23 febbraio 1979 sotto l'egida della World Meteorological Organization
(ONU).
Diapositiva 31
Elenco tratto da James Rodger Fleming, Historical Perspectives on Climate Change, New
York / Oxford. Oxford University Press. 1998
Due citazioni dallo stesso testo:
Echoing Rudyard Kipling's "nine and sixty ways of making tribal lays," the climatologist C.
E. P. Brooks quipped, "There are at least nine and sixty ways of constructing a theory of
climatic change, and there is probably some truth in quite a number of them."
In a similar lighthearted vein, two prominent oceanographers, David B. Ericson and Goesta
Wollin, wryly observed: "It has been estimated that a new theory to explain continental
glaciations has been published for every year that has passed since the first recognition of
the evidence for past glaciation."
La citazione di Kipling è tratta da una poesia piuttosto truculenta, dal titolo "In the
Neolithic Age":
"There are nine and sixty ways of constructing tribal lays,
"And every single one of them is right!"
tribal lays sono i poemi tribali.
Diapositiva 32
I due diagrammi dimostrano in modo quantitativo l'assorbimento della CO2 e del vapor
acqueo presenti nell'atmosfera. Tutta l'energia sottratta all'emissione verso lo spazio
esterno si trasformerà in energia cinetica delle molecole dell'aria.
Diapositiva 33
Questo è il riassunto dell'articolo citato:
The historical surface temperature dataset HadCRUT provides a record of surface
temperature trends and variability since 1850. A new version of this dataset, HadCRUT3,
has been produced; benefiting from recent improvements to the sea-surface temperature
dataset which forms its marine component, and from improvements to the station records
which provide the land data. A comprehensive set of uncertainty estimates has been
derived to accompany the data: estimates of measurement and sampling error,
temperature bias effects, and the effect of limited observational coverage on large-scale
averages have all been made. Since the mid-20th century the uncertainties in global and
hemispheric mean temperatures are small and the temperature increase greatly exceeds
its uncertainty. In earlier periods the uncertainties are larger, but the temperature
increase over the 20th century is still significantly larger than its uncertainty.
Gli autori di questo saggio prendono in considerazione le sequenze storiche delle
temperature registrate in 4349 stazioni. Il poderoso lavoro di analisi statistica porta ai
diagrammi ripresi nella n. 34. Le curve hanno l'ambizione di riguardare dati raccolti (a) con
strumentazioni molto diverse (b) nelle più diverse condizioni di rilevamento e registrazione
(c) con una disseminazione spaziale arbitraria (d) sulla superficie dell'intero globo.
Con 'anomalie' si intendono nel gergo statistico le differenze fra i dati di una stazione per
un singolo mese o anno e il valore dedotto dall'analisi statistica dei dati per il "periodo
normale" di riferimento, il trentennio 1961-1990.
Diapositiva 35 Nessuno commento