Document 1595037

Transcript

Document 1595037
Processi stocastici (3): processi gaussiani
Corso di Modelli di Computazione Affettiva
Prof. Giuseppe Boccignone
Dipartimento di Informatica
Università di Milano
[email protected]
[email protected]
Table of content
Fig. 14 A conceptual map
of stochastic processes that
are likely to play a role in
eye movement modelling and
analyses
http://boccignone.di.unimi.it/CompAff2016.html
.
Processi stocastici
// Classi di processi
propagator
! "!!!#$!!!%
P(2) =
P(2 | 1) P(1)dx1
where P(2 | 1) serves as the evolution kernel or propagator P
A stochastic process whose joint pdf does not change wh
called a (strict sense) stationary process:
P(x1 ,t 1 ; x2 ,t 2 ; · · · ; xn ,t n ) = P(x1 ,t 1 + τ; x2 ,t 2 + τ; · · ·
τ > 0 being a time shift. Analysis of a stationary process is freq
than for a similar process that is time-dependent: varying t, all
X t have the same law; all the moments, if they exist, are consta
bution of X(t 1 ) and X(t 2 ) depends only on the difference τ =
P(x1 ,t 1 ; x2 ,t 2 ) = P(x1 , x2 ; τ).
A conceptual map of main kinds of stochastic processes th
the remainder of this Chapter is presented in Figure 14.
5 How to leave the past behind: Markov Process
The most simple kind of stochastic process is the Purely Rand
there are no correlations. From Eq. (27):
P(1, 2) = P(1)P(2)
P(1, 2, 3) = P(1)P(2)P(3)
P(1, 2, 3, 4) = P(1)P(2)P(3)P1 (3)
···
One such process can be obtained for example by repeat
complete independence property can be written explicitly as:
Var(Z) = I. Now, as A is SPSD, A = LL . So, x! Var (Y)
x≥=
0, LVar(Z)L = LIL
Var(LZ)
ions
Proof. Let A be an SPSD matrix and Z be a vector of random variables with
!
!
!
Var(Z) Var(LZ)
= I. Now, =
as LVar(Z)L
A is SPSD,!A==LIL
LL! .! So,
= A,
so
Σ
is
positive
semi-definite.
comesoffrom
so
A
is
theSymmetry
covariance
matrix
LZ. the fact that
Processi stocastici
aussian Processes
Cov(Y, X).
Var(LZ) = LVar(Z)L = LIL = A,
//theClassi
di processi
Processes
so
A
is
covariance
matrix
of
ussian
Processes
COVARIANCE
processes are a reasonably largeLZ.
class of processes
thatPOS
haveDEF ...
!
!
so in
A
isfinance,
the
matrix
of analysis
LZ.
eprocesses
a reasonably
large
class
of covariance
processes
that SPSD
have
ations,
including
time-series
machine
Lemma
covariance matrices.
are
a reasonably
large
class3.1.10.
of processes
that matrices
have and are
Processi
Gaussiani:
prendendo
un
qualsiasi
numero
finito
di variabili
•
ing inincluding
finance,
analysis
COVARIANCE
POS
DEFand
... machine
ertain
classes
of
Gaussian
processes
can
also
be
thought
of
as Normals
tions,
intime-series
finance,
time-series
analysis
andDensities
machine
of
Multivariate
aleatorie,
dall’ensemble
che
forma
il...
processo aleatorio stesso,
of
Gaussian
processes
can
also
be
thought
of
as
COVARIANCE
POS
DEF
tain
of
Gaussian
processes
also be to
thought
as
3.1.
GAUSSIAN
PROCESSES
93
sses.classes
We
will
use
these
as Let
acanvehicle
startofconsidering
more
esse
hanno
una
distribuzione
dian
probabilità
congiunta
gaussiana
Proof.
A
be
SPSD
matrix
and
Z
be
a
vector
ofΣrandom
v
use
these
as
a
vehicle
to
start
considering
more
If
X
=
(X
,
.
.
.
,
X
)
is
N(µ,
Σ)
and
is positive
1
n
ses. We will use these as a vehicle to start considering more
al objects.
(multivariata)
Densities
of Multivariate
Normals
Var(Z) = I.
Now, asdensity
A is SPSD, A = LL! . So,
l objects.
Simulating
Multivariate
Normals
Densities
of Multivariate
Normals
3.1.1
(Gaussian
Process).
A
stochastic
process
{X
}t≥0
is Gaus"
an
A
stochastic
process
{X
Gaus1.1Process).
(Gaussian
Process).
A
stochastic
process
{X
}
is positive
Gaus•
Più
precisamente:
è
Gaussiano
se tper
qualunque
t }t≥0 is
t Σ
t≥0is
If X One
= (Xpossible
N(µ,
Σ) and
definite,
then
X
has
the
1 , . . . , Xway
n ) isto
1
1
simulate
a
multivariate
normal
random
vector
is
!
!
(X
, .,si
. .the
,ha
Xvector
), .is. .N(µ,
Σ)
is(X
positive
definite,
then
X has=the
imes
t1 , of
. . .times
,of
tscelta
the
vector
(X
,(X
XtVar(LZ)
) . and
1n
yny
choice
t1 , di
. .random
.If,tt1X
the
random
. ,fX(x)
!
choice
.
.
,
t
,
.
.
.
,
X
)
n , times
tnche
(x −
f
(x
,
.
,
x
)
=
exp
−
n , .=
tΣ
n
1random
=
LVar(Z)L
=
LIL
A,
n) =
1 , .vector
1
n
t
t
n
1
density
2
using
thedensity
Cholesky decomposition.
(2π)n |Σ|
iate
normal
distribution.
distribution.
ariate normal distribution.
# and
#
Lemma 3.1.11. If Z ∼ N(0,1I), Σ = "
AA!1 is "
a covariance matrix,
1matrix of 1LZ.
so
A
is
the
covariance
! −1 ! −1
(x −−µ)
µ)− µ)
. .
fX(x)
=+f (x
. . ,=
xX
=1N(µ,
− exp
=µ
AZ,
∼
e Multivariate
Normal
Distribution
(x Σ
− µ)(xΣ− (x
(x)
f)(x
,!
. . . , xΣ).
ariate
Normal
Distribution
1 ,f.then
n
n ) = !exp
n
n
2
(2π)
|Σ| (2π) |Σ| 2
he
Multivariate
Normal
Distribution
Proof. We
know from
lemma
that AZnoris multivariate normal and so
aussian processes
are defined
in terms
of the3.1.4
multivariate
esses are defined in terms of the multivariate noron,
toAZ.
havegood
a pretty
good
of DEF
this
COVARIANCE
POS
... vectornoris need
µa+pretty
Because
a multivariate
normal
random
is completely
needwetowill
have
understanding
of this
Gaussian
processes
are
defined
inunderstanding
terms
of
the
multivariate
nd its properties.
described by its mean vector and covariance matrix, we simple need to find
rties.
tion, we will need to have a pretty good understanding of this
EX andNormal
Var(X).
Now,
1.2
(Multivariate
Distribution).
A vector
riate
Normal
Distribution).
A vector X
= (X1 X
, . .=. ,(X
Xn1 ), . . . , Xn )
and
its
properties.
multivariate
normal (multivariate
Gaussian)
if all
linear combiDensities
of
normal (multivariate
Gaussian)
if all=linear
EX
EµMultivariate
+combiEAZ = µ + A0Normals
=µ
i.e. all (Multivariate
random variablesNormal
of the form
3.1.2
Distribution).
A
vector
X
= (X1 , . . . , Xn )
om variables of the form
n
and normal
! (multivariate
If X = (X1Gaussian)
, . . . , Xn ) isif N(µ,
Σ) and
Σ is positive definite, th
multivariate
all linear
combin
!
α k Xk
αVar(X)
, i.e. all random
variables
the
form = AVar(Z)A! = AIA! = AA! = Σ.
density
k Xk
=
Var(µ
+ of
AZ)
= Var(AZ)
k=1
n
Processi !
stocastici
e normal distributions.
tributions.
α X
k=1
"
1
k k
! −1
//Thus,
Classi
disimulate
processi
!
(x
−
µ)
Σ (x
f
(x)
=
f
(x
,
.
.
.
,
x
)
=
exp
−
we89can
a random
vector
X
∼
N(µ,
Σ)
by
1
n
k=1
n
2
(2π) |Σ|
89
!
(i)
Finding
A
such
that
Σ
=
AA
.
ate normal• Processi
distributions.
Gaussiani: prendendo un qualsiasi numero finito di variabili
1
(ii)aleatorie,
Generating
∼ N(0, I).
dallaZcollezione
che forma il processo aleatorio stesso,
esse hanno una distribuzione di probabilità congiunta gaussiana
(iii) Returning X 89
= µ + AZ.
(multivariata)
0
CHAPTER 3. GAUSSIAN PROCESSES ETC.
Matlab makes things a bit confusing because its function ‘chol’ produces
Sono processiof
continui
nel tempo
nello is,
spazio
a •decomposition
the form
B ! B. eThat
A =degli
B ! .stati
It is important to
This is quite a strong definition. Importantly, it implies that, even if all of
be careful and think about whether you want to generate a row or column
s components
are normally
distributed,
vector
is not i.i.d
necessarily
il rumore
bianco è a
unrandom
processo
Gaussiano
• Esempio:
vector
when generating
multivariate
normals.
ultivariate normal.
The following code produces column vectors.
xample 3.1.3 (A random vector with normal marginals that is not multiListing 3.1: Matlab code
ariate normal). Let X1 ∼ N(0, 1) and
!
1
mu = [1 2 3]’;
|X1 | ≤ 1
1 2 1 if5];
2
Sigma = [3 1 2; 1 2 X
1;
X2 =
.
3
A = chol(Sigma);
−X1 if |X1 | > 1
4
X = mu + A’ * randn(3,1);
ote that X2 ∼ N(0, 1). However, X1 + X2 is not normally distributed,
following
produces
row
ecause |X1 + The
X2 | ≤
2, whichcode
implies
X1 + X
bounded and, hence, cannot
2 is vectors.
e normally distributed.
Listing 3.2: Matlab code
Linear
transformations
1
mu = [1 2 3]; of multivariate normal random vectors are, again,
ultivariate
normal.
2
Sigma
= [3 1 2; 1 2 1; 2 1 5];
Processi stocastici
// Classi di processi
93
3.1. GAUSSIAN PROCESSES
• Processi Gaussiani: prendendo un qualsiasi numero finito di variabili
Simulating
Multivariate
aleatorie,
dalla collezione
che formaNormals
il processo aleatorio stesso,
esse hanno
unapossible
distribuzione
di simulate
probabilitàa congiunta
gaussiana
One
way to
multivariate
normal random vector is
(multivariata)
using the Cholesky decomposition.
Lemma
3.1.11. Ifè completamente
Z ∼ N(0, I), Σspecificato
= AA! ismediante
a covariance matrix, and
• Un processo
Gaussiano
µ + AZ,
then X ∼ N(µ,
Σ).
mediaXe=matrice
di covarianza
Proof. We know from lemma 3.1.4 that AZ is multivariate normal and so
is µ + AZ. Because a multivariate normal random vector is completely
described by its mean vector and covariance matrix, we simple need to find
EX and Var(X). Now,
EX = Eµ + EAZ = µ + A0 = µ
and
Var(X) = Var(µ + AZ) = Var(AZ) = AVar(Z)A! = AIA! = AA! = Σ.
Thus, we can simulate a random vector X ∼ N(µ, Σ) by
Processi
stocastici
(i) Finding
A such that Σ = AA! .
// Classi
di processi
(ii) Generating
Z ∼ N(0, I).
(iii) Returning X = µ + AZ.
• Processi Gaussiani: moto Browniano
Matlab makes things a bit confusing because its function ‘chol’ produces
a decomposition of the form B ! B. That is, A = B ! . It is important to
be careful and think about whether you want to generate a row or column
vector when generating multivariate normals.
The following code produces column vectors.
Listing 3.1: Matlab code
1
2
3
4
mu = [1 2 3]’;
Sigma = [3 1 2; 1 2 1; 2 1 5];
A = chol(Sigma);
X = mu + A’ * randn(3,1);
The following code produces row vectors.
Listing 3.2: Matlab code
1
2
3
4
mu = [1 2 3];
Sigma = [3 1 2; 1 2 1; 2 1 5];
A = chol(Sigma);
X = mu + randn(1,3) * A;
Può essere considerato
il limite continuo del
random walk semplice
discusso la nozione di -algebra associata a un processo.
Ricordiamo l’Osservazione 1.2: fissato uno spazi
.
[. . . ]” come abbreviazione
di “esiste A 2 F, con
2.2. Il moto browniano
propagator
! "!!!#$!!!%
Definiamo ora il moto browniano,
detto a
Processi stocastici
P(2) =
P(2 | 1) P(1)dx
centrale
di questo
corso.
Si tratta (⌦
Ricordiamo l’oggetto
l’Osservazione
1.2: fissato
uno spazio
di probabilità
// Classi di processi
P(2 | 1)A
serves
evolution
kernel=
[. . . ]” come stocastico
abbreviazione
diwhere
“esiste
2 as
F,thecon
P(A)
1, tale Pcv
a tempo
continuo.
Esso
puòor propagator
essere
A stochastic process whose joint pdf does not change wh
called
a (strict sense)detto
stationary
process:
unaorapasseggiata
aleatoria
realeanche
con
incrementi
Definiamo
il moto browniano,
processo di g
P(x ,t ; x Si
,t ; ·tratta
· · ; può
xn ,t n ) =
P(x ,t + τ;
x ,t +più
τ; · · ·
l’oggetto centrale
corso.
dell’esempio
avanti,diil questo
moto browniano
essere
ottenuto
stocastico apasseggiata
tempo continuo.
essere
come
l’analo
τ > Esso
0 being apuò
time
Analysisvisto
of a stationary
is freq
aleatoria
conshift.
incrementi
di process
varianz
1
1
1
2
2
1
1
2
2
than for a similar process that is time-dependent: varying t, all
una passeggiata aleatoria reale
con incrementi gaussiani. In effet
X t have the same law; all the moments, if they exist, are consta
bution of
X(t 1 ) andottenuto
X(t 2 ) dependscome
only on the
τ=
avanti, il moto browniano può
essere
undifference
opport
Definizione
browniano).
Si
P(x12.3
,t 1 ; x2 ,t 2(Moto
) = P(x1 , x2 ; τ).
passeggiata aleatoria con incrementi
(cf.processes
il sotth
A conceptual di
mapvarianza
of main kinds finita
of stochastic
stocastico reale
B = {B }t2[0,1)
che soddisfa
the remainder of thistChapter
is presented in Figure 14.
Definizione
browniano). Si dice moto brownia
(a)2.3
B0(Moto
= 0 q.c.;
stocastico reale B = {Bt }t2[0,1)
le seguenti
propri
5 How toche
leavesoddisfa
the past behind:
Markov Process
(b) B ha incrementi indipendenti, cioè per o
CHAPTER 3. GAUSSIAN PROCESSES ETC.
(a)
B
=
0
q.c.; t < 1 The
0
2. MOTO BROWNIANO
simple kind of
stochastic process
is the
2. MOTO BROWNIANO
lemost
variabili
aleatorie
{B
BRand
ti Purely
ti
k
there are no correlations. From Eq. (27):
ein-Uhlenbeck Process). The Ornstein-Uhlenbeck
(b) B ha incrementi indipendenti, cioè per ogni scelta di k
(c) B ha incrementi stazionari gaussiani ce
2) = P(1)P(2)
tk < 1 le variabili aleatorie {Bti BP(1,
ti 1 }1ik sono indi
I
P(1,
2,
3) s
=)P(1)P(2)P(3)
di
t
>
s
0
si
ha
(B
B
⇠ N (0, t
= EX
0 talvolta
t
i talvolta
ti = spazio
detto
dellespazio
traiettorie
del processo
Come X. Come
E ), µche
è detto
delle (c)
traiettorie
delX.
processo
B
ha
incrementi
stazionari
gaussiani
centrati
: più precisa
P(1,
2,
3,
4)
=
P(1)P(2)P(3)P
1 (3)
I , E I ) la sua
induce sullo
spaziosullo
d’arrivo
(E d’arrivo
µsua
:
questa
aleatoria,
X induce
spazio
(EdiI ,tlegge
E>I )sla
legge
µ
:
questa
X
X
(d)
q.c.
B
ha
traiettorie
continue,
cioè
q.c.
l
0 si ha (Bt Bs ) ⇠ N (0, t s);· · ·
=legge
exp{α|t
ti+1 |/2}
el
processo.
,i+1
i −processo.
etta
del
One such process
be obtained
for example tby7!
repeat
(d) q.c. B ha traiettorie
continue,
cioècanq.c.
la funzione
B
I , sicomplete
I :, . .x. ,isx2 A
I , si
independence
property can be written explicitly as:
2
A
2
A
}
è
un
sottoinsieme
cilindrico
di
E
ting
formula
2
E
,
.
.
.
,
x
2
A
}
è
un
sottoinsieme
cilindrico
di
E
1
t
k
t1 k
1
tk
k
1
Nella definizione è27 sottinteso lo spazio di
2.2. IL MOTO BROWNIANO
= P((X
,
.
.
.
,
X
)
2
A
⇥
·
·
·
⇥
A
),
dunque
la
probabilità
!
#
P(X
2 C)
=
P((X
,
.
.
.
,
X
)
2
A
⇥
·
·
·
⇥
A
),
dunque
laper
probabilità
t1
1
" tk t1
tk
1k Nella definizione
k
processo
cui si
Bt =
2 F⌦
èB,
sottinteso
lo ha
spazio
di B
probabilità
t (!) con !(⌦,
−
ti+1calcolata
|/2}Xti + conoscendo
1 − exp{α|t
ti+1 |}
Z.
i −
conoscendo
le
leggi
finito-dimensionali
di
X.
Ricordando
che
i
ere
le
leggi
finito-dimensionali
di
X.
Ricordando
che
i
per cui si
hadopo
=B
! 2 ⌦.inLagrado
dipendenza
la formalizzazione precisa di questo processo
risultato allaB,
Proposizione
2.25,
avremo
omessa,
ma
èBimportante
di esp
t che
t (!) conessere
I , segue
I la
discusso
la nozione
diE -algebra
associata
a
un
processo.
una base
della
-algebra
che
legge
µ
del
processo
indrici
sono
una base
della
-algebra
E
,
segue
che
la
legge
µ
del
processo
omessa, mala
èXimportante
grado
di esplicitarla
proprietàXessere
(d) siinpuò
riformulare
nelquando
modo ès
I , EMatlab
I ) è determinata
I
I
Listing
3.9:
code
orie
(E
dalle
leggi
finito-dimensionali
di
X.
delle traiettorie
(E , E ) stocastici
è determinata
dalle leggi(d)
finito-dimensionali
dinel
X. modo seguente: esiste A
Processi
la proprietà
si può
riformulare
che
per
ogni
!
2
A
la
funzione t 7! Bt (!) è co
2.2. Il moto browniano
termine
del processo
X processo
si indica
talvolta
delle
ione, conlegge
il termine
legge del
X
si indica
talvolta
la famiglia
delle
che
per
ognila !famiglia
2 A la funzione
t 7!
Bt (!) è continua. Oltre a es
//
Classi
didue
processi
naturale
dal
punto
di“q.c.vista
la continuità d
0di=
0 (⌦,
0}
Ricordiamo
l’Osservazione
1.2:
fissato
probabilità
P),
scriveremo
n particolare,
due processi
X
=
{Xtnaturale
}uno
,=
X{X
con
lo
ensionali.)
In particolare,
processi
Xspazio
}punto
, t2I
Xdi0 F,
=
{X
lo fisico,
t2I
dal
vista
la continuità
delle traiettorie è
t {X
t2It }
t2I con
tfisico,
;
[. . . ]” come abbreviazione di “esiste A 2 F, con P(A)importanza
= 1, tale che per ogni
! 2 Ada
[. . . ]”.
di vista
matem
Idegli
e a indici
valori Inello
stesso nello
spaziostesso
(E, E)
hanno
laE)stessa
legge
seanche
e legge
e
a
valori
spazio
(E,
hanno
la
stessa
seune punto
importanza
anche
da
un
punto
di
vista
matematico
(si veda
il s
Definiamo ora il moto browniano, detto anche processo di Wiener, che costituisce
Talvolta
parleremo
di
moto
browniano
con
gie stesse
finito-dimensionali.
leggi
finito-dimensionali.
Talvolta
parleremo
di moto
browniano con insieme dei tempii
l’oggetto
centrale
di questo corso.
tratta
dell’esempio
più importante
di processo
Gaussiani:
motoSi Browniano
• Processi
stocastico a tempo continuo. Esso può
tempo
continuo
di (0,intendendo
Tdove
=l’analogo
[0,
dove
2
1) è fissato,
intend
T essere
= [0,visto
t0 ],come
t0 t20a],(0,
1)
èt0fissato,
naturalmen
* h / 2)*X(i)...
una passeggiata aleatoria reale con incrementi gaussiani. In effetti, come
discuteremo
più
dle, con
siani.
Un avanti,
processo
vettoriale
Xvettoriale
= {X
ache
in Rache
{B
soddisfa
condizioni
Definizionedella
2.3 per
t ris
{B
}t2I
soddisfa
le condizioni
Definiz
essi
Un
processo
Xcome
=valori
{X
valori
Rd , della
con
t }t2T
t2I
t}
t2T
il moto
browniano
può
essere
ottenuto
un
opportuno
limite
diin
qualunque
alpha gaussiani.
* h))*randn;
(d)
passeggiata aleatoria con incrementi di varianza
finita
(cf.Nella
il2.1
sottoparagrafo
2.7.1). sono
Nella
Figura
mostrate
tre traiettorie
del
Figura
mostrateillustrative
tre traiettor
vistosempre
come un
processo
stocastico
reale
asono
patto
,essere
X ),sempre
può essere
visto
come un
processo
stocastico
reale2.1
a patto
t
(i)
(i) primo
Veniamo
ora
al
risultato
moto brown
Definizione
2.3
(Moto
browniano).
Si X
dice
moto
browniano
processo
i indici:degli
infatti
basta
scrivere
X scrivere
= {X
}(i,t)2{1,...,d}⇥I
.qualunque
Per
nsieme
indici:
infatti
basta
=
{X
. fondamentale
Per risultatosul
Veniamo
ora
al
primo
fondamenta
t le
t }(i,t)2{1,...,d}⇥I
stocastico reale B = {Bt }t2[0,1) cheprima
soddisfa
seguenti
proprietà:
volta da
Norbert
Wiener
nel 1923. A dispetto delle ap
ulta
conveniente,
è possibile limitare
la trattazione
ai volta
processi
quando
risulta
conveniente,
è possibile
limitare
la trattazione
processi
prima
daaiNorbert
Wiener nel 1923. A
(a) B0 = 0 q.c.;
Può essere considerato
risultato
non
banale.
ralità.
è
quello
che
faremo
sempre
nel
caso
dei
processi
dita
di Questo
generalità.
Questo
è
quello
che
faremo
sempre
nel
caso
dei
processi
(b) B ha incrementi indipendenti, cioè per ogni scelta
di k 2 e non
0  t0 banale.
< t1 < . . . < il limite continuo del
risultato
t
<
1
le
variabili
aleatorie
{B
B
}
sono
indipendenti;
random walk semplice
Motion
mo.
t
t
1ik
ora definiamo. k
Teorema
2.4
(Wiener).
Il
moto
browniano esiste.
(c) B ha incrementi stazionari gaussiani centrati : più precisamente, per ogni scelta
i
i 1
Teorema 2.4 (Wiener). Il moto brownia
mental stochastic processes.
Ithais (B
a tGaussian
prodi t > s 0 si
Bs ) ⇠ N (0,
t s);
Lévy
process,
a(d)Martingale
and
process
that
ispossibili
processo
stocastico
reale
Xa =
{X
è=
detto
gaussiano
se,
e
2.2.
Un
processo
stocastico
reale
X q.c.
{X
gaussiano se,di questo teorema. Un m
q.c. B ha
traiettorie
continue,
cioè
la funzione
tè7!detto
Bt è continua.
t }Sono
t2I
t }t2I
diverse
dimostrazioni
of
harmonic
functions
(do
not
worry
if
you
do
not
2 tI,
aleatorio
(Xaleatorio
. .spazio
, Xun
)tteorema
è, .normale,
se definito
atndi
, tn 2 I,
il vettore
(X
. .Sono
, Xtmolto
) F,
ècioè
normale,
cioè
se
t1 , . lo
tndi
su
dovuto
a Kolmogorov, di
consiste
n
1 , .il. .vettore
n
1probabilità
questo
definizione
è sottinteso
(⌦,possibili
P)generale
su cui èdiverse
il dimostrazioni
can be used as Nella
a building
block
when considering
lineare
finita
delle
X
è
una
variabile
aleatoria
normale.
mbinazioneMoto
lineare
delle
XBt t (!)
è una
variabile
normale.
processo
B, finita
pert cui sigli
Bt =
con
⌦. La dipendenza
da ! verrà
quasi
sempregenerale dovuto a Kolmo
Browniano:
incrementi
sono
sualeatoria
un teorema
molto
processes. • For
this
reason,
we ha
will
consider
it !in2genericamente
omessa, ma è importante essere in grado di esplicitarla quando è necessario. Per esempio,
Gaussiani
y other Gaussian
process.
la proprietà
(d) si può riformulare nel modo seguente: esiste A 2 F con P(A) = 1 tale
che
per ogni
! 2 Auna
la funzione
t 7!
Bt (!)
è continua.
Oltre
a esserealeatori
una richiesta
molto
stituiscono
una
generalizzazione
dei
vettori
aleatori
aussiani
generalizzazione
dei
vettori
normali.
an Motion).
A
stochastic
process
{W
Processo
Wiener:
secalled
gli incrementi
sonoè normali.
• costituiscono
t }t≥0
naturale
daldipunto
di vista
fisico,
la is
continuità
delle traiettorie
una proprietà di basilare
oer
Iprocess)
=quando
{t1 ,if:
.importanza
. . I, t=
ècentrati
insieme
finito,
un1)
processo
che,
, . .da
. ,(media
tk }punto
è 0,
un
insieme
finito,
ungaussiano
processo gaussiano
k } {t
anche
un
di
vista
matematico
(si veda
il sottoparagrafo
§ 2.2.2).
Gaussiani
varianza
1un
k
Talvolta
parleremo
di
moto
browniano
con
insieme
dei
tempi
ristretto
a
un
Xt(X
) non è altro che un vettore aleatorio normale a valori in R . intervallo k
=
k t1 , . . . , Xtk ) non è altro che un vettore aleatorio normale a valori in R .
ncrements. T = [0, t0 ], dove t0 2 (0, 1) è fissato, intendendo naturalmente con ciò un processo
mali,
dato
un
gaussiano
Xgaussiano
= {X
introduciamo
le
vettori
normali,
un
processo
X 2.3
= per
{Xttristretto
}t2I introduciamo
le
{Btprocesso
}t2T dato
che soddisfa
le condizioni
della
Definizione
a T.
t }t2I
Nella
Figura
2.1
sono
mostrate
tre
traiettorie
illustrative
del
moto
browniano.
rements.
Xµ(t)
t) := Cov(X
XtCov(X
), ben definite
in quanto
:= E(Xt ) e K(s,
covarianza
K(s, t)s ,:=
definite in quanto
t ) e covarianza
s , Xt ), ben
able.
µi = EXt = 0
Motion
variables. By virtue of the central limit theorem, it converges to a Gaussian
the limit, the randombinary
walkrandom
tends toward
a Gaussian random process with zero
i
random variable.
(t) = Definition
t and independent
increments.
Such
aproprocess
is by definition a standard
nce
σ X2stochastic
3.1Taken
W(t)It
a standard
Wiener
process
ental
processes.
alimit,
Gaussian
tois is
the
the
random
walk iftends toward a Gaussian random process with zero
=
exp{α|t
−
t
|/2}
1
i
i+1
cess.
2
independent
increments. Such a process is by definition a standard
mean,stocastici
variance
évy process,Processi
a Martingale
and aσprocess
that
is
X (t) = t and
(i) W(0) =
0,
Wiener
process.
ngharmonic
formula functions
is Classi
(dodi
notprocessi
worry
if you do not
//
(ii) W(t) has independent
increments, which means that
n be used as !a"
building block when considering
#
3.1 W(t) is a standard
Wiener
process
if
tt2i+1
<consider
t3 <Z.
t4 , itWin
(t4 ) − W (t3 ) and W (t2 ) − W (t1 )
∀ we
t1i <
|/2}XFor
− exp{α|t
−
|}
cesses.
will
i+1
ti + this1reason,
Definition
3.1
W(t)
is
a
standard
Gaussiani: moto Browniano
Wiener process if
• Processi
process.
=other
0, Gaussian
are independent,
(i) W(0)
= 0,
is Gaussian
(iii) increments,
Z(t) = W(t)
−which
W(t
as
independent
that with zero mean and variance
0 ) means
ting
3.9: Matlab
code
Motion).
A stochastic
process
{Wt }t≥0 is increments,
called
(ii) W(t) has independent
which means that
2
=
t
−
t
,
t. (t )
σ
process)
if:
0
∀ t1 < t2 < t3 < t4 , W (t4 ) − W (t3 ) Zand W (t2 )t0−≤W
1
∀ t1 < t2 < t3 < t4 ,
W (t4 ) − W (t3 ) and
W (t2 ) − W (t1 )
sono Gaussiani
rements.
ependent, • Poichè gli incrementi
are independent,
this definition
we can deduce
the following basic properties for a standard Wiener
is Gaussian
with=zero
variance
W(t) − W(t0 ) From
Può essere considerato
) is Gaussian
with zero mean and variance
(iii) Z(t)
W(t) mean
− W(t0and
process.
ments.
il limite continuo del
2
2
random walk semplice
σ Z = t − t0 , t0 ≤ t.
σ Z = t − t0 , t0 ≤ t.
≥ 0.
h / 2)*X(i)...
Property 3.2 Var(W(t)) = t and mW (t) = E[W(t)] = 0. Since its variance increases with time
pha * h))*randn;
t, the trajectory of this process moves away from the horizontal axis when t increases.
Fromthe
thisfollowing
definition we
canproperties
deduce the for
following
basic properties
s definition we can deduce
basic
a standard
Wiener for a standard Wiener
process.
La varianza cresce linearmente nel tempo
Property 3.3 From
the law
of large
numbers,
e il processo
si sposta
lontano
dall’assewe
t can prove that:
Property
3.2 Var(W(t))
= t and
mW (t)
= E[W(t)] = 0. Since its variance increases with time
2 Var(W(t)) = t andt,mthe
=
E[W(t)]
=
0.
Since
its
variance
increases
with time
W (t)
(t) −→away from
trajectory of this processWmoves
the horizontal
axis when t increases.
0.
(7.46)
ory of this process moves away from the horizontal
axis
when
t
increases.
t t→∞
Motion
ental stochastic processes.
Gaussian
PropertyIt3.3is aFrom
the law proof large numbers, we can prove that:
Processi
stocastici
évy
process,
a
Martingale
and
a
process
that
is
3 From the law of large numbers, we can prove that:
W (t) −→
harmonic functions
(dodi
notprocessi
worry if you do not
0.
// Classi
t→∞
Introduction to Randomt Processes
117
W (t)when
n be used as a building block
considering
−→ 0.
(7.46)
t→∞
cesses. For this reason, wet will
consider it in
Gaussiani:
Browniano
•3.4Processi
W’s
trajectory,
even if itmoto
is continuous,
varies in a very irregular way that
otherProperty
Gaussian
process.
makes it non differentiable.
Heuristically, this result comes from !W(t) = W(t + !t) − W(t)
√
!t.
This property
is often
Levy’s oscillatory property.
being
proportional
to
Motion). A stochastic process
{W
} called
is called
t t≥0
process) if:
funzione
di auto-correlazione
è
given by:
• LaThe
Property 3.5
autocorrelation
function of W(t) is
rements.
ments.
≥ 0.
RW W (t1 , t2 ) = min(t1 , t2 ).
(7.47)
RW W (t1 , t2 ) = E [W (t1 )W (t2 )] .
(7.48)
Proof: Indeed,
Without loss of generality, we suppose t1 < t2 then
"
!
RW W (t1 , t2 ) = E (W (t2 ) − W (t1 )) W (t1 ) + W (t1 )2 .
(7.49)
Since W(t) has independent increments,
E [(W (t2 ) − W (t1 )) W (t1 )] = E [W (t1 )] E [W (t2 ) − W (t1 )] = 0.
(7.50)
Which implies that
"
!
RW W (t1 , t2 ) = E W (t1 )2 = Var(W (t1 )) = t1 = min(t1 , t2 ).
(7.51)
Può essere considerato
il limite continuo del
random walk semplice
(7.46)
⎛
(i)
Set%Xt1 = µ1 + σi,i Z.⎞
µi Draw Zσ∼i,iN(0, 1).
σi,i+1
∼N
,
.
2
σi,i+1
σi,i+1 σi,i+1 σi+1,i+1
µi+1
⎝
(ii)
For
i
=
1,
.
.
.
,
m
−
1
draw
Z
∼
N(0,
1)
and⎠seZ
Xti+1 = µi +
(Xti − µi ) +
σi+1,i+1 −
σi, i
σi,i
⎛%
theorem
we have
Symmetric Positive Using
Definite
and3.1.25,
Semi-Positive
Definite Matrices
σi,i+1
!
Xti+1 = µi +
(Xti2− µi"
)+⎝ σ
σi,i+1 motion,i
σi, iBrownian
σ
Example
3.1.27
(Brownian
i,i+1Motion). Consider
Covariance matrices are members
a xfamily
.
Xti+1 | Xof
µi matrices
+
(xcalled
σi+1,i+1 −
ti =
i ∼ N of
i − µi ) ,symmetric
a Markov
process.
Now,
σi, i
σi,i
positive definite matrices.
Example µ3.1.27
(Brownian
Motion). Consider B
i = EX
ti = 0
Algorithm 3.1.2 (Generating aaMarkov
Markovian
Gaussian
process.
Now, Process).
and Matrices
Browniano:
è unDefinite
processo
Gaussiano
Markoviano
√ An n × n real• Moto3.1.6
Definition
(Positive
(Real-Valued)).
µ = EXti = 0
(i) Draw Z ∼ N(0, 1). Set Xt1 =σµi,i+1
σi,i Z.i , ti+1 ) = ti . i
1 + = min(t
variance matrices as possible.
Xt i
Xti+1
Processi stocastici
// Classi di processi
valued matrix, A, is positive definite if and only if and
x1
x2 (ii)
our. . updating
formula
is N(0, 1) and set σi,i+1 = min(ti , ti+1 ) = ti .
x. ,4m − 1 draw
Forx3iSo,
= 1,
Z∼
*
)
⎛(
⎞
%
x! Ax > 0 for all x ̸= 0. So,
our updating
formula
is
X
=
X
+
t
−
t
ti+1
ti
i+1
i Z.
t4
t3
2 (
t1
t2
*
σi,i+1 )
σi,i+1
Xti+1 = µi +
(Xti − µi ) + ⎝ σi+1,i+1
−Xti + ⎠ tZ.
Xti+1 =
−
t
i+1
i
σi, i positive definite (SPD).σi,i
If A is also
symmetric,
A is called symmetric
P(x
= Gaussiana
t | xt-1 )then
Listing 3.8: Matlab code
Some important properties of 1SPD
matrices are
Listing
3.8: Matlab code
m = 10^4; X = zeros(m,1);
3.1. GAUSSIAN PROCESSES
91motion,
Example
3.1.27
(Brownian
Motion).
Consider
Brownian
which i
2
h = 1/m;
m = 10^4; X = zeros(m,1);
a Markov
process.
Now,
(i) rank(A) = n.
h = 1/m;
3
X(1)
= sqrt(h)*randn;
X(1)
sqrt(h)*randn;
µ
EX
4
INDEPENDENCE
i = =
ti = 0
5
for
i = dealing
1:m-1 with the mean vector µ. Howdifficult
about
(ii)There
|A| >is0.nothing tooand
i = 1:m-1
3.1. GAUSSIAN PROCESSES 6
91
X(i+1) = X(i) + for
sqrt(h)
* randn;
σ
=
min(t
,
t=i+1X(i)
) = +ti .sqrt(h)
X(i+1)
* randn;
ever, the covariance matrix makes
things
pretty
difficult,
when we
i,i+1
iespecially
7
end
end
(iii)
>
0.
INDEPENDENCE
wish Atoi,i simulate
a high
randomis vector. In order to simulate
So, dimensional
our 8updating formula
There
is nothingeffectively,
too difficult about
dealing
mean vector
µ. How- properties of co9 we
plot(h:h:1,X);
Gaussian
processes
needwith
to the
exploit
as many
(
*
plot(h:h:1,X);
ever, the covariance matrix makes things pretty difficult, especially
when)
we
−1
(iv)
A wishmatrices
istoSPD.
XtIn
= Xt i +
variance
possible.
i+1order to
simulateas
a high
dimensional random vector.
simulateti+1 − ti Z.
1
2
3
4
5
6
7
8
9
Gaussian processes effectively, we need to exploit as many properties of coas possible.and sufficient conditions for an
Lemmavariance
3.1.7matrices
(Necessary
SPD).
Listing 3.8: Matlab
code The folSymmetric
Positive
Definite
and
Semi-Positive
Definite
Matrices
lowing are necessary 1and
sufficient
conditions
for an n × n matrix
A to be
m
=
10^4;
X
=
zeros(m,1);
Symmetric Positive Definite and Semi-Positive Definite Matrices
SPDCovariance
2
h are
= 1/m;
Processi
stocastici
matrices
members of a family of matrices called symmetric
Covariance matrices are members of a family of matrices called symmetric
3
X(1) = sqrt(h)*randn;
positive
definite
matrices.
positive
definite
matrices.
// the
Simulazione
4
(i) All
eigenvalues
λ1di
, . . .processi
, λn of A areGaussiani
strictly positive.
5
for Definite
i = 1:m-1
Definition 3.1.6 (Positive
Matrices (Real-Valued)). An n × n realDefinition
3.1.6A,(Positive
Definite
Matrices
(Real-Valued)).
An n × n realmatrix,
is6 positiveX(i+1)
definite
only+if sqrt(h)
X(i)
* PD
randn;
• valued
Matrice
definita
positiva:
unaif=and
matrice
Athat
(n x n)
è=
se! ,ewhere
solo se
C is a real(ii)
There
exists
a
unique
matrix
C
such
A
CC
valued matrix, A, is 7positive
definite if and only if
end !
x Ax >
0 for all x
̸= 0. positive diagonal entries. This is
valued lower-triangular
matrix
with
8
9
plot(h:h:1,X);
called
Cholesky
decomposition
If Athe
is also
symmetric,
then
is called
positive
x!AAx
> 0symmetric
for of
allA.
x ̸= 0.definite (SPD).
properties of SPD
matrices
are
Se èimportant
anche simmetrica,
allora
è simmetrica
definita positiva (SPD)
• Some
Definition
3.1.8
(Positivethen
Semi-definite
(Real-Valued)).
An(SPD).
n×n
If A is
symmetric,
A is calledMatrices
symmetric
positive definite
(i) also
rank(A)
= n.
E’ semidefinita
se e solo se
real-valued
matrix,properties
A,positiva
is positive
semi-definite
if and only if
Some •important
of(SPSD)
SPD
matrices
are
(ii) |A| > 0.
(iii) Ai,i >=0. n.
(i) rank(A)
x! Ax ≥ 0 for all x ̸= 0.
A−1bene:
is SPD.le matrici di covarianza sono SPSD (e viceversa)
Nota
• (iv)
(ii) |A| > 0.
(iii)
Lemma 3.1.7 (Necessary and sufficient conditions for an SPD). The following are necessary and sufficient conditions for an n × n matrix A to be
ASPD
i,i > 0.
(i) All the eigenvalues λ1 , . . . , λn of A are strictly positive.
(iv) A−1 is SPD.
(ii) There exists a unique matrix C such that A = CC ! , where C is a realvalued lower-triangular matrix with positive diagonal entries. This is
Lemma 3.1.7
(Necessary and sufficient conditions for an
called the Cholesky decomposition of A.
Decomposizione
di Cholesky
SPD). The following are necessary and sufficient conditions for an n × n matrix A to be
3.1.8 (Positive Semi-definite Matrices (Real-Valued)). An n × n
SPD Definition
real-valued matrix, A, is positive semi-definite if and only if
!
X). Now,
EX = Eµ + EAZ = µ + A0 = µ
Processi
stocastici
3.1. GAUSSIAN
PROCESSES
ar(µ + AZ) = Var(AZ) = AVar(Z)A = AIA = AA = Σ.
// Simulazione
di processi Gaussiani
Simulating Multivariate Normals
!
!
93
!
One possible way to simulate a multivariate normal random vector is
an simulate a• random
vector X ∼ N(µ, Σ) :by
Simulazione
utilizziamo la decomposizione di Cholesky
using the Cholesky decomposition.
A such that Σ = Lemma
AA! .
3.1.11. If Z ∼ N(0, I), Σ = AA! is a covariance matrix, and
ng Z ∼ N(0, I).
X = µ + AZ, then X ∼ N(µ, Σ).
Proof. We know from lemma 3.1.4 that AZ is multivariate normal and so
g X = µ + AZ. is µ + AZ. Because a multivariate normal random vector is completely
described by its mean vector and covariance matrix, 3.1.
need PROCESSES
to find
GAUSSIAN
kes things a bit confusing
because its function ‘chol’ produces we simple
3.1.
GAUSSIAN
PROCESSES
and
Var(X).
Now,
AN PROCESSESEX
93
on of the form B ! B. That is, A = B ! . It is important to
Simulating Multivariate Normals
EX = Eµa+row
EAZor
= column
µ + A0 = µ
think about whether you want to generate
Simulating Multivariate Normals
Multivariate
Normalsnormals.
One possible way to simulate a multivariate normal
enerating multivariate
andPROCESSES
One
way
to simulate
a multivariate normal
3.1.
GAUSSIAN
PROCESSES
1.
GAUSSIAN
9393
using
thepossible
Cholesky
decomposition.
AN
PROCESSES
93
ng
code
produces
column
vectors.
using
the
Cholesky
decomposition.
le way to simulate a multivariate normal random vector is !
!
!
Var(X) = Var(µ + AZ) = Var(AZ) = AVar(Z)A =
AIA =
AA =
Lemma
3.1.11.
If Σ.
Z ∼ N(0, I), Σ = AA!! is a covaria
esky decomposition.
Listing 3.1: Matlab code
Lemma
3.1.11.
N(0,
X
= µ + AZ,
thenIfXZ∼ ∼
N(µ,
Σ).I), Σ = AA is a covari
X = µ + AZ, then X ∼ N(µ, Σ).
Simulating
Multivariate
Normals
mulating
Multivariate
Normals
Multivariate
Normals
; If3.1.
11.
Z ∼GAUSSIAN
N(0,
I), Σ =PROCESSES
AA! is a covariance matrix, and Proof. We know from lemma933.1.4 that AZ is multivaria
Proof.
from alemma
3.1.4 that
AZ israndom
multivaria
3.1. GAUSSIAN
PROCESSES
a random vector
X ∼ N(µ,is
Σ)
µ by
+ We
AZ.know
Because
multivariate
normal
vec
2; 1 X
2∼
1;N(µ,
2 1 Σ).
5]; Thus, we can simulate
then
One
possible
way
to
simulate
a
multivariate
normal
random
vector
is
is
µ
+
AZ.
Because
a
multivariate
normal
random
One
possible
way
to
simulate
a
multivariate
normal
random
vector
is
ea);way to simulate
a
multivariate
normal
random
vector
is
described
by
its
mean
vector
and
covariance
matrix,
we
sim
3.1.A such
GAUSSIAN
PROCESSES
93 wevec
!
(i) Finding
that Σ = AA
.
described
by
its
mean
vector
and
covariance
matrix,
si
EX
and
Var(X).
Now,
ow
from
lemma
3.1.4
that
AZ
is
multivariate
normal
and
so
Simulating
Multivariate
Normals
using
the
Cholesky
decomposition.
randn(3,1);
ing
the
Cholesky decomposition.
esky
decomposition.
EX and Var(X). Now,
Simulating Multivariate Normals
Because a multivariate
normal random
is completely
(ii) Generating
Z ∼ N(0, vector
I).
EX =Decomposizione
Eµ + EAZ = µ + A0 = µ
!
Simulating
Normals
!N(0, Multivariate
!
EX =diEµ
+ EAZ = µ + A0 = µ
One
possible
way
to
simulate
a
multivariate
normal
random
vector
is
Cholesky
Lemma
3.1.11.
If
Z
∼
I),
Σ
=
AA
is
a
covariance
matrix,
and
ng
code
produces
row
vectors.
ts
andI),
covariance
matrix,
we
need
to
find
1.mean
If Zvector
∼ N(0,
Σ ∼
= AA
isOne
a Σsimple
covariance
matrix,
and
emma
3.1.11.
If
Z
N(0,
I),
=
AA
is
a
covariance
matrix,
possible way to simulate
a multivariate and
normal
random vect
and
(iii)
Returning
X
=
µ
+
AZ.
using
the
Cholesky
decomposition.
and
X).
Now,
X
=
µ
+
AZ,
then
X
∼
N(µ,
Σ).
hen
X
∼
N(µ,
Σ).
One
possible
way to simulate
a multivariate normal random vector is!
= µ + AZ,
then3.2:XMatlab
∼ N(µ,
Σ).
Listing
code
using
the Cholesky
decomposition.
Var(X)‘chol’
= Var(µ
+ AZ) = Var(AZ) = AVar(Z)A ! = AIA
Matlab makes things a bit confusing because its function
produces
!
Var(X) = Var(µ
+ AZ) and
= Var(AZ) = AVar(Z)A = AI
theN(0,
decomposition.
Lemma
3.1.11.
Ifusing
∼
I), BΣ!that
AA
isA multivariate
a covariance
matrix,
EX
= Eµknow
EAZ
=
µZ+
A0
=Cholesky
µform
a+
decomposition
ofLemma
the
B.=
That
B ! . so
It isΣimportant
Proof.
We
from
lemma
3.1.4
AZ
is
normal
so
w
from
lemma
3.1.4
that
AZ
is
multivariate
normal
3.1.11.
Ifisis,
Zmultivariate
∼=and
N(0,
I),
=
AA!to
isand
a so
covariance
matrix,
oof.
We
know
from
lemma
3.1.4
that
AZ
normal
and
2; 1 X
2 1;
2 +
1 5];
=µ
AZ,
then and
X
∼think
N(µ,
Σ). whether
! or column
be careful
about
you
want
to
generate
aAA
row
Lemma
3.1.11.
If
Z
∼
N(0,
I),
Σ
=
is
a
covariance
matrix,
and
ecause
a multivariate
vector
completely
Xrandom
= µ + AZ,
then is
X
∼random
N(µ, Σ).
+
AZ.
Because
a multivariate
normal
vector
completely
Thus,
we can is
simulate
a random vector X ∼ N(µ, Σ) b
µis+µAZ.
Because
anormal
multivariate
normal
random
vector
a);
vector
when
generating
multivariate
normals.
Thus, we is
can completely
simulate
a random vector X ∼ N(µ, Σ) b
Processi
stocastici
3.1.
GAUSSIAN
PROCESSES
93
X
=
µ
+
AZ,
then
X
∼
N(µ,
Σ).
Proof.
We
know
fromvector
lemma
3.1.4covariance
that
AZ
is
multivariate
normal
andΣto
so
sar(µ
mean
vector
and
covariance
matrix,
we
simple
need
to
find
!produces
!column
!vectors.
(i)
Finding
A
such
that
= find
AA! .
described
by
its
mean
and
matrix,
we
simple
need
n(1,3)
*
A;
The
following
code
scribed
by=its
mean=vector
and=covariance
matrix,
we(i)3.1.4
simple
toΣmultivariate
find
+ AZ)
Var(AZ)
AVar(Z)A
AIA
= AAfrom
= Σ.lemma
Proof.
We know
that
AZthat
is
normal an
Finding
Aneed
such
= AA! .
is and
µ +//
AZ.
Because
a multivariate
normal
random
vector
is
completely
Simulazione
di
processi
Gaussiani
).
Now,
Proof.
We
know
from
lemma
3.1.4
that
AZ
is
multivariate
normal
and
EX
Var(X).
Now,
(ii) Generating
Z ∼ N(0,
I).
is µ +Listing
AZ.
Because
a multivariate
normal
random
vector is so
comple
Normals
3.1:
Matlab code
X and
Var(X).Simulating
Now, Multivariate
(ii)simple
Generating
Z ∼ to
N(0,
I).
described by its mean
vector
and
covariance
matrix,
we
need
find
is
µ
+
AZ.
Because
a
multivariate
normal
random
vector
is
completely
1
mu = [1 2 3]’; described by its mean vector (iii)
X = µmatrix,
+
andReturning
covariance
we simple need to
possible
to simulate
a=
multivariate
normal
random
vector
isAZ.
EX
=
Eµ
+One
EAZ
=X2;µ∼way
+N(µ,
A0
=
µ
X = µwe
+
AZ.
Eµ
+
EAZ
µA0
+
A0
=(iii)
µ Returning
EX
and
Var(X).
Now,
by
its
mean
vector
and
covariance
matrix,
simple
need to find
2Simulazione
Sigma vector
=EX
[3described
1EX
1=
2
1;
2
1
5];
an simulate a• random
Σ)
by
:
utilizziamo
la
decomposizione
di
Cholesky
=
Eµ
+
EAZ
=
µ
+
=
µ
and Var(X). Now,
Matlab makes things a bit confusing because its functio
using the CholeskyEX
decomposition.
Matlab
makes
things
a
bit
confusing
because its functio
3
A = !chol(Sigma);
EX and Var(X). Now,
a decomposition of the form B !!B. That is, A = B !!. It
EX
=
Eµ
+
EAZ
=
µ
+
A0
=
µ
!
A such
that
Σ
=
AA
.
a
decomposition
of
the
form
B
B.
That
is, A = B . I
4
X = mu + 3.1.11.
A’ * randn(3,1);
Lemma
If Z ∼ N(0, I), Σ = AAEX
is =
a covariance
matrix,
andA0whether
be careful
and
think
want to generate
Eµ
+ EAZ
= µ about
+
= µ you
d and
be
careful
and
think
about
whether
you
want
=when
µ +generating
A0 = µ multivariate normals. to generate
X = µ + AZ, then X ∼ N(µ,
vector
! Σ). EX
! = Eµ !+ EAZ
!
!
ng
Z
∼
N(0,
I).
and
when generating !multivariate normals.
The following
code
produces
row
vectors.
r(µ +
AZ) ==Var(AZ)
=AZ)
AVar(Z)A
= AIA
= AA != vector
Σ.=The
Var(X)
Var(µ
+
=
Var(AZ)
=
AVar(Z)A
AIA
AA
= Σ.column vectors.
!
! produces
following
code
and
The following
code
Proof.
know
lemma 3.1.4
that AZ is multivariate
normal
and produces
so Σ. column vectors.
Var(X) = Var(µ
+We
AZ)
= from
Var(AZ)
= AVar(Z)A
= AIA
==
AA
=
and
!
!
Listing 3.2:
Matlab
g X = µVar(X)
+ AZ. =
Listing
Matlab
Var(µ
AZ) = Var(AZ)
= AVar(Z)A
= AIA
= completely
AA! = Σ.
is µ
+ AZ.+ Because
a multivariate
normal code
random
vector
is
! 3.1:
! code
Listing
3.1: Matlab
Genera
vettori
colonna:
Var(X)
=
Var(µ
+
AZ)
=
Var(AZ)
=
AVar(Z)A
=code
AA! =
! find
! = AIA
!
1
mu = [1 2 by
3];
mu
=
[1
2
3]’;
described
its
mean
vector
and
covariance
matrix,
we
simple
need
to
Var(X)
=
Var(µ
+
AZ)
=
Var(AZ)
=
AVar(Z)A
=
AIA
=
AA
=
Σ.
mu
=
[1
2
3]’;
kes things a bit confusing because its function ‘chol’ produces
1
1
2
Sigma = [3 1 2; 1 2 1; 2 1 5];
Sigma
= Var(X).
[3 1 2; Now,
1 2 1; 2 1 5];
EX
2
Sigma = [3 1 2; 1 2 1; 2 1 5];
Simulazione:
n simulate
awe
random
X
N(µ,
by
! and vector
!
on
of the
form
B.
That
is, A
B
. ItΣ)
isvector
important
3
A = Σ)
chol(Sigma);
3 B
A can
= chol(Sigma);
Thus,
simulate
a=∼random
X ∼toN(µ,
by
3
A = chol(Sigma);
Thus,about
we
can
simulate
a
random
vector
X
∼
N(µ,
Σ)
by
4
X = mu
+ A’ * randn(3,1);
EX
=
Eµ
+
EAZ
=
µ
+
A0
=
µ
4
X
=
mu
+
randn(1,3)
*
A;
think
whether
you
want
to
generate
a
row
or
column
!
Thus,
we1.
canTrovare
random
vector X ∼ N(µ,
by+ A’ * randn(3,1);
4
XΣ)
= mu
chewe
A such that
Σ=
AA
. simulateA atale
! can simulate a random vector X ∼ N(µ, Σ) by
Thus,
(i) Finding
A
such
that
Σ
=
AA
.
Thus,
we
can
simulate
a
random
vector
X ∼ N(µ,
Σ) by row vectors.
enerating
multivariate
normals.
The
following
code produces
! !
The following code produces row vectors.
(i) Finding
A and
such
that that
Σ =ΣAA
. .
(i)
Finding
A
such
=
AA
!
ngZcode
produces
Genera
vettori
Listing 3.2: Matlab code
(i) Finding
such
that
Σ
ng
∼ N(0,
I). column vectors.
!! . = AA
! . riga:
!
(i) Finding
A such A
that
Σ=
AA
Listing 3.2: Matlab code
2
Var(X)
= Var(µ
AZ) = Var(AZ) = AVar(Z)A = AIA = AA = Σ.
2.
(ii) Generating
Z∼
N(0,+I).
mu = [1 2 3];
ii) Generating
Z
N(0,
I).
(ii) Listing
Generating
Z ∼ N(0,
mu = [1 2 3];
3.1:∼Matlab
codeI).
Sigma = [3 1 2; 1 2 1; 2 1 5];
(ii) Generating
Z I).
∼ N(0, I).
g; X = µ + AZ.
(ii) Generating
Z ∼ N(0,
Sigma = [3 1 2; 1 2 1; 2 1 5];
A = chol(Sigma);
(iii)(iii)Returning
X
=
µ
+
AZ.
= chol(Sigma);
Returning
X
=
µ
+simulate
AZ. a random vector X ∼ N(µ,XAΣ)
3.Thus,
= mu
* A;
ii)
Returning
X
=
µ
+
AZ.
we
can
by ++ randn(1,3)
2;
1
2
1;
2
1
5];
X
= mu
randn(1,3) * A;
(iii)
Returning
X
=
µ
+
AZ.
kes things a bit confusing(iii)
because
its function
Returning
X = µ +‘chol’
AZ. produces
a); Matlab
! because its function ‘chol’ produces
makes
aa bit
confusing
! Finding
(i)
such
that
ΣB
=!AA
. because
things
bit
confusing
itsfunction
function
‘chol’
produces
nrandn(3,1);
of theMatlab
form
Bmakes
B. things
That
is,
A
=
.
It
isathings
important
to
Matlab
makes
things
a AMatlab
bit
confusing
because
its
‘chol’
produces
Matlab
makes
a
bit
confusing
because
its function
‘chol’ prod
!
! because
makes
things
bit
confusing
its
function
‘chol’
produces
!
!
a
decomposition
of
the
form
B
B.
That
is,
A
=
B
.
It
is
important
to
a
decomposition
of
the
form
B.
That
is,
A
=
B
.
It
is
important
to
!
!
!
!
!
!
think about whether
want
to
row
column
(ii)
ZaB
∼decomposition
N(0,
I).That
of
theor
. It is importan
decomposition
of Generating
theyou
B.generate
A
=form
B That
.B ItB.is,
isThat
important
aform
decomposition
of theais,
form
B
B.
A
= is,
B .A It= to
isBimportant
to
be
careful
and
think
about
whether
you
want
to
generate
a row
or column
be
careful
and
think
about
whether
you
want
to
generate
a row
or column
ng
code
produces
row
vectors.
nerating
multivariate
normals.
be careful
and
think
about
whether
you want
to want
generate
a row or acolumn
be
andwant
thinkto
about
whether
you
to generate
row or col
(iii) Returning
X
= µcareful
+ AZ.
careful
and
think
about
whether
you
generate
a row
or column
vector
when
generating
multivariate
normals.
vector
when
generating
multivariate
normals.
Listing
3.2:
Matlab
code
ng
code
produces
column
vectors.
vector
whenagenerating
multivariate
normals.normals.
vector
when
generating
ctor when
generating
multivariate
normals.
Matlab
makes
things
bit
confusing
becausemultivariate
its function ‘chol’
produces
The
following
code
produces
column
vectors.
The
following
code
produces
column
vectors.
!
!
The
following
code
produces
column
vectors.
The
following
code
produces
column
vectors.
a decomposition
of thecolumn
That is, A = B . It is important
to
code
3.1: produces
Matlab
codeform B B.vectors.
2;The
1 2 following
1; 2Listing
1 5];
be careful and think
about 3.1:
whether
you want
to generate a row or column
Listing
Matlab
code
Listing
3.1:
Matlab
Listing 3.1: Matlab
code
Listing
3.1: code
Matlab code
a);
1
1
2
2
3
3
4
4
Because Gaussian processes are defined to be processes where, for any
We can do this using an expectation function
Becauseµ(t)
Gaussian
are µdefined
to be processes
where,
for any distributi
=
EXprocesses
matrix Σ,
the probability
operations.
simulate the values of a Gaussian process at
choice
of times
t1 , . . . , tn , the
random
vector
(X a,t .mean
. . , Xvector
mean
vector
and covariance
matrix
for an
arbitrary
choice
ofhas
tUsing
.and
.multivariate
.these,
, tancovariance
. we can described
tn )
1, a
process
is
completely
if
we
have
aETC.
way
to construc
,
the
random
vector
(X
,
.
.
.
,
X
)
has
a
multivariate
94 choice of times t1 , . . .t,1tGaussian
CHAPTER
3.
GAUSSIAN
PROCESSES
n
t1
t1 , . . . , tn by calculating
µtnwhere
µi = µ(t1 ) and
Σ, where
Σi,j = r
µ(t)
= EX
t
normal
density
and a an
multivariate
normal
density
is
completely
describe
by
We
can
do
this
using
expectation
function
mean
vector
and
covariance
matrix
for
an
arbitrary
choice
of
then simulating
a multivariate
normaldescribe
vector. by t1 , . . . , tn .
normal density and a multivariate normal
density
is completely
and a covariance function
a mean vector
µ and aVersion
covariance
matrix
thea probability
distribution
ofexamples,function
Inusing
theΣ,
following
we distribution
simulate the Gaussian
processe
We can
do matrix
this
an
expectation
Gaussian
Processes
a mean1vector
µΣ,
covariance
the
probability
of
and
covariance
function
The
complexity
ofaand
the
Cholesky
decomposition
of
an arbitrary
real-valued
Processi stocastici
// Simulazione di processi Gaussiani
spaced
times t1 =the
1/h, t = 2/h, . . . , tn = 1.
Gaussian process is completely
described
wecompletely
have
a way
to
construct
µ(t)
= EX
t if is
r(s,
t)
Gaussian
process
described
if we have a2 way to construct
the
s , Xt ).
3 = Cov(X
µ(t) =
EXt ).
matrix
is O(n
floating pointchoice
operations.
es are
defined
be covariance
processes
where,
for
t
mean
vectortoand
matrix
for) any
an
t1 ,an
.r(s,
. .arbitrary
,3.1.12
tt)n .= Cov(X
s, X
(Brownian
Motion).
mean
vector
andarbitrary
covariance matrixofExample
for
choice
of t1 , . .Brownian
. , tn . motion is a very
andom
vector
, . . .we
,using
Xcan
a We
multivariate
stochastic process which is, in some sense, the continuous time
tfunction
tn ) has
nd a covariance
1this
We
can(X
do
an
expectation
function
Using
these,
simulate
the do
values
of and
a Gaussian
process
at
fixed
times
can
this using
an
expectation
function
a covariance
function
state
space
analogue
of of
a simple
random walk.
It hasat
an fixed
expectatio
Using
these,
we
can simulate
the
values
a Gaussian
process
tim
riate normal
density
is
completely
describe
by
t1 , . . . , tn by calculating
µti1 ,=. . µ(t
Σ, where
Σ
= r(t
, tjµ(t
) and
3.1.2µ where
Simulating
aand
Gaussian
Processes
Version
µ(t)
=where
0 and
aµcovariance
function
r(s,
t)1
= min(s,
t).
1 )by
i,j
i=
.
,
t
calculating
µ
)
and
Σ,
where
Σ
=
r(t
,
t
)a
n
i
1
i,j
i
j
ance matrix Σ,
the probability
distribution
µ(t)
=Browniano:
EX
Simulazione
di t)
un
r(s, t) = Cov(Xs , Xt ).
r(s,
=moto
Cov(X
Xt tvector.
).
µ(t) = EX
s ,of
then •simulating
a multivariate
normal
then
simulating a multivariatet normal vector.
Listing where,
3.3: Matlab
Because
Gaussian
forcode
any
y described if we have a way to
construct
the processes are defined to be processes
In theUsing
following
examples,
we
simulate
the
Gaussian
processes
at eve
In
the
following
examples,
we
simulate
the
Gaussian
processes
at
evenly
%use
mesh
size
h
these,
we
can
simulate
the
values
of
a
Gaussian
process
and
a
covariance
function
and
a
covariance
function
choice
, . Gaussian
. . , tntimes
, the process
random
vector
(X
.,.t. ,t=
X=t1.
):has
a1;multivariate at fixed t
matrix
for an we
arbitrary
choice
of
t1of
, . .times
. , tnof
. t1spaced
Using these,
can
simulate
the
values
a
at
fixed
times
t.=1.,1/m;
n
m
=
1000;
h
h
h
:
t
=
1/h,
t
=
2/h,
.
1
2
n
spaced times t1 = 1/h, t2 = 2/h, . . . , tn = 1.t1 , . . . , tn by calculating µ where µi = µ(t1 ) and Σ, where Σi,j = r(ti , tj )
n =r(t
length(t);
normalµdensity
a multivariate
is
completely describe by
xpectation
function
calculating µ where
) and
Σ,then
where
Σt)i,jnormal
=
tj,)Xand
1 , . . . , tn by
i = µ(t1and
i ,density
simulating
a multivariate
normal vector.
r(s,
=
Cov(X
).
s
t
r(s,
t)
=
Cov(X
,
X
).
s
t
3.1.12 (Brownian
Motion).
Brownian
motion
is a very
import
mean
vector
µExample
andBrownian
a covariance
matrix
Σ,
the vector
probability
distribution
of PROCES
94
CHAPTER
3. GAUSSIAN
hen simulating
a multivariate
normal
vector.
Example
3.1.12 a(Brownian
Motion).
motion
is aexamples,
very
In the
following
we simulate
the
Gaussian
processes
at ev
%Make
the
meanimportant
stochastic
process
which
is,
in
some
sense,
the
continuous
time
continu
µ(t) =stochastic
EXt
Gaussian
process
is
completely
described
if
we
have
a
way
to
construct
the
mu
=
zeros(1,n);
spaced
times
t
=
1/h,
t
=
2/h,
.
.
.
,
t
=
1.
1
2 Gaussian
n
which
is, values
in some
the
continuous
time
continuous
In
the these,
following
examples,
we
simulate
thecan
Gaussian
processes
at
Using
these,
we
simulate
the values
of
aevenly
process
at fixed
times
Using
we process
can
simulate
the
of
asense,
Gaussian
process
times
state
space
analogue
offor
aat
simple
walk.
It has
an expectation
funct
i fixed
= complexity
1:n random
The
of the
Cholesky
decomposition
of an arbitrary
mean
vector
and
covariance
matrix
for
an
arbitrary
choice
of
t
,
.
.
.
,
t
.
1
n
t
,
.
.
.
,
t
by
calculating
µ
where
µ
=
µ(t
)
and
where
Σ
=
r(t
,
t
)
and
3 Σ,
state
space
analogue
of
a
simple
random
walk.
It
has
an
expectation
function
paced
times
t
=
1/h,
t
=
2/h,
.
.
.
,
t
=
1.
1
n
i
1
i,j
i
j
mu(i)
=
0;
1 calculating
2
is iO(n
operations.
µ(t)
0 and
a covariance
function
r(s,
t) point
= Brownian
min(s,
t).motion is a very impo
t1 , . . . , tn by
µ where µni = µ(t
and
Σ, where
Σi,jmatrix
=(Brownian
r(t
, tj )) floating
and
Example
3.1.12
Motion).
1) =
We
thisr(s,
using
an
expectation
end function
thencan
simulating
a multivariate
normal
vector.
µ(t) = 0 and
aCHAPTER
covariance
function
t) =stochastic
min(s,
t).
3. do
GAUSSIAN
PROCESSES
ETC.
process
which is, in some sense, the continuous time contin
then simulating
a multivariate
normal
vector.
Listing
3.3:
Matlab
code It has
In the
following
simulate
the
Gaussian
atProcesses
evenly
Example
3.1.12
Motion).
Brownian
motion
iswe
aprocesses
very
important
3.1.2
Simulating
a processes
Gaussian
Version
state space
analogue
ofat
acovariance
simple
random
walk.
an expectation
fun
3.1.
PROCESSES
%MakeGAUSSIAN
the
matrix
, t) = Cov(X
, Xt ).(Brownian
In the
examples,
we
simulate
theexamples,
Gaussian
evenly
sfollowing
µ(t)
=
EX
1 3.3:
%use
mesh
size
h
Listing
Matlab
code
t
spaced
times
t
=
1/h,
t
=
2/h,
.
.
.
,
t
=
1.
µ(t)
aSigma
covariance
functionprocesses
r(s, t) =aremin(s,
t).to be processes whe
1the continuous
2 = 0 and
nBecause
= zeros(n,n);
tochastic
process
which
in decomposition
some. . .sense,
time
continuous
Gaussian
defined
spaced
timesoftthe
1/h,is,
t2 =
2/h,
, t2n =
1.of1000;
The
complexity
an arbitrary
1 = Cholesky
m =
h = 1/m;real-valued
tfor
= ih of
:1:n
h : tCHAPTER
1;
=
94
3.
GAUSSIAN
choice
times
,
.
.
.
,
t
,
the
random
vector
(Xt ,PROCESSES
. . . , Xt ) has a mE
1
%use
size
h
1
n
tate
space
of a process
simple
random
It(Brownian
has an expectation
function
3 of
the
a mesh
Gaussian
at fixed3walk.
times
3.3:
Matlab
code
ix isvalues
O(n
)analogue
floating
point
operations.
for
j = Listing
1:nand
n function
= length(t);
Example
3.1.12
Motion).
Brownian
motion
is a very
important
and
a
covariance
normal
density
a multivariate
normal
density is completely d
m =1 )a1000;
= 1/m;
t =
hr(t
:i , htt)
1;min(s,
3.1.12
(Brownian
Motion).
Brownian
motion
issize
aavery
important
Sigma(i,j) = min(t(i),t(j));
µ(t)
0 µ(t
and
covariance
function
r(s,
t).
ere Example
µ=i 2=
and
Σ,h where
Σi,j
=
):=
and
j4process
1
%use
hsense,
mean
vector
µcontinuous
and a covariance
matrix
Σ, the probability dist
stochastic
which
is,mesh
in
some
the
time
continuous
The
complexity
of
the
Cholesky
decomposition
ofif an
arbitrary
real-va
end
94
CHAPTER
3.
GAUSSIAN
PROCESSES
ETC.
3
n
=
length(t);
stochastic
process
which
is,
in
some
sense,
the
continuous
time
continuous
5
%Make
the
mean
vector
Gaussian
process
is
completely
described
we
have a way to con
e normal vector.
2
m
=
1000;
h
=
1/m;
t
=
h
:
h
:
1;
state space analogue ofmatrix
a r(s,
simple
random
walk.
It
has
an
expectation
function
3end
t)
=
Cov(X
,
X
).
s
t
O(n1mean
) floating
point
operations.
2westate
Simulating
a Gaussian
Processes
Version
3.3:
Matlab
vector
and covariance
matrix for an arbitrary choice of t1 , .
4
6
mu
=code
zeros(1,n);
3Itn
= length(t);
spacethe
analogue
ofListing
aprocesses
simple
random
has
anisexpectation
simulate
Gaussian
at
evenly
µ(t) =
0 and
awalk.
covariance
function
r(s,Wet)can
=function
min(s,
t). an expectation function
do
this
using
7
for=imin(s,
=
1:n t).
4 the
%Make
mean vector
%Generate
the multivariate
normal real-valued
The complexity
of
Cholesky
decomposition
of anprocess
arbitrary
andthe
covariance
function
r(s,
use
ha processes
h,
.µ(t)
. .mesh
,5tn=
=0size
1.
Using
these,
we
can
simulate
the
values
of
a Gaussian
at vector
fixed times
Because
Gaussian
are
defined
to t)
be
processes
where,
for
any
3 mu(i)
A
=
chol(Sigma);
5
%Make
the
mean
vector
8
=
0;
3.1.2
Simulating
Gaussian Processes
Version 1
Listing
3.3: Matlabacode
6
muh ==zeros(1,n);
matrix
is O(n ) floating
point
operations.
µ(t) = EXt
=
1000;
1/m;
t
=
h
:
h
:
1;
= mu
randn(1,n)
* A;3.Σi,jGAUSSIAN
t1 ,Listing
. . .94
,vector
tn by
calculating
where
Σ, where
= r(ti , tj ) and PROC
ce of times t1 , . . . , tn , the random
(X
has
aµ
multivariate
6 µ
zeros(1,n);
i =X µ(t
1 )+ and
9
CHAPTER
tend
tmu
n) =
1, . . . , X
3.3:
Matlab
code
7
for
i = 1:n
Motion).
Brownian
motion is1 a %use
very mesh
important
size h 7 for Because
Gaussian
processes
are defined to be processes where, for
length(t);
i =normal
1:n
10
andvector.
a covariance
function
thennormal
simulating
a multivariate
mal= density
and
a multivariate
density
is completely
describe
by
%Plot
8
mu(i)
=
0;
1
%use
mesh
size
h
2
m
=
1000;
h
=
1/m;
t
=
h
:
h
:
1;
n some sense, the continuous time
continuous
choice
of
times
t
,
.
.
.
,
t
,
the
random
vector (Xt1 , .1
. . , Xtn ) has a multiva
8
mu(i)
=
0;
1
n
11
%Make
the
covariance
matrix
3.1.2
a Gaussian
Processes
In
the: following
examples,
we
simulate
the
processes
at
evenly
plot(t,X);
an
vectorend
µ and
a 1/m;
covariance
matrix
Σ,Simulating
the probability
distribution
of GaussianVersion
r(s, t)density
= Cov(Xiss , completely
Xt ).
2 random
m =9 1000;
h It
= has
t expectation
= 3 h n: =h length(t);
1;12 Sigma =9 zeros(n,n);
normal
density
and
a
multivariate
normal
describ
end
le
walk.
an
function
Make
the
mean
vector
The
complexity
of
the
Cholesky
decomposition
of
an
arbitra
spaced
times
t
=
1/h,
t
=
2/h,
.
.
.
,
t
=
1.
ssian
process
is
completely
described
if
we
have
a
way
to
construct
the
1
2
n
Because
Gaussian
processes
are
defined
to
be
processes
where,
for
any
4
10
a
mean
vector
µ
and
a
covariance
matrix
Σ,
the
probability
distributi
3
n
=
length(t);
10
ction
r(s, t) = min(s, t).
we can simulate the values of a Gaussian process at
3
= zeros(1,n);
nu4 vector
and
covariance
matrix
for
anof
arbitrary
of the
t1 ,process
.covariance
. . point
,Using
tn. .is
.. ,these,
matrix
matrix
is O(n
operations.
5
%Make
the
mean
Gaussian
completely
ifµa
we
have a way to construc
choice
times
t1 ,vector
. choice
.11. ,)t%Make
, the
random
(Xt1 , . . described
. , Xµtnwhere
) has
multivariate
nfloating
11
%Make
the PROCESSES
covariance
matrix
t1 ,vector
t0.2
n by calculating
i = µ(t1 ) and Σ, where Σi,j = r
3.1.
GAUSSIAN
95
Example
3.1.12
(Brownian
Motion).
Brownian
motion
isananormal
very
important
or can
i =do
1:n
12
Sigma
=
zeros(n,n);
We
this
using
an
expectation
function
mean
vector
and
covariance
matrix
for
arbitrary
choice
6
mu
=
zeros(1,n);
then
simulating
a
multivariate
vector.
normal
density
and
a
multivariate
normal
density
is
completely
describe
byof t1 , . . . , tn .
0
ng
3.3:
Matlab
code
5
%Make
the mean
vector
12
Sigma
= zeros(n,n);
stochastic
process
which
is,
in
some
sense,
the
continuous
time
continuous
mu(i)
=
0;
In
the
following
examples,
we
simulate
the
Gaussian
processe
We
can
do
this
using
an
expectation
function
7
for
i
=
1:n
−0.2Σ, the probability distribution of
a mean vector µ and a covariance matrix
6
mu for
= zeros(1,n);
i = 1:n
spaced
times
t
=
1/h,
t
=
2/h,
.
.
.
,
t
=
1.
1
2
n
state
space
analogue
of
a
simple
random
walk.
It
has
an
expectation
function
nd
8
= 0;Simulating
µ(t)
=mu(i)
EXt process
−0.4
j = 1:n
Gaussian
is completely described
if we have a wayProcesses
to construct the Versi
= 1:n
3.1.2
a Gaussian
h7 :for
1; i for
µ(t) = EXt
Sigma(i,j) = min(t(i),t(j));
9
end
−0.6 min(s,
µ(t)
=
0
and
a
covariance
function
r(s,
t)
=
t).
Example
3.1.12
(Brownian
Motion).
mean vector and covariance matrix for an arbitrary choice of t1 , . .Brownian
. , tn . motion is a very
8
mu(i)
= 0;
end
stochastic
process
which
is,
in
some
sense,
the continuous time
−0.8
10
aMake
covariance
function matrix
the covariance
WeBecause
can do thisGaussian
using
expectation
function
9
endend
andan
a covariance
function
processes
are
defined
to
be
processes
w
state
space
analogue
of
a
simple
random
walk.
It has an expectatio
Listing
3.3:
Matlab
code
%Make the covariance
matrix ETC. −1
CHAPTER 3. 11GAUSSIAN
PROCESSES
igma = zeros(n,n);
10
= random
0 and a covariance
function r(s, t), =
min(s, t).
choice
times
t1 , . . . , tnµ(t)
, µ(t)
the
−1.2
=size
r(s,
t)12normal
=Sigma
Cov(X
, of
XBrowniano:
%Generate• the
multivariate
vector
Simulazione
di
un
moto
1
%use
mesh
h
r(s, t)vector
= Cov(Xs(X
, Xtt).1 . . . , Xtn ) has a
szeros(n,n);
t ).
= EX
t
11
%Make
the covariance
matrix
1
2
3
4
5
6
7
8
9
10
11
12
13
1
n
14
15
16
17
18
19
20
21
22
23
24
Processi stocastici
// Simulazione di processi Gaussiani
13
14
15
Xt
16
17
18
19
20
A = chol(Sigma);
Listing
3.3: Matlabis
code
normal
normal
density
completel
2
m = 1000;
h = density
1/m; t = and
h : ha:multivariate
1;
Sigma
= +zeros(n,n);
21
X = mu
randn(1,n) * A;
−1.6
1we
%use
mesh
size
h
Using
these,
can
simulate
the
values
of
a
Gaussian
process
at fixed t
the
Cholesky
decomposition
of
an
arbitrary
real-valued
gofthese,
we
can
simulate
the
values
of
a
Gaussian
process
at
fixed
times
a covariance function
3
n = and
length(t);
22
m = 1000;
t = h : hΣ,
: 1;the probability d
a mean
vector µ and a 2 covariance
matrix
−1.8 h = 1/m;
−1.4
12
t1 , .Σ. . , tn=byr(t
calculating
where Σi,j = r(ti , tj )
. , tn by
calculating
µ where
µi = µ(t1 ) and Σ, where
andµ where µi = µ(t1 ) and Σ,
%Plot
ating
point
operations.
i,j
in, t=j )length(t);
4
t
then simulating a multivariate normal vector.
0
23
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
3
plot(t,X);
Gaussian
process isr(s,
completely
described
if we have a way to
t) = Cov(Xs , X
t ).
simulating
a multivariate
normal
vector.
5
%Make
the
mean vector
In the following
we simulate the Gaussian processes at ev
%Make examples,
the mean vector
Figure 3.1.1:
Plot of Brownain motion
on [0,of
1]. t
vector
and
covariance
matrix
an
choice
n the following examples,
the
Gaussian
processes
evenly
6 we
mu simulate
= mean
zeros(1,n);
zeros(1,n);
spaced
times
tat
= 2/h,for
. . . ,process
tn = arbitrary
1. at fixed times
1mu==1/h,
Using these, we can simulate
the values
of at2 Gaussian
ting
Processes
Version
1
i = 1:n
7
for
1:n
ed
timesat1 Gaussian
=
. . .ti, t, n.=.=
1. calculating
0.2 1/h, t2 = 2/h,
do this
usingµ for
an
expectation
. ,We
t bycan
µ where
= µ(t
) and Σ, wherefunction
Σ = r(t , t ) and
24
4
5
6
7
1
n
1 =3.1.13
i,j
iProcess).
j
8 i Example
mu(i)
0; Motion).
(Ornstein-Uhlenbeck
very
Example 3.1.12
(Brownian
Brownian
motion
is Another
a very impo
0
8
mu(i) = 0;
9
end vector.
then
simulating
a
multivariate
normal
Gaussian
process
is
the
Ornstein-Uhlenbeck
process.
This
has
stochastic
which is, in some sense, the continuous time
contine
mple
3.1.12
Brownian
motion
is a very
important
an processes
are defined
processes
where,
forprocess
any
−0.2 (Brownian
9 Motion).
end to be
10
function µ(t)
=Gaussian
0 and covariance
function
r(s,
t) = e−α|s−t|/2 .
In
the
following
examples,
we
simulate
the
processes
at
evenly
space analogue
of acovariance
simple
random
It has an expectation fun
3.1.
µ(t)PROCESSES
=matrix
EXwalk.
t
11
%MakeGAUSSIAN
the
hastic
which is,
sense,
time
continuous
10in some
. . , tn ,process
the−0.4
random
vector
(X
. , the
Xtntcontinuous
) =has
astate
multivariate
t1 , . . times
spaced
1/h,
t
=
2/h,
.
.
.
,
t
=
1.
Listing
3.4:
Matlab
µ(t)
=
0
and
a
covariance
function
r(s,
t)
=
min(s,
t). code
1
2
n
12
Sigma
=
zeros(n,n);
−0.6
Xt
analogue of anormal
simple
random
It has anmatrix
expectation
function
11
%Make
thewalk.
d space
a multivariate
density
iscovariance
completely
describe for
by imesh
= 1:n
%use
size h
= 0 and a covariance function
r(s,
t)
=
min(s,
t).
12
Sigma
= zeros(n,n);
and
a
covariance
function
j =h Listing
1:n
Example
3.1.12
(Brownian
Motion).
Brownian
motion
is
important
m = for
1000;
= 1/m;
t3.3:
= hMatlab
: ha :very
1;code
nd a covariance matrix Σ, the probability distributionn of
Sigma(i,j)
=
min(t(i),t(j));
length(t);
%useis,mesh
size =hsense,
stochastic process which
in some
the continuous time continuous
end
%paramter
OU process
Listingif 3.3:
Matlab
code
s completely described
we
have
way toofconstruct
m a=simple
1000; random
h =the
1/m;walk.
t =ofhIt
: has
h : an
1; expectation function
state
spaceaanalogue
end
alpha
= 10;
r(s,
t)
=
Cov(X
s , Xt ).
n
=
length(t);
mesh size matrix
h
ovariance
for an arbitrary
choice
of t1 , . .function
. , tn . r(s, t) = min(s, t).
µ(t) = 0 and
a covariance
%Generate the multivariate normal vector
1000;
= 1/m;
t = h : function
h : 1;
usinghan
expectation
A =vector
chol(Sigma);
%Make the mean
13
1
−0.8
14
2
−1
15
3
1
−1.2
16
4
2
17
5
−1.4
3
−1.6
−1.8
0
18
6
4
19
Using
these, wemu = zeros(1,n);
of a Gaussian process
t
X = mu + randn(1,n) * A;
%use
h calculating
t1 , .mesh
. . , tsize
for i = 1:n µ where µi = µ(t1 ) and Σ, where Σi,j =
n by
µ(t)
EX
t of
%Plot
Figure=
3.1.1:
Plot
on [0, 1].
m Brownain
= 1000;motion
h = 1/m;
t = mu(i)
h : h =: 0;
1;
e the mean vector
plot(t,X);normal vector.
then
simulating
a
multivariate
n = length(t);
zeros(1,n);
end
Example 3.1.13 (Ornstein-Uhlenbeck In
Process).
very important
unction
the Another
following
examples, we simulate the Gaussian proces
i = 1:n
Gaussian process is the Ornstein-Uhlenbeck
process.
This has
expectation
%Make
the
covariance matrix
%Make
the
mean
vector
mu(i) = 0;
spaced
t1.Sigma
= 1/h,
t2 = 2/h, . . . , tn = 1.
function µ(t) = 0 and covariance mu
function
r(s, t)times
= e−α|s−t|/2
= zeros(n,n);
= zeros(1,n);
length(t);
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.85
6
1
2
7
22
24
4
10
5
11
7
for
i = 1:n
Listing
3.4: Matlab
code
21
23
9
r(s, t) = Cov(Xs , Xt ).
20
8
3
6
1
Listing
3.3: Matlab
can
simulate
the code
values
0.9
12
0.2
0
−0.2
.
Processi stocastici
// Classi di processi
3.1. GAUSSIAN PROCESSES
propagator
! "!!!#$!!!%
P(2) =
P(2 | 1) P(1)dx1
where P(2 | 1) serves as the evolution kernel or propagator P
A stochastic process whose joint pdf does not change wh
13
for i = 1:n
called a (strict sense) stationary process:
USSIAN PROCESSES
14
for j = 95
1:n
15
Sigma(i,j)P(x
= 1min(t(i),t(j));
,t 1 ; x2 ,t 2 ; · · · ; xn ,t n ) = P(x1 ,t 1 + τ; x2 ,t 2 + τ; · · ·
16
end
τ > 0 being a time shift. Analysis of a stationary process is freq
17
end
:n
than for a similar process that is time-dependent: varying t, all
18
= 1:n 94
CHAPTER 3. GAUSSIAN
PROCESSES
ETC.
law;
all thevector
moments, if they exist, are consta
t have the same
19
%Generate
the Xmultivariate
normal
bution
of
X(t
)
and
X(t
)
depends
only on the difference τ =
1
2
gma(i,j) = min(t(i),t(j));
20
A = chol(Sigma);
P(x1 ,t 1 ; *
x2 ,t
2 ) = P(x1 , x2 ; τ).
21
X = mu + randn(1,n)
A;
Areal-valued
conceptual
of main kinds ofPROCESSES
stochastic processesET
th
The complexity of the Cholesky94decomposition
of an arbitrary
CHAPTER
3. map
GAUSSIAN
22
the remainder of this Chapter is presented in Figure 14.
3
23
%Plot
matrix is O(n ) floating point operations.
24
plot(t,X);
The complexity of the Cholesky decomposition of an arbitrary real-valu
Xt
the multivariate normal vector
matrix is O(n3 ) floating point 5operations.
How to leave the past behind: Markov Process
3.1.2
Simulating
a
Gaussian
Processes Version
1
Sigma);
0.2
The most simple kind of stochastic process is the Purely Rand
randn(1,n)Because
* A; Gaussian processes are defined to be processes
where,
for any
3.1.2 Simulating 0a Gaussian
Processes
Version 1
there are no correlations.
From Eq. (27):
−0.2
(Xt1 , . .PROCESSES
. , Xtn ) has a multivariate
94 choice of times t1 , . . . , tCHAPTER
3. vector
GAUSSIAN
ETC.
n , the random
P(1, 2) = P(1)P(2)
Because
Gaussian
processes
are
defined
−0.4
normal density and a multivariate normal
density
is completely
describe
byto be processes where, for a
P(1,
choice of times t1 , . . . , tn−0.6
, the random vector (Xt1 , . . 2,
. ,3)X= )P(1)P(2)P(3)
has a multivari
;
a mean
vectorofµthe
andCholesky
a covariance
matrix Σ,ofthe
probability
distribution of P(1, 2, 3, 4) =tn P(1)P(2)P(3)P1(3)
The
complexity
decomposition
an
arbitrary
real-valued
normal
density
and
a
multivariate
normal
density
is
completely
describe
−0.8
Gaussian
completely
described if we have a way to construct the
···
matrix
is O(n3 )process
floatingispoint
operations.
a mean vector µ and a covariance
matrix Σ, the probability distribution
−1
mean vector and covariance matrix
for an arbitrary
choice
of
t
,
.
.
.
, tn .process
1
Gaussian
process
is
completely
described
if we
a way
construct
One such
canhave
be obtained
for to
example
by repeat
−1.2
HAPTER 3. We
GAUSSIAN
PROCESSES
ETC.
can do this using an expectation
function
complete
independence
property
can
be
written
mean vector and covariance
matrix for an arbitrary choice of t1explicitly
, . . . , tnas:
.
−1.4
3.1.2
Simulating a Gaussian Processes Version 1
−1.6an expectation function
We can do this using
lesky decomposition
of an arbitrary
µ(t) = to
EXbe
t processes where,
Because Gaussian
processes real-valued
are defined
for 0.2
any 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−1.8
0
0.1
t
GAUSSIAN
ETC.
operations.
µ(t) = EXPROCESSES
choice of times t1 , . . . , tn94
, the random vector (Xt1 , . . CHAPTER
. , Xtn ) has a3.multivariate
t
and
a
covariance
function
normal density and a multivariate normal density is completely describe by
Figure 3.1.1: Plot of Brownain motion on [0, 1].
andΣ,
a covariance
function
a mean vector
µ and aVersion
covariance
matrix
theCholesky
probability
distributionofofan arbitrary real-valued
The complexity
of the
decomposition
Gaussian
Processes
1
r(s, t)
= Cov(X
s , Xt ).
Gaussian process is completely
if we have
aoperations.
way to construct
matrix isdescribed
O(n3 ) floating
point
r(s, t) (Ornstein-Uhlenbeck
=the
Cov(Xs , Xt ). Process). Another very
Example 3.1.13
es are
defined
to
be
processes
where,
for
any
mean vector and covariance matrix for an arbitrary choice
of
t
,
.
.
.
,
t
.
1
n
Gaussian
process
the Ornstein-Uhlenbeck
process. This has e
Using(X
these,
simulate
the values of a Gaussian
process
at isfixed
times
andomWe
vector
, . . .we
,using
Xcan
a multivariate
tn ) has
can dot1this
an expectation
function
Using
these, we can
simulate
values
of a Gaussian
process
at fixed
function
µ(t) =the
0 and
covariance
function r(s,
t) = e−α|s−t|/2
. tim
t1 , . .density
. , tn by iscalculating
where
µiby
= µ(t1 ) aand
Σ, where ΣProcesses
3.1.2µ describe
Simulating
Gaussian
Version
1
i,j = r(ti , tj ) and
riate normal
completely
t
,
.
.
.
,
t
by
calculating
µ
where
µ
=
µ(t
)
and
Σ,
where
Σ
=
r(t
,
1 di Ornstein-Uhlenbeck
n
i
1
i tj ) a
•simulating
Simulazione
di un processo
(O-U):
Listing
3.4: Matlab codei,j
thenΣ,
a multivariate
normal
vector.
ance matrix
the probability
distribution
of
µ(t)
=
EX
thent simulating
multivariate
normal
vector. where, for any
Because Gaussian
processesa%use
are
defined
processes
mesh
sizeto
h be
thehave
following
examples,
we simulate
the
Gaussian
processes
at evenly
y described In
if we
a way
to
construct
the
In
the
following
examples,
we
simulate
the
Gaussian
processes at eve
m = 1000;
h =(X
1/m;
: 1;
choice of times t1 , . . . , tn , the random
vector
a multivariate
t1 , .t. .= , hX:tnh) has
spaced
times
t
=
1/h,
t
=
2/h,
.
.
.
,
t
=
1.
and
a
covariance
function
1
n
= length(t);
matrix for an arbitrary choice
of t21 , density
. . . , tn . and
spaced
times t1 =n1/h,
t2 = 2/h,
. . . , tisn =
1.
normal
a multivariate
normal
density
completely
describe by
96
CHAPTER 3. GAUSSIAN PROCESSES
%paramter
of
OU
process
xpectation function
mean
vector
µExample
and, Brownian
a0.8covariance
matrix
theimportant
probability
of import
0.1 Example
0.2
0.33.1.12
0.4 a
0.5 t)
0.6
0.7
0.9motion
1 = is
alpha
10;
(Brownian
Motion).
a Σ,
very
(Brownian
Motion).
Browniandistribution
motion is a very
r(s,
=
Cov(X
s Xt ). 3.1.12
t
%Make
the is,
mean
vector
issense,
completely
described
ifinwe
havesense,
a waythetocontinuous
construct time
the continu
processGaussian
which is, process
in some
the continuous
time
continuous
stochastic
process
which
some
µ(t) =stochastic
EXt
mu = zeros(1,n);
mean
vector
and
covariance
matrix
for
an
arbitrary
choice
of
t
,
.
.
.
,
t
.
1 an expectation
n
Usingstate
these,
we can
simulate
values
of a space
Gaussian
process
fixedrandom
times
state
of
aat
simple
walk. It has
funct
space
analogue
of athe
simple
random
walk.analogue
It has
function
foran
i =expectation
1:n
We
can
do
this
using
an
expectation
function
mu(i)
=
0;
Plot
of Brownain
1].
µ(t)
=
and
a covariance
function
r(s, t) = min(s, t).
t1Figure
, . . .µ(t)
, tn 3.1.1:
by
µ wherefunction
=
µ(t
and
Σ,
where
r(ti , tj ) and
1 ) on
= 0calculating
and
aCHAPTER
covariance
r(s,
t)0[0,
=
min(s,
t).Σi,j =ETC.
3.µi motion
GAUSSIAN
PROCESSES
end
then simulating a multivariate normal vector.
Listing
3.3: Matlab code
=
Listing
3.3: the
Matlab
codeµ(t)
t at evenly
%Make
theEX
covariance
matrix
,
t)
= Cov(X
,X
In the sfollowing
examples,
we
simulate
Gaussian
processes
t ).
The
complexity
of
the
Cholesky
decomposition
of
an
arbitrary
real-valued
1
%use
mesh size
hSigma
3.1.13
(Ornstein-Uhlenbeck
Process).
Another
very
important
= zeros(n,n);
1
%use
mesh
spaced
t1 =size
1/h,htoperations.
3 times
2 = 2/h, . . . , tn = 1.
for it ==1:n
ix is
O(n
)ofthe
floating
point
2
m function
= 1000; h = 1/m;
h : h : 1;
and
a covariance
process
is
Ornstein-Uhlenbeck
the
values
a
Gaussian
process
2
m = 1000; h = 1/m; t =athfixed
: process.
h times
: 1; This has expectation
for j = 1:n
3
n
=
length(t);
3.1.12
(Brownian
Motion).
Brownian
motion
is a very= important
Sigma(i,j)
exp(-alpha * abs(t(i) - t(j)) / 2);
ere
µ=i 3=
and Σ, where
Σi,j =
r(t
and
(t)Example
0 µ(t
and
covariance
function
r(s,
e−α|s−t|/2
.
n =1 )length(t);
i , tt)
j) =
4
r(s,
t)
=
Cov(X
, Xt ).
end
s
stochastic
process
which
is,
in
some
sense,
the
continuous
time
continuous
Simulating
a Gaussian Processes
1
e2normal
vector.
4
5
%Make theVersion
mean vector
end
Listing
Matlab
spacethe
analogue
aprocesses
simple
random
walk.
It has an expectation function
westate
simulate
Gaussian
atcode
evenly
5
%Make
the
meanof3.4:
vector
6
mu
=processes
zeros(1,n);
Using
these, we
can
simulate
the
values
a multivariate
Gaussian process
at fixed times
Because
Gaussian
processes
are
defined
to
be
where,
forofthe
any
%Generate
normal vector
a covariance function r(s,
t) =imin(s,
=and
zeros(1,n);
h,size
.µ(t)
. . ,6thn=mu
=0 1.
7
for
= 1:n t). A = chol(Sigma);
t1 , . . . ,vector
tn by calculating
ce of times t1 , . . . , tn , the random
(Xt1 , . . . , Xµ
)where
has a µ
multivariate
i = µ(t1 ) and Σ, where Σi,j = r(ti , tj ) and
for ti == h1:n
8
mu(i)tn = 0; X = mu + randn(1,n) * A;
h = 71/m;
: h : then
1;Listing
simulating
a multivariate
normal vector.
3.3:
Matlab
code
mal
density and
a multivariate
normal
density
Motion).
9
end is completely describe by
mu(i) =motion
0; is a very important
h(t);8 Brownian
In
thecontinuous
following
examples, we
simulate the
%Plot
vector
µ and
acontinuous
covariance
matrix
Σ,
the probability
distribution
of Gaussian processes at evenly
1 some
%use
mesh
size
h
nan
the
time
10
9 sense,
end
of
OU
process
plot(t,X);
spaced
t1 =
1/h,athe
t2way
=covariance
2/h,
. . . , tnmatrix
= 1.the
ssian
process
ish completely
have
to construct
m 10
= 1000;
= has
1/m;ant expectation
=described
h : htimes
: if
1;11we
%Make
le2 random
walk.
It
function
0;
nction
and
an arbitrary
of t1 , . . . , tn .
3 vector
n 11
=
length(t);
12
Sigma choice
= zeros(n,n);
r(s,
t) =covariance
min(s,
t). matrix for
%Make
the covariance
matrix
Example
3.1.12 (Brownian Motion). Brownian
motion is a very important
3
4 can do this using an expectation function
We
12
Sigma = zeros(n,n);
the continuous time continuous
ng
3.3: Matlab
codevectorstochastic process which is, in some sense,
5
%Make
the mean
2.5
Processi stocastici
// Simulazione di processi Gaussiani
1
2
3
4
5
67
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
11
end
12
13
14
15
16
ROCESSES
17
18
19
20
21
22
23
24
25
0.2
0.3
26
−1.8
0
%Make the covariance matrix
Sigma = zeros(n,n);
for i = 1:n
for j = 1:n
Sigma(i,j) = exp(-alpha * abs(t(i) - t(j)) / 2);
end
end
0.2
%Generate the multivariate normal vector
A = chol(Sigma);
X = mu + randn(1,n) * A;
0.4
0.5
t
0.6
0.7
0.8
0.9
function µ(t) = 0 and covariance function r(s, t) = e−α|s−t|/2 .
• Simulazione
di un
processo
di Ornstein-Uhlenbeck (O-U):
0.6
0.7
0.8
0.9
1
%Plot
plot(t,X);
0.4
0.5
t
1
2
of an Ornstein-Uhlenbeck process on [0, 1] with α = 10.
2.5
3
2
4
1.5
5
Xt
(Fractional Brownian Motion). Fractional Brownian moeralisation of Brownian Motion. It has expectation funcovariance function Cov(s, t) = 1/2(t2H + s2H − |t − s|2H ),
1
67
0.5
8
0
9
−0.5
10
11
−1
−1.5
0
0.1 0.6
0.2
0.30.7 0.4
0.4
0.5
3.1. GAUSSIAN
PROCESSES
t
0.3
0.3
Figure 3.1.1: Plot of Brownain motion on [0, 1].
Processi stocastici 97
Example 3.1.13 (Ornstein-Uhlenbeck Process). Another very
// Simulazione di processi Gaussiani
Gaussian process is the Ornstein-Uhlenbeck process. This has e
3
0.2
0.1
0.5
0.8
t
0.6
0.90.7
1
0.8
0.9
Listing 3.4: Matlab code
%use mesh size h
m = 1000; h = 1/m; t = h : h : 1;
n = length(t);
96
%paramter
of OU processCHAPTER 3. GAUSSIAN PROCESSES
alpha = 10;
%Make the mean vector
mu = zeros(1,n);
for i = 1:n
mu(i) = 0;
end
12
1
97
13
14
Figure 3.1.2:
Plot of an Ornstein-Uhlenbeck process on [0, 1] with α = 10.
4
f an Ornstein-Uhlenbeck process on [0, 1] with α = 100.
3
Example
3.1.14 (Fractional Brownian Motion). Fractional Brownian motion (fBm)
is a generalisation of Brownian Motion. It has expectation func2
tion µ(t) = 0 and covariance function Cov(s, t) = 1/2(t2H + s2H − |t − s|2H ),
called the Hurst parameter. When H = 1/2, fBm reBrownian motion. Brownian motion has independent inst, for H > 1/2 fBm has positively correlated increments
m has negatively correlated increments.
Xt
1
15
16
17
18
19
−2
are likely to play a role in
eye movement modelling and
20
0
−1
%Make the covariance matrix
Sigma = zeros(n,n);
for i = 1:n
for j = 1:n
Table of content
Sigma(i,j) = exp(-alpha
* abs(t(i) - t(j)) / 2);
end
Fig. 14 A conceptual map
of stochastic processes that
end
21
22
23
%Generate the multivariate normal vector
analyses
A = chol(Sigma);
X = mu + randn(1,n) * A;
24
Listing 3.5: Matlab code
−3
0
0.1
0.2
0.3
0.4
0.5
t
0.6
0.7
0.8
0.9
1
25
26
%Plot
plot(t,X);
Figure 3.1.3: Plot of an Ornstein-Uhlenbeck process on [0, 1] with α = 100.
t = h : h
.
where H ∈ (0, 1) is called the Hurst parameter. When H = 1/2, fBm reduces to standard Brownian motion. Brownian motion has independent increments. In contrast, for H > 1/2 fBm has positively correlated increments
:
and1;
for H < 1/2 fBm has negatively correlated increments.
3
Processi stocastici
// Classi di processi
2.5
2
Listing 3.5: Matlab code
2
tor
3
4
5
6
%use mesh size h
m = 1000; h = 1/m; t = h : h : 1;
n = length(t);
7
8
9
10
11
ce matrix
;
12
1.5
%Hurst parameter
H = .9;
Xt
1
%Make the mean vector
mu = zeros(1,n);
for i = 1:n
mu(i) = 0;
end
13
%Make the covariance matrix
Sigma = zeros(n,n);
16
for i = 1:n
17
for j = 1:n
18
Sigma(i,j) = 1/2 * (t(i)^(2*H) + t(j)^(2*H)...
(t(i)^(2*H)
+ t(j)^(2*H)...
19
- (abs(t(i)
- t(j)))^(2 * H));
14
15
= 1/2 *
t(i) - t(j)))^(2 * H));
1
0.5
0
−0.5
propagator
! "!!!#$!!!%
P(2) =
P(2 | 1) P(1)dx1
where P(2 | 1) serves as the evolution kernel or propagator P
A stochastic process whose joint pdf does not change wh
called a (strict sense) stationary process:
P(x1 ,t 1 ; x2 ,t 2 ; · · · ; xn ,t n ) = P(x1 ,t 1 + τ; x2 ,t 2 + τ; · · ·
τ > 0 being a time shift. Analysis of a stationary process is freq
than for a similar process that is time-dependent: varying t, all
−1.5
0
0.1X have
0.2 the 0.3
0.4 all 0.5
0.6
0.7
1
same law;
the
moments,
if they0.8exist, 0.9
are consta
t
t
bution of X(t 1 ) and X(t 2 ) depends only on the difference τ =
P(x1 ,t 1 ; x2 ,t 2 ) = P(x1 , x2 ; τ).
Figure 3.1.2: PlotAofconceptual
an Ornstein-Uhlenbeck
process
on [0, 1]
with α th=
map of main kinds
of stochastic
processes
the remainder of this Chapter is presented in Figure 14.
−1
Example 3.1.14 (Fractional Brownian Motion). Fractional Brownian
tion (fBm) is a generalisation of Brownian Motion. It has expectation
2H
tion µ(t) = 0 and
function
Cov(s,
t) = 1/2(t
+ s2H
− |t −
5 covariance
How to leave
the past
behind:
Markov
Process
The most simple kind of stochastic process is the Purely Rand
there are no correlations. From Eq. (27):
P(1, 2) = P(1)P(2)
P(1, 2, 3) = P(1)P(2)P(3)
P(1, 2, 3, 4) = P(1)P(2)P(3)P1 (3)
···
One such process can be obtained for example by repeat
complete independence property can be written explicitly as:
−2
ition ofBecause
an arbitrary
real-valued
µ(t) = to
EXbe
t processes where, for any
Gaussian
processes are defined
−3 GAUSSIAN
PROCESSES
ETC.
choice of times t1 , . . . , tn94
, the random vector (Xt1 , . . CHAPTER
. , Xtn ) has a3.multivariate
0
0.1µ(t)
0.2 = EX
0.3
0.5
0.6
0.7
0.8
0.9
1
t 0.4
t
and
a
covariance
function
normal density and a multivariate normal density is completely describe by
andΣ,
a covariance
function
Figure
3.1.3: Plot of of
an
process on [0, 1] with α = 1
a mean Version
vector µ and
matrix
theCholesky
probability
distribution
ofOrnstein-Uhlenbeck
The complexity
of the
decomposition
an arbitrary real-valued
ocesses
1 a covariance
r(s,
t)
=
Cov(X
,
X
).
s
t
3
Gaussian process is completely
if we have
way to construct
the
matrix isdescribed
O(n ) floating
pointaoperations.
Cov(X
, Xt ).parameter. When H = 1/2, fBm
where H r(s,
∈ (0,t)
1) =
is called
the sHurst
to be
processes
where,
for
any
mean vector and covariance matrix for an arbitrary choice duces
of t1to, .standard
. . , tn . Brownian motion. Brownian motion has independent
Using
these,
we can simulate the values of a Gaussiancrements.
process at
fixedfortimes
contrast,
fBm has positively
correlated
increme
Xt1 , . . .We
,X
multivariate
tcan
n ) has
do athis
using an expectationUsing
function
these, we can simulateInthe
valuesHof> a1/2Gaussian
process
at fixed
tim
and forΣHProcesses
<=
1/2r(t
fBmi ,has
negatively
correlated1increments.
t
,
.
.
.
,
t
by
calculating
µ
where
µ
=
µ(t
)
and
Σ,
where
t
)
and
3.1.2
Simulating
a
Gaussian
Version
1
n
i
1
i,j
j
nsity is completely
describe
by
t1 , . . . , tnfrazionario
by calculating
µ where µi = µ(t1 ) and Σ, where Σi,j = r(ti , tj ) a
Simulazione
di moto Browniano
(fBm):
Listing 3.5: Matlab code
then •simulating
a multivariate
normal
vector.
the probability
distribution
ofBecause
µ(t)Gaussian
= then
EXt simulating
a
multivariate
normal
vector. where, for any
processes are%Hurst
defined
to
be processes
parameter
In to
theconstruct
following the
examples, we simulate
the
Gaussian
processes
at evenly
we have a way
following
examples,
we simulate
the Gaussian processes at eve
H = .9;
choice of times t1 , . .In
. , tthe
n , the random vector (Xt1 , . . . , Xtn ) has a multivariate
1/h,
t
=
2/h,
.
.
.
,
t
=
1.
and choice
aspaced
covariance
2
n
bitrary
oftimes
t1 , . function
. .t,1t=
.
spaced
times
t
=
1/h,
t
=
2/h,
.
.
.
,
t
=
1.
n normal density and a multivariate
1
normal
isn completely describe by
%use2 mesh density
size h
ion
m = 1000; h = 1/m; t = h : h : 1;
mean
vector
µExample
and, Brownian
a covariance
matrix
theimportant
probability
of import
Example 3.1.12 a(Brownian
motion
is a Σ,
very
(Brownian
Motion).
Browniandistribution
motion is a very
n = length(t);
r(s, t)
=Motion).
Cov(X
s Xt ). 3.1.12
Gaussian
issense,
completely
described
ifinwesome
havesense,
a waythetocontinuous
construct time
the continu
stochastic
process
is,0.8process
in some
the continuous
continuous
process
which
is,time
0.2
0.3
0.4
0.5
0.6 which
0.7
0.9stochastic
1
%Make the mean vector
t
mean
vector
and
covariance
matrix
forexpectation
an
arbitrary
choice
. , expectation
tn .
1 , . .an
Usingstate
these,
we can
simulate
values
of
a space
Gaussian
process
fixed
times
state
of
aat
simple
random
walk. of
It thas
funct
mu
=
zeros(1,n);
space
analogue
of athe
simple
random
walk.analogue
It
has
an
function
for
i
=
1:n
We
can
do
this
using
an
expectation
function
µ(t)
=
0
and
a
covariance
function
r(s,
t)
=
min(s,
t).
t1 , . . .µ(t)
, tn by
calculating
µ
where
µ
=
µ(t
)
and
Σ,
where
Σ
=
r(t
,
t
)
and
1
= 0 and aCHAPTER
covariance function
r(s,
t) =PROCESSES
min(s, t). i,j mu(i)
3. i GAUSSIAN
ETC.
= i0; j
of then
an Ornstein-Uhlenbeck
process on
[0, 1] with
α = 10.
end
simulating a multivariate
normal
vector.
Listing
3.3: Matlab code
= EX
Listing
3.3: the
Matlab
codeµ(t)
t at evenly
X ). In the following
examples,
we
simulate
Gaussian
processes
%Make the covariance
matrix
Thet complexity
of the Cholesky
decomposition
of
an
arbitrary
real-valued
1
%usedimesh
size h 3.1.
Coefficiente
Hurst
PROCESSES
SigmaGAUSSIAN
= zeros(n,n);
(Fractional
Brownian
Motion).
mo1
%use
mesh
size
ht2 = Fractional
spaced
t
1/h,
2/h,
.
.
.
,
t
=
1.
3 times
1 =
nBrownian
ix is O(n process
) floating
operations.
2
m function
= 1000; h = 1/m; for
t =i =h 1:n
: h : 1;
andtaIt
covariance
Gaussian
at hpoint
fixed
times
neralisation
Brownian
func2
m =of 1000;
= Motion.
1/m;
= has
h : expectation
h : 1;
for j = 1:n
3
n
=
length(t);
2H PROCESSES
2Hmotion is 98
4 important
3.
GAUSSIAN
3.1.12
Motion).
a verySigma(i,j)
3. +GAUSSIAN
PROCESSES ET
= 1/2 *CHAPTER
(t(i)^(2*H)
t(j)^(2*H)...
nd Example
Σ, 3where
Σ
r(t(Brownian
)=
and
covariance
1/2(t
+ s2HBrownian
− |t − s|ETC.
),
n function
=CHAPTER
length(t);
i,j =Cov(s,
i , tjt)
4
r(s,
t)
=
Cov(X
,
).
-X
(abs(t(i)
- t(j)))^(2 * H));
s
t
processawhich
is, in some
sense, the Version
continuous 1
time 3continuous
Simulating
Gaussian
Processes
.2 stochastic
4
SIAN
PROCESSES
5
%Make the 99
mean vector end
state
space
analogue
a simple random
walk.
It has an expectation
function
end
he Gaussian
processes
atofevenly
5
%Make
the mean
vector
2
6
zeros(1,n);
Using
these, we
can
simulate
the
values
a Gaussian process at fixed times
Because
Gaussian
processes
are
defined
to mu
be==processes
where,
forofany
µ(t)
=
0
and
a
covariance
function
r(s,
t)
min(s,
t).
6
mu = zeros(1,n);
7
for i = 1:n
1 the multivariate normal vector
%Generate
t1 , . . . ,vector
tn by calculating
ce of times t1 , . . . , tn , the random
(Xt1 , . . . , Xµ
)where
has a µ
multivariate
i = µ(t1 ) and Σ, where Σi,j = r(ti , tj ) and
A = chol(Sigma);
7
for i = 1:n
8
mu(i)tn = 0;
multivariate
normal
vectorthen
simulating
a multivariate
normal
vector.
Listing
3.3:
Matlab
code
mal
density
and
multivariate
normal
density
by
X = mu
+0 randn(1,n)
* A;
nian
motion
ismu(i)
a avery
9
end is completely describe
8
= important
0;
);
−1 the
In
the
following
examples,
we
simulate
Gaussian
processes at evenly
an
vector
µ
and
a
covariance
matrix
Σ,
the
probability
distribution
of
1
%use
mesh size
he
continuous
time hcontinuous
10
%Plot
end
(1,n) 9* A;
t1 =
1/h,athe
t2way
=covariance
2/h,
. . . ,plot(t,X);
tnmatrix
= −21.the
ssian
process
have
to construct
= 1000; ish completely
= 1/m; t spaced
=described
h : htimes
: if
1;11we
%Make
.2 Itmhas
10 an expectation function
n3 vector
and
covariance
matrix for
an arbitrary
of t1 , . . . , tn . −30 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
n 11
=t).length(t);
12
Sigma choice
= zeros(n,n);
min(s,
%Make
the covariance
matrix
Example
3.1.12
(Brownian
Motion). Brownian
motion is a very
important
t
4 can do this using an expectation function
We
2
12
Sigma = zeros(n,n);
sense,
the continuous time continuous
5code
%Make the mean vectorstochastic process which is, in someFigure
1.5
3.1.3:
Plot of an Ornstein-Uhlenbeck process on [0, 1] with α = 1
state
space
analogue
of
a
simple
random
walk.
It has an expectation function
6
mu = zeros(1,n);
µ(t) = EXt
1
µ(t) = 0 and a covariance function r(s,
min(s,
t). the Hurst parameter. When H = 1/2, fBm
7
for i = 1:n
wheret)
H0.5=
∈ (0,
1) is called
duces
to
standard
Brownian
motion. Brownian motion has independent
a8 covariance
mu(i) function
= 0;
0 In contrast, for H > 1/2 fBm has positively correlated increme
crements.
Listing
3.3:
Matlab
code
9
end
and for−0.5
H < 1/2 fBm has negatively correlated increments.
0.1
0.2
0.3
0.4 PROCESSES
0.5
0.7
0.8
0.9
1
3.1. GAUSSIAN
99
r(s,
t)0.6di
= moto
Cov(X
• Simulazione
Browniano
frazionario
(fBm):
mesh
size
h
10
s , Xt ).
t 1 %use
Listing 3.5: Matlab code
Processi stocastici
// Simulazione di processi Gaussiani
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
Xt
23
24
25
26
27
28
Xt
Processi stocastici
// Simulazione di processi Gaussiani
−1
%Make the covariance
2
mmatrix
= 1000; h = 1/m; t = h : h : 1;
%Hurst parameter
−1.5
0.2
g.5:these,
we
can
simulate
the
values
a
Gaussian
process
times
H = .9;
98
CHAPTER
3. of
GAUSSIAN
PROCESSES
ETC. at fixed
12
Sigma
=
zeros(n,n);
3
n
=
length(t);
Plot of fractional Brownian motion on [0, 1] with H = 0.9.
11
1
2
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
. , tn by calculating µ where
µi = µ(t1 ) and Σ, where Σi,j = r(t%use
) −2and
i , tjmesh
4
t
size h
end
0
m = 1000; h = 1/m; t = h : h : 1;
simulating
normalthe
vector.
5
%Make
mean vector
end a multivariate
ditions for a stochastic process to be stationary are quite strict.
n Figure
= length(t);
3.1.4: Plot of fractional Brownian motion on [0, 1] with H = 0.1
−0.1 examples,
nghtly
the weaker
following
simulate
the Gaussian processes at
evenly
6 we
munormal
= zeros(1,n);
version
of stationarity,
called
%Generate
the multivariate
vector weak stationarity is
%Make the mean vector
7
for
ed
timesA t=1 chol(Sigma);
=−0.21/h, t2 = 2/h,
. . . i, tn= =1:n
1.
tead.
3
0.1
4
20
5
21
6
22
7
Xt
23
8
24
25
X = mu + randn(1,n) * A;
−0.3
26
8
mu(i) = 0;
9
10
mu = zeros(1,n);
3.1.3
Stationary
for
i = 1:n
mu(i)cesses
= 0;
end
and Weak Stationary Gaussian Pr
mple
(Brownian
Brownian
motionprois a very important
%Plot Stationary
3.1.16 3.1.12
(Weak
Stochastic
A stochastic
9 Motion).
end Process).
−0.4
plot(t,X);
.1is said
0.2process
0.3 weak
0.4stationary
0.5
0.8 the
0.9continuous
1
to be
(sometimes
wide
sense
stationary
hastic
which
is,
in0.6
some0.7sense,
time continuous
Gaussian processes (and stochastic processes in general) are easier to w
t 10
−0.5
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
der
stationary)
if
EX
=
c
for
all
t
≥
0
and
Cov(X
,
X
)
does
with
if the
theycovariance
are stationary
stochastic processes.
matrix
t
t
t+s
space analogue of a simple
random
walk.
It has anmatrix
expectation%Make
function
11
%Make
the
covariance
t
Sigma = zeros(n,n);
on
t.
2
= 0 and a covariance
function
r(s,
= min(s, t).
Definition
12
Sigma
= t)
zeros(n,n);
for
i = 1:n 3.1.15 (Stationary Stochastic Process). A stochastic proc
27
11
28
12
13
14
15
Xt
Plot of fractional
Brownian
motion
on [0,
1] with
= 0.1.
Figure1.53.1.5:
Plot of fractional
Brownian
motion
on [0, H
1] with
H = 0.9.
mple of a weak stationary Listing
process is3.3:
the Matlab
Ornstein-Uhlenbeck
procode
1
−α|t−(t+s)|/2
and
Cov(X
t +tos)
e
The
conditions
fort ,aXstochastic
process
be =
stationary
are quite =
strict.
t = µ(t) = 0
t+s ) = r(t,
mesh size
Often, ha0.5slightly weaker version of stationarity, called weak stationarity is
ionary
Gaussian Proinstead.
0 Weak
1000;
h required
=and
1/m;
t = h Stationary
: h : 1;
−0.5
es
length(t);
1.17.
Gaussian
processes
that Stationary
are weakStochastic
stationary
are stationary.
Definition
3.1.16 (Weak
Process).
A stochastic pro-
cess {Xt−1
}t≥0 is said to be weak stationary (sometimes wide sense stationary
ocesses
(and
stochastic
processes
easier
work
ortheorem
second
order
stationary)
if EXin
c for
all t ≥are
0 and
Cov(X
t =general)
t, X
t+s ) does
now
from
3.1.5
that Gaussian
distributions
are to
entirely
−1.5
e the mean
vector
not
depends
on
t.
stationary stochastic processes.
by
their mean vector
and covariance matrix. Since the mean and
zeros(1,n);
−2
0
0.1
0.2
0.3
0.4
0.5
0.6
0.8
0.9
1
An
example
a weak
stationary
process
is when
the0.7Ornstein-Uhlenbeck
prof a weakly stationary ofprocess
do not
change
the
times
are
t
−α|t−(t+s)|/2
i = 1:n
1.15
(Stationary
cess, as EXt Stochastic
= µ(t) = 0 andProcess).
Cov(Xt , Xt+sA
) =stochastic
r(t, t + s) = eprocess
=
y s, a weakly
−αs/2 stationary Gaussian process is stationary.
e0;
. 3.1.4:ifPlot
mu(i)
to be =stationary
theof random
vectorsmotion
(Xt1on, X
. . . ,HX=tn0.1.
)
Figure
fractional Brownian
[0,t21], with
have
distribution
forstationary
all process,
choices
of
+s , . . . , XLemma
tn +s ) process
3.1.17.the
Gaussian
processes
that are Gaussian
weak
are stationary.
tein-Uhlenbeck
is asame
weak
stationary
so
..,t .
16
17
18
19
20
21
22
23
24
25
{Xt }for
t≥0 jis =said
1:n to be stationary if the random vectors (Xt1 , Xt2 , . . . , X
98
PROCESSES
ET
and (XtSigma(i,j)
. , 1/2
Xtn +s
)(t(i)^(2*H)
have the 3.
same
distribution
for all choices
*CHAPTER
+GAUSSIAN
t(j)^(2*H)...
1 +s , Xt2 +s , . . =
s, n and t1 , t-2 , .(abs(t(i)
. . , tn .
- t(j)))^(2 * H));
end
An example of such a process would be an irreducible positive recurr
continuous time Markov chain started from its stationary distribution.
end
%Generate the multivariate normal vector
A = chol(Sigma);
X = mu + randn(1,n) * A;
26
27
28
%Plot
plot(t,X);
2
1.5
Processi stocastici
// Simulazione di processi Gaussiani
0.2
3.1.
0.1
0.3
0.4 PROCESSES
0.5
0.6
GAUSSIAN
• Simulazione
di
t
0.7
0.8
0.9
1
99
moto
Browniano
frazionario
(fBm):
0.2
3. GAUSSIAN PROCESSES ETC.
.5: Plot of98fractional BrownianCHAPTER
motion on
[0, 1] with H = 0.9.
0.1
end
20
21
0
end
ditions for a stochastic process to be stationary are quite strict.
−0.1
ghtly weaker
version
of stationarity,
%Generate
the multivariate
normalcalled
vector weak stationarity is
A = chol(Sigma);
−0.2
tead.
23
Xt
22
H > 1/2
incrementi positivamente correlati
24
25
X = mu + randn(1,n) * A;
−0.3
26
%Plot Stationary Stochastic Process). A stochastic pro3.1.16 (Weak
−0.4
.1is said
0.2 toplot(t,X);
0.3 weak
0.4stationary
0.5
0.6
0.7
0.8
0.9
1
be
(sometimes
wide
sense
stationary
t
−0.5
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9) does
1
der stationary) if EXt = c for all t ≥ 0t and Cov(Xt , Xt+s
on t.
2
Plot of fractional
Brownian
motion
on [0,
1] with
= 0.1.
Figure1.53.1.5:
Plot of fractional
Brownian
motion
on [0, H
1] with
H = 0.9.
mple of a weak stationary process is the Ornstein-Uhlenbeck pro1
and
Cov(X
t +tos)
e−α|t−(t+s)|/2
The
conditions
fort ,aXstochastic
process
be =
stationary
are quite =
strict.
t = µ(t) = 0
t+s ) = r(t,
27
28
Often, a0.5slightly weaker version of stationarity, called weak stationarity is
required instead.
0
H = 1/2
moto Browniano
Table of content
Fig. 14 A conceptual map
of stochastic processes that
are likely to play a role in
eye movement modelling and
analyses
Xt
ionary and Weak Stationary Gaussian ProH < 1/2
es
1.17. Gaussian
processes
that Stationary
are weakStochastic
stationary
are stationary.
Definition
3.1.16 (Weak
Process).
A stochastic pro- incrementi negativamente correlati
−0.5
cess {Xt−1
}t≥0 is said to be weak stationary (sometimes wide sense stationary
ocesses
(and
stochastic
processes
easier
work
or
second
order
stationary)
if EXin
c for
all t ≥are
0 and
Cov(X
t =general)
t, X
t+s ) does
now from theorem
3.1.5
that Gaussian
distributions
are to
entirely
−1.5
not depends
on t. processes.
stationary
stochastic
by their mean vector
and covariance matrix. Since the mean and
−2
0
0.1
0.2
0.3
0.4
0.5
0.6
0.8
0.9
1
An example
ofprocess
a weak
stationary
process
is when
the0.7Ornstein-Uhlenbeck
prof a weakly stationary
do not
change
the
times
are
t
−α|t−(t+s)|/2
1.15
(Stationary
cess, as EXt Stochastic
= µ(t) = 0 andProcess).
Cov(Xt , Xt+sA
) =stochastic
r(t, t + s) = eprocess
=
y s, a weakly
−αs/2 stationary Gaussian process is stationary.
e
.
to be stationary
theof random
vectorsmotion
(Xt1on, X
. . . ,HX=tn0.1.
)
Figure 3.1.4:ifPlot
fractional Brownian
[0,t21], with
,
.
.
.
,
X
)
have
the
same
distribution
for
all
choices
of
+s
t
+s
Lemma
3.1.17. Gaussian
processes
that are Gaussian
weak stationary
are stationary.
n
tein-Uhlenbeck
process
is a weak
stationary
process,
so
.nary
. , tn .stochastic process.
Proof.
know from theorem
thatStationary
Gaussian distributions
are entirely
3.1.3 WeStationary
and 3.1.5
Weak
Gaussian
Proariance matrix
ofcesses
a their
stationary
Gaussian
process
at and
determined
by
mean vector
and covariance
matrix.evaluated
Since the mean
of such acovariance
process
would
be
an
irreducible
positive
recurrent
stationary
times are
times (e.g.
t0 = of0,at1weakly
= 1/h,
t2 = process
2/h, .do
. . ,not
tn change
= 1) when
has the
a parGaussian
processes
(and
stochastic
processes
in
general)
are
easier to work
shiftedstarted
by s, a weakly
Gaussian process
is stationary.
e Markovallchain
fromstationary
its stationary
distribution.
Processi stocastici
// Classi di processi
with if they are stationary stochastic processes.
An Ornstein-Uhlenbeck process is a weak stationary Gaussian process, so
Definition
3.1.15
(Stationary
Stochastic Process). A stochastic process
it
is a stationary
stochastic
process.
{XtThe
}t≥0 covariance
is said to be
stationary
if the random
vectors
(Xt1 , X
t2 , . . . , Xtat
n)
matrix
of a stationary
Gaussian
process
evaluated
and
(X
,
X
,
.
.
.
,
X
)
have
the
same
distribution
for
all
choices
of
t
+s
t
+s
t
+s
n
1
2
equidistant times (e.g. t0 = 0, t1 = 1/h, t2 = 2/h, . . . , tn = 1) has a pars, n and t1 , t2 , . . . , tn .
An example of such a process would be an irreducible positive recurrent
continuous time Markov chain started from its stationary distribution.
.
propagator
! "!!!#$!!!%
P(2) =
P(2 | 1) P(1)dx1
where P(2 | 1) serves as the evolution kernel or propagator P
A stochastic process whose joint pdf does not change wh
called a (strict sense) stationary process:
P(x1 ,t 1 ; x2 ,t 2 ; · · · ; xn ,t n ) = P(x1 ,t 1 + τ; x2 ,t 2 + τ; · · ·
τ > 0 being a time shift. Analysis of a stationary process is freq
than for a similar process that is time-dependent: varying t, all
X t have the same law; all the moments, if they exist, are consta
bution of X(t 1 ) and X(t 2 ) depends only on the difference τ =
P(x1 ,t 1 ; x2 ,t 2 ) = P(x1 , x2 ; τ).
A conceptual map of main kinds of stochastic processes th
the remainder of this Chapter is presented in Figure 14.
5 How to leave the past behind: Markov Process
The most simple kind of stochastic process is the Purely Rand
there are no correlations. From Eq. (27):
P(1, 2) = P(1)P(2)
P(1, 2, 3) = P(1)P(2)P(3)
P(1, 2, 3, 4) = P(1)P(2)P(3)P1 (3)
···
One such process can be obtained for example by repeat
complete independence property can be written explicitly as:
Usually,
grows
at least
linearly
m.toInreducing
the
casediscretization
of Cholesky
decompoonfmuch
how
much
effort
to allocate
error (how large m
3effort
should be) and
how
to allocate
toinreducing
statistical
error (how
should
how
effort
to
reducing
statistical
error (how
sition,
for
example,
it and
isFinding
O(m
). much
For
aoptimal
fixed
level
ofallocate
work,can
weto
need
to
decide
3
on
how
muchbe)
effort
to
allocate
reducing
discretization
error
(how
large
mwill
large
N
should
be).
the
tradeoff
be
difficult.
We
sition,
for
example,
it
ism.to
O(m
). For
aoffixed
level
of
work,
weWe
need
to
decideerror (how
In
the
case
Cholesky
decompof
grows
at
least
linearly
in
decomposhould
be)
and
how
much
effort
to
allocate
to
reducing
statistical
large
N
should
be).
Finding
the
optimal
tradeoff
can
be
difficult.
will
nearly in m. In the Usually,
case
of
Cholesky
decompo3.1.5
Marginal
and
Conditional
Multivariate
Normal
on how
much
effort
to
allocate
to reducing
discretization
error
(how large
mbe
large
N
be).
Finding
the
tradeoff
can
difficult.
We will
should
be)
andshould
how
effort
to allocate
tooptimal
reducing
statistical
error
(how
3much
consider
such
tradeoffs
inin
aashould
number
of situations.
situations.
26
%Make
asuch
covariance
matrix
for
whole
thing
on
how
much
effort
to
allocate
to
reducing
discretization
error
(how
m We
sition,
level
ofthe
work,
need
totradeoff
decide
sition,
forconsider
example,
it
is
O(m
).
atofixed
decide
large
NFor
be).
Finding
thewe
optimal
can
be large
difficult.
will
). For a fixed level
of
work,
we
need
to
decide
tradeoffs
number
of
should
be)
and
how
much
effort
allocate
to
reducing
statistical
error
(how
largeconsider
Nshould
shouldbe)
be).
Finding
the
optimal
tradeoff
can
be difficult.
We error
will (how
Distributions
such
tradeoffs
ineffort
a number
of
situations.
and
how
much
toinallocate
to
reducing
statistical
on how
how much
discretization
error
(how
large
m
27
Sigma_temp
=
zeros(n_temp,n_temp);
on
effort
to
allocate
to
reducing
large
m
consider
such
tradeoffs
a
number
of
situations.
e to reducing discretization
error
(how
large
m
largeconsider
N should
be).
Findinginthe
optimaloftradeoff
can be difficult. We will
such
a number
large
Ntradeoffs
should
be).
Finding
thesituations.
optimal
tradeoff
can
be difficult.
We will
should
todistribution
reducing
statistical
error
(how
should
be)
and
how
much
effort
to
allocate
(how
for
i
=
1:n_temp
rt to allocate to28
reducing
statistical
error
(how
The
multivariate
normal
has
many
attractive
properties.
In
3.1.5
Marginal
Conditional
Multivariate
Normal
consider
such
tradeoffs in and
aand
number
of situations. Multivariate
3.1.5
Marginal
Conditional
Normal
large
N
should
be).
Finding
the
optimal
tradeoff
can
be
difficult.
We
will
consider
such
tradeoffs
in
a
number
of
situations.
large can
N should
be).j Finding
the
optimal
tradeoff
can
be
difficult.
We
will
the optimal tradeoff
be difficult.
We
will
particular,
its
marginal
distributions
are
also
multivariate
normal.
In
addi29
for
=
1:n_temp
3.1.5
Marginal
and Conditional
Multivariate
Normal
3.1.5
and Conditional
Multivariate
Normal
Distributions
Distributions
3.1.5
Marginal
and
Conditional
Multivariate
Normal
consider such
such
tradeoffs
inMarginal
number
of situations.
consider
tradeoffs
in
aacondition
number
of
situations.
umber of situations.
tion,
if we
on
part
of the a multivariate
normal vector,
the remain30
Sigma_temp(i,j)
=
min(t_temp(i),t_temp(j));
Distributions
3.1.5 TheMarginal
and
Multivariate
Normal
Distributions
ing
valuesDistributions
are
also Conditional
multivariate
normal.
3.1.5
Marginal
and Conditional
Multivariate
Normal
multivariate
normal
distribution
has
properties.
In In
The multivariate
normal
distribution
hasmany
manyattractive
attractive
properties.
31
end
Distributions
3.1.5
Marginal
and
Conditional
Multivariate
Normal
To
see
this,
we
need
to
write
normal
random
vectors
in
the
appropriate
The
multivariate
normal
distribution
has
many
attractive
properties. In
particular,
its
marginal
distributions
are
also
multivariate
normal.
In
addi3.1.5
Marginal
and
Conditional
Multivariate
Normal
Conditional32 Multivariate
Normal
Distributions
particular,
marginal
distributions
are
also
multivariate
normal.
In In
addimultivariate
normal
distribution
has many
attractive
properties.
endTheits
!
The
multivariate
normal
distribution
has
many
attractive
properties.
• Simulazione
:
possiamo
sfruttare
la
Markovianità
per
rendere
le
simulazioni
form.
Let
X
∼
N(µ,
Σ).
We
can
decompose
X
into
two
parts,
X
=
(X
,
X
particular,
its
marginal
distributions
are
also
multivariate
normal.
In addi-In
1
2) .
tion,
if
we
condition
on
part
of
the
a
multivariate
normal
vector,
the
remainDistributions
particular,
its marginal
distributions
are
also multivariate
normal.the
InInaddition,The
if we
condition
on
part
of
the
a
multivariate
normal
vector,
remainmultivariate
normal
distribution
has
many
attractive
properties.
Distributions
33
!
Thealso
multivariate
normal
distribution
has
attractive
properties.
In
particular,
its
marginal
distributions
are
alsovector,
multivariate
normal.
addition,
if part
weµ condition
of as
the
amany
multivariate
normal
vector,
the In
remaincan
then
write
as
(µ
) part
and Σ
più
efficienti
ing
values
multivariate
normal.
1 ,aµmultivariate
2on
tion,
ifWe
weare
condition
on
ofnormal.
the
normal
the
remainparticular,
its
marginal
distributions
are
also
multivariate
normal. InIn
addiing
values
are
also
multivariate
The
multivariate
normal
distribution
has
many
attractive
properties.
%Make
the
separate
Sigma
components
particular,
its
marginal
distributions
are
also
multivariate
normal.
In
addi!
"
The
multivariate
normal
distribution
has
many
attractive
properties.
In
ing
values
are
also
multivariate
normal.
istribution has 34
many
attractive
properties.
In
tion,
ifarewe
wealso
condition
ona normal.
part
ofrandom
the
a Σmultivariate
normal
vector, the remainTo
see
this,
we
need
write
normal
vectors
in the
appropriate
ing
values
multivariate
tion,
ifits
we
condition
on
parttoto
ofwrite
the
multivariate
normal
vector,
the
remainparticular,
marginal
distributions
are
also
multivariate
normal.
In
addiTo
see
this,
need
normal
vectors
in
the
appropriate
•particular,
11
12
Ricordiamo
alcune
proprietà
delle
Gaussiane
MV
tion,
ifInN(µ,
we
condition
on
part
of
therandom
aΣ
multivariate
normal
vector,
the
remainSigma_11
=
Sigma;
butions are also35
multivariate
normal.
addiTo
see
this,
we
need
to
write
normal
random
vectors
the
appropriate
Σ
=
.
its
marginal
distributions
are
also
multivariate
normal.
In
addiform.
Let
X
∼
Σ).
We
can
decompose
X
into
two
parts,
X
=
(X
,
X
)! .in
To
see
this,
we
need
to
write
normal
random
vectors
in
the
appropriate
1
2
ing
values
are
multivariate
normal.
!
ing
are
also
multivariate
normal.
Σ
Σ
tion,form.
if wevalues
condition
on
part
of also
the
amultivariate
multivariate
normal
vector,
remain21 into
22 twothe
Let
X
∼
N(µ,
Σ).
We
can
decompose
X
parts,
X
=
(X
,
X
1
ing
values
are
also
normal.
!
! 2 )X. = (X1 , X2 )! .
f the a multivariate
vector,
the
remainform.
Let
X
∼
N(µ,
Σ).
We
can
decompose
X
into
two
parts,
36
Sigma_21
=
Sigma_temp(n+1:n_temp,
1:n);
tion,normal
if we
condition
on
part
of
the
a
multivariate
normal
vector,
the
remainWe
can
then
write
µ
as
(µ
,
µ
)
and
Σ
as
form.
Let
Xwe
∼ need
N(µ,
Σ).normal.
We
can
X
into twoin
parts,
X=
(X1 , X2in
) .the appropriate
1 need
2 ! decompose
seealso
this,
to
write
random
vectors
the
appropriate
To
see
this,
we
towrite
write
normal
random
vectors
ing values
are
multivariate
!
We To
can
write
µ
as
(µ
µ, 2normal
)write
Σ
as
To
see
this,
we
to
normal
random
vectors
in the! appropriate
1 ,need
!!and
e normal.
Theorem
3.1.24
(Multivariate
Normal
Distributions).
Given X =
We
can
then
µn+1:n_temp);
as
(µ1", µMarginal
as
ing values
arethen
also
multivariate
normal.
2 ) and Σ
37
Sigma_12
=
Sigma_temp(1:n,
We
can
then
write
µ
as
(µ
µ
)
and
Σ
as
1
2
!
Toform.
see this,
we
to
write
normal
random
the
appropriate
Letform.
X
∼need
N(µ,
Σ).
WeN(µ,
can
decompose
X
into
parts,
Xtwo
=
(X
, XX
. (X X
Σvectors
2 )parts,
!We
"twoin
Let
XXwrite
∼
Σ).
X
into
11can
12decompose
!X
" 1two
form.
Let
∼
N(µ,
Σ).
We
can
decompose
into
parts,
=
)! .(X1 , X2 ) .
1 , X2=
ite normal random
vectors
in the
!Σ
"
(X
,X
∼
N(µ,
Σ),
To
seeSigma_22
this,
we
need
to
normal
random
vectors
in
the
appropriate
1appropriate
2 )Sigma_temp(n+1:n_temp,
Σ
=
.
!
!
38
=
n+1:n_temp);
ΣΣ21
form.We
Letcan
X∼
N(µ,
Σ). µ
We
X
into
two
Σ=
Σ112, X2 ) .
11
12
then
write
ascan
(µ
, µ2µΣ
) as
and
Σ
as
! parts,
11 (X
Σ
ΣΣ
Σ
1decompose
!write
11
12
22
We
can
then
,X
µ
and
as
We
can
µ
as=(µ(µ
,21)µ!∼
)N(µ
and
ΣX
=
1X
an decompose X form.
into two
parts,
X
=
(X
,We
X2 )can
.write
Σ1.,.=
Σ11
),as
Let
X ∼write
N(µ,
Σ).
decompose
parts,
X
= (X1 , X2.)! .
1into
2"two
1then
Σ
!
!
39
We
can
then
µ
as
(µ
,
µ
)
and
Σ
as
Σ
Σ
Σ
Σ
1
2
21
21
22
Σ
Σ
! 22!
"
!
"22 Given X =
µ2 )! and Σ as We can then
write
µ
as (µ(Multivariate
as11 "Σ2112Marginal
Theorem
3.1.24
Normal
Distributions).
1 , µ2 ) !and Σ Σ
Σ
Σ
and
11
12
Σ
=
.
temp_mean = Sigma_21
inv(Sigma_11)
*Σ
X;
Σ11Normal
!
"40
Σ
. 12 MarginalGiven
! Σ11* Normal
"Σ=
ΣNormal
Theorem
Distributions).
12 (Multivariate
Σ
Theorem
3.1.24
(Multivariate
Marginal
Distributions).
X=
(Multivariate
Marginal
Distributions).
Given
X = Given X =
(X
∼ N(µ,
Σ),
21
1 , X2 )3.1.24
Σ∼
=N(µ
.
Σ*21 2inv(Sigma_11)
X.222
,Σ
Σ22
Σ = Σ3.1.24
Σ11 Σ12 41 Theorem
22 ).
Σ
11
12
Sigma_new
=
Sigma_22
Sigma_21
*
Sigma_12;
Σ
Σ
Σ
Σ
=
. (X1 , (X
21
22
(X
,
X
)
∼
N(µ,
Σ),
21
22
Σ
=
.
,
X
)
∼
N(µ,
Σ),
1
2
X1 ∼ N(µ1 , Σ11 ),Distributions). Given X =
2 N(µ, Σ),
X21) ∼3.1.24
Σ21 Σ22
Σchol(Sigma_new)’
Theorem
(Multivariate
Normal
21 Σ22 Marginal
Theorem
3.1.25
(Multivariate
Normal
Conditional
Distributions).
Given
Theorem
3.1.24+(Multivariate
Marginal
Distributions).
Given
X=
42
X_new
=(Multivariate
temp_mean
* N(µ
randn(n_new,1);
X
N(µNormal
,Σ
Σ11
1 , Σ11 ),
1∼∼N(µ
11 ),
Theorem
3.1.24
Normal
Given
XDistributions).
=
X
),X1 ∼
1Marginal
11,Distributions).
(X1and
, X2 )Theorem
∼X
N(µ,
Σ),
3.1.24
(Multivariate
Normal
Marginal
Given X =
=
(X
,
X
)
∼
N(µ,
Σ),
X
conditional
on
X
is
multivariate
normal
with
(X
,
X
)
∼
N(µ,
Σ),
te Normal Marginal
Distributions).
Given
X
=
1
2
2
1
1
2
43
=N(µ,
[X;
X_new];
Theorem
3.1.24
(Multivariate
Marginal Distributions). Given X =
(X1 , X2 )X∼
Σ),
and Normal
and
∼ N(µ
Σ22
). , Σ ),
X1 X
∼2N(µ
Σ1211,∼
),
1 ,X
and
N(µ
(X
,
X
)
∼
N(µ,
Σ),
1
11
−1
1
2
(X1 , X2 ) t∼ =
N(µ,
Σ),
44
t_temp;
X1 ∼ N(µ
N(µ
, Σµ221 )).
∼111),
N(µ
).X
E[XX
X
]=µ
12,2|Σ
2 ,2Σ+
22Σ
212Σ∼
1 2−
11 (X
X
∼
N(µ
,
Σ
).
Theorem
3.1.25
(Multivariate
Normal
Conditional
Distributions).
Given
X1 ∼ N(µ1 , Σ11 ),
and
2
2
22
X
∼
N(µ
,
Σ
),
X
∼
N(µ
,
Σ
),
and
1
1
11
1
1
11
45
n
=
n_temp;
and
3.1.25
(Multivariate
Normal
Conditional
Distributions).
Given
Theorem
3.1.25
(Multivariate
Normal
Conditional
Distributions). Given
XTheorem
= (Xand
conditional
on
X
is
multivariate
normal
with
N(µ
Σ
).
1 , X2 ) ∼ N(µ, Σ), X2 ∼
1
2 ,X
22
N(µ2 , Σ22 ). −1
2 ∼Conditional
(Multivariate
Normal
Distributions).
Given normal with
and Theorem
46
Sigma
=1 , X
Sigma_temp;
X
∼
N(µ
,
Σ
).
2
2
22
X =and
(X3.1.25
)
∼
N(µ,
Σ),
X
conditional
on
X
is
multivariate
normal
with
X
=
(X
,
X
)
∼
N(µ,
Σ),
X
conditional
on
X
is
multivariate
2
22
1 Var(X
Σ2221− Σ21 Σ11 Σ12 . 1
2 | X1 ) =−1
X2 ∼ N(µ2 , Σ22 ).
Theorem
3.1.25
(Multivariate
Distributions).
Given
Xsort(t);
N(µ
Σ222+
).Conditional
|X
]Normal
=
Σ21Normal
Σ
(X11 Conditional
−
µ1 )
X
=[dummy
(X
)(Multivariate
∼ N(µ,
Σ),
X
on11∼
X
is
multivariate
normal with
2 2∼
2, µ
1conditional
47
=E[X
Theorem
3.1.25
(Multivariate
Distributions).
Given
1, X
2index]
2
−1
Theorem
3.1.25
Normal
Distributions).
Given
N(µ
Σ1 )Σ
).Σ−1
2Σ
2221
E[X
| X1 ] =Conditional
µ2 +
ΣX
−22,µ
E[X
|
X
]
=
+
(X
−
µ
)
2conditional
21
1µ
111(X
2
1
1
X
=
(X
,
X
)
∼
N(µ,
Σ),
X
on
X
is
multivariate
normal
with
11
1
2
2
1
X
=
(X
,
X
)
∼
N(µ,
Σ),
X
conditional
on
X
is
multivariate
normal
with
ate Normal Conditional
Distributions).
2 conditional
2X1 is multivariate
1normalGiven
48
another_dummy
waitforbuttonpress;
Theorem
(Multivariate
Conditional
X = (X1and
, X3.1.25
Σ),1Given
X
on
with
2 ) ∼ N(µ,
2=
E[X
|Normal
X ]=µ
+ Σ Σ−1Distributions).
(X − µ
)
25
Processi stocastici
// Simulazione di processi Gaussiani Markoviani
2
1
2
21 11
1
1
−1 multivariate
3.1.25
(Multivariate
Normal
−1 −1 Conditional
and Theorem
conditional on X
is (X
multivariate
normal with
and
X1 =
X
conditional
X
is
with Distributions). Given
49
|=Xµ
Σ
(X
−
µ−1
−1
|µ
X
)on
=
Σ
−
Σµ
Σ
. normal
1 , X2 ) ∼ N(µ, Σ),E[X
1Σ
1] =
212+
21
1Σ
1 )11
2+
22
21
12(X
E[X
|ΣX
]
=
µ
+
Σ
11
11
1
2
21
1 − µ1 ) −1
E[X2 | X212]Var(X
Σ
(X
−
)
2
21
1
1
11
Var(X
|
X
)
=
Σ
−
Σ
Σ
Σ
.
2
1
22
21
12
and
Var(X
|
X
)
=
Σ
−
Σ
−150
X2 conditional
on22X1 is
multivariate
normal with
11
2
1
21 Σ
1 , X2 ) ∼ N(µ, Σ),
11 Σ12 .
t(index)’],[0;
X(index)]);
−1
= µ2 + Σ21 Σ11 (X1 −and
µ1plot([0;
) X = (X
E[X
|
X
]
=
µ
+
Σ
Σ
(X
−
µ
)
−1
2
1
2
21
1
1
11
and
and
Var(X
|
X
)
=
Σ
−
Σ
Σ
Σ
.
2
1
22
21
12
11
−1
51
axis([0 1 -2.5
2.5]);
−1
−1
Var(X
| X1E[X
)22=−Σ
Σ12µ
Σ+
22
12
|221
X
=
Σ−1
Var(X
|−X
=
Σ. 222
−. Σ21
11
Var(X
Σ1Σ
Σ
1] )21
12 . 1 − µ1 )
2Σ
21Σ
11
2 | X12) = Σ
11Σ(X
and end
11
52 −1
−1
X1 ) = Σ22 − Σ21 Σ11 Σ12 .
Var(X2 | X1 ) = Σ22 − Σ21 Σ11 Σ12 .
1.
and
Var(X2 | X1 ) = Σ22 − Σ21 Σ−1
11 Σ12 .
107
Processi
stocastici
3.1.7 Markovian Gaussian Processes
GAUSSIAN PROCESSES
107
di
processi
Gaussiani
Marsovini
and // Simulazione
If a Gaussian process, {Xt }t≥0 , is Markovian, we can exploit this structure
3.1. GAUSSIAN PROCESSES
µi =GAUSSIAN
EXti .efficiently.
to simulate
the process
much
more
Because {Xt }t≥0107
is Markovian,
3.1.
PROCESSES
3.1. GAUSSIAN
PROCESSES
•
Simulazione
:
possiamo
sfruttare
la
Markovianità
per
rendere
le
simulazioni
3.1.
GAUSSIAN
PROCESSES
107
!
we can
use we
to (X
know
the value of Xti in order to normal
generate
By theorem
3.1.24,
we
that
3.1.only
GAUSSIAN
107 Xti+1 .
ti , Xti+1 ) has a multivariate
µknow
=need
EX
iGAUSSIAN
ti .PROCESSES
3.1.
PROCESSES
107
and
più
efficienti
Define
distribution.
In
particular,
and
!
µ
=
EX
.
3.1. GAUSSIAN
PROCESSES
107
i
y theoremand
3.1.24,
we !
know
that
(X!!
) !
has
a tmultivariate
and
ti , Xti+1
σi,i+1
= Cov(X
) normal
• Processo
Markoviano:
"
"
""
µi =normal
EXti .
ti ,! Xti+1
and
µ
=
EX
.
i
t
By X
theorem 3.1.24, we µknow that σ
(Xtµ,iX
) t .has a multivariate
=t EX
istribution. In and
particular,
σ
ti
i
i,i
i,i+1
µ
=
EX
.
i
t
!,
distribution.
∼In
Nparticular,
. a that
!
By theorem 3.1.24,
know
that
(X
has athat
multivariate
normal
t , Xttheorem
By
3.1.24,
we
(Xti , normal
Xti+1 )! has a multivariate
By
theorem
3.1.24,
we) . know
(X
)know
multivariate
t ,X
t
!
" Xwe
!!
"
!
""
µ
σ
σ
! has
µ
=
EX
t
i+1
i,i+1
i+1,i+1
i
t
!
"
!!
"
!
""
i+1
By theorem 3.1.24, we know that (Xt , Xt ) has a multivariate normal
distribution.
distribution.
particular,
Xti In particular,
µi XIn
σi,i
σµ!ii,i+1In particular,
σi,i
σ
distribution.
∼tN, X
, a"
. ""
Gaussianità
!∼
!particular,
""
N" distribution.
,"tIn
. σ i,i+1 normal
By theorem
3.1.24,
we !!
know that
(X
) !!
has
multivariate
t
!
"
!
X
µ
σ
i+1!! !
i,i+1
i+1,i+1
X
µi t σ
σi,i
σi,i+1
Xti+1 3.1.25,
µ
σ
Using theorem
we
have
!
"
"
!
""
"
!!
"
!
""
i+1
i,i+1
i+1,i+1
X
µ
σ
σ
t
i
i,i
i,i+1
distribution.
Int particular,
∼N
, Xt ∼ N
,
.
µi. X
σi,i σ σi,i+1
µ
σ
σ
X
µ
σ
σ
t
i
i,i
i,i+1
t
i+1
i,i+1
i+1,i+1
X
µ
σ
! theorem
"
∼N
, i i,i+1 ∼ i+1,i+1
.
t !
i+1 ""
Using
3.1.25,
!!! µwe"
N σ2 "
,
.
Xhave
µi+1
σi,i+1 σi+1,i+1
t
Xt
σi,i
σi,i+1
i σ
sing theorem
3.1.25,
we
have
X
µ
σi,i+1 σi+1,i+1
∼
N
,
.
i,i+1
i,i+1
t
i+1
"
!
i+1
Using X
theorem| X
3.1.25,
we
have
2
Using
theorem
3.1.25,
we
have
X
µ
σ
σ
i+1
i,i+1
µi +
(xhave
−i+1,i+1
µi ) , σi+1,i+1 − σi,i+1 .
σi i,i+1
ti+1
ti = xtUsing
i ∼ N
theorem
3.1.25,
" − σi,i .2 "
! X
N µiwe
(xi −2 µi ) "
, 2σi+1,i+1
t ! | Xt = xi ∼ σi,
i+!
σi,
i
σi,i+1σi,i+1
σ3.1.25,
σi,i+1Using theorem
"
!
we
haveσi,i σi,i+1
Using theorem 3.1.25, weσhave
i,i+1
i,i+1
2
.
X(x
Nσσ
µi + −σi,i+1
(xi −. µi ) , σ.i+1,i+1 − σi,i+1
+t |(x
µ
)
,
t −
i i∼
i=−x
i+1,i+1
Xti+1 | Xti X=t x|i X∼t =Nxi ∼
µiN+ µi X
µ
)
,
−
i
i
i+1,i+1
σi,
i
σ
"
!
σi,
i
σ
.
Xt i (Generating
|a
XtMarkovian
= x ∼ N µi +
µi ) , σ!
i,i
i,i(xi2− Process).
i+1,i+1 −
"
Algorithm
3.1.2
Algorithm 3.1.2
(Generating
Gaussian
σi,
σi,i+1 i a Markovian
2
i,i Process).
σi, Gaussian
i σσ
σi,i
i,i+1
σ
σ
.
Xt | Xt = xi ∼ N µ i +
(xi − µi ) , σi+1,i+1
−
i,i+1
i,i+1
√
Algorithm
3.1.2
(Generating
Markovian
Gaussian
σi,Set
i Gaussian
Algorithm 3.1.2 (Generating
a Markovian
.
|a+aX
N µProcess).
+
(xi − µi ) , σi+1,i+1 −
√
(i) Draw
Z∼
N(0,
1).
XtX=
µ1Process).
Z.xσii,i∼
ti+1
tσi i,i=
Algorithm
(Generating
Markovian
Gaussian iProcess).
Draw(Generating
Z ∼ N(0, 1).
Set X3.1.2
µ
+
σ
Z.
σi,
i
σ
√
Algorithm(i)3.1.2
a
Markovian
Gaussian
Process).
t1 =
1
i,i
i,i
√
(i) X
Draw
Za1 ∼
N(0,
1).
Xt = µProcess).
+ σi,i Z.
3.1.2
(Generating
Markovian
Gaussian
(i) Algorithm
Draw Z ∼ N(0,
Set
Z. Set
t1, =
(ii)1).For
i =Draw
. . .µ,Z
m+
1σi,i
draw
Z
∼XN(0,
1)1 and√set
(i)
∼−N(0,
1). Set
σi,i Z.
t = µ1 +
√
√
⎛
%
Algorithm
(Generating
a⎞Markovian Gaussian Process).
For
=
.Set
.m,N(0,
m
−
draw
Z
N(0,
1) 3.1.2
and
set
=
1,
. µ.σ.1)
,+
m
−σ1i,i
draw
Z ∼ N(0,
1) and set
(i) Draw(ii)
Z(ii)∼
N(0,
X1t(ii)
=1For
µ
+
Z.
(i)ii Draw
Set
=
Z.
t N(0,
1∼
i,i
For
=1).
1,1,. .Z
..,∼
−
draw
Z1iX
∼
and
set
11).
2
(ii) For i = 1, . . . σ
,m
−
1
draw
Z
∼
N(0,
1)
and
set
σ
⎛
i,i+1
% − i,i+1 ⎠
⎛
⎛
⎞2Z. ⎞⎞ √
%
=Zµi∼+N(0,
(X
µi )%
+ ⎝ ⎞σi+1,i+1
t
t −
(ii) For i = 1, . . . , m − 1Xdraw
1)
and
set
⎛
%
σi,i+1
(i)
Draw
Z
∼
N(0,
1).
Set
X
µ + σi,i Z.
2
σi, i set
σi,i+1
(ii) For i = 1, . . . , m − 1 drawσi,i+1
Z∼
N(0,
1 =
2σi,it−
σi,i+1
2 1⎠ Z.
Xµt 1)
=and
µi +σ⎛σ%
(X
µi ⎠
) +Z.⎝⎞ σi+1,i+1
σ
t −
σ
σ(Xi,i+1
⎝
i,i+1
i,i+1
i,i+1
Xt = µ i +
−
)
+
−
t
i
⎠ Z.
X
(Xt σ−
µσi )2 + ⎝⎞
t t=
Xti+1 = µiσi,
+i σi,i+1
(X
−µiµ+ii+1,i+1
)σi,
+ii⎝
σi,ii+1,i+1
−σi+1,i+1 −⎠σσi,iZ.
i⎛% ⎝
i,i+1 ⎠
σi,
i,i N(0, 1) and set
(ii)
For
i
=
1,
.
.
.
,
m
−
1
draw
Z
∼
X
=
µ
+
(X
−
µ
)
+
Z.
σ
−
σi,
i
σ
t
i
t
i
i+1,i+1
i,i
Example 3.1.27
Brownian motion,
which is
2σi,i
σi, i (Brownian Motion). Consider
σConsider
σ
i,i+1
i,i+1
a
Markov
process.
Now,
⎞
Example
3.1.27
(Brownian
Motion).
Brownian
motion,
which⎛
is%
⎝
⎠
Xti+1 =3.1.27
µi + (Brownian
(XMotion).
µi ) Consider
+
σ
−
ti − 3.1.27
i+1,i+1
Example
Brownian
motion, whichZ.
is
Motion).
Brownian
motion, which is
2
aiExample
Markov
process. (Brownian
Now, µi = EX
t = 0 Consider
σi,
σ
i,i
σ
σi,i+1is
a Markov
process.
Now,(Brownian
Example
3.1.27
Motion).
Consider
Brownian
motion,
a Markov process.
Now,
µX
EX
0i + which
Example
3.1.27
(Brownian
Motion).
Consider
Brownian
motion,
which
is⎝ σi+1,i+1 − i,i+1 ⎠ Z
i =
t =
=
µ
(X
−
µ
)
+
t
t
i
and
i
i+1
µ
=
EX
=
0
a Markov process. Now, i
t
µ = EXt = 0
σi, i
σi,i
and
a Markov process. Now,
σ t ==
min(tii, ti+1 ) =
ti .
µ
0
i = EXi,i+1
and
and
= min(t ,motion,
t ) = t . which is
xample 3.1.27 (Brownian Motion). Consider σBrownian
nd
i
i
i
i+1
i
i
i
i+1
i
i
i+1
i+1
i
i
i
i+1
i+1
i
i
i
i+1
i+1
i+1
i
i+1
i+1
i+1
i
i+1
i
i
i+1
i+1
i
i
1
1
1
1
1
i
i+1
i
i+1
i
i+1
i
i+1
i+1
i
i
i
i
i
i
distribution.
In particular,
σi,i+1
σi,i+1
(i) Draw Z ∼ N(0, 1). Set Xt1 = µ1 + σi,i Z.
.
(xi − µi ) , σi+1,i+1 −
!
"
!!
" !
""
σi, i
σ
(ii) For i,ii = 1, . . . , m
set
Xti− 1 draw µZi ∼ N(0,
σi,i 1) σand
(ii)∼ For
− 1 i,i+1
draw Z. ∼ N(0, 1) and se
N i = 1, ., . . , m
Xti+1
µi+1
σi,i+1 σ⎛
i+1,i+1
Algorithm 3.1.2 (Generating a Markovian Gaussian Process).
%
⎛%⎞
2
√
σi,i+1
Using theorem 3.1.25, we σ
have
(i) Draw Z ∼ N(0, 1). Set Xt1 = µ1 + σi,i Z.
i,i+1
σi,i+1
⎠
Xti+1 = µi + ! (XXtiti+1
−µ
−
=i )µi++⎝ σi+1,i+1
(Xti 2− µ
)
"i + ⎝ σiZ
σi, i σi,i+1
σi,i
σi,i+1
σi, i
(ii) For i = 1, . . . , m − 1 draw Z ∼ N(0, 1) and set
.
X
| Xt i = xi ∼ N µ i +
(xi − µi ) , σi+1,i+1 −
⎛%
⎞ ti+1
σi, i
σi,i
2
σi,i+1
σi,i+1
⎠ Z. 3.1.2 (Generating
Xti+1 = µi +
(Xti − µi ) + ⎝ σi+1,i+1 − Algorithm
a 3.1.27
Markovian
Gaussian Process).
ExampleMotion).
(Brownian
Motion).
Consider
B
Example
(Brownian
Consider
Brownian
motion,
σi, i
σi,i 3.1.27
√Now,
a
Markov
process.
(i) process.
Draw Z ∼ Now,
N(0, 1). Set Xt1 = µ1 + σi,i Z.
a Markov
Gaussiano
Markoviano
• Moto Browniano: è un processo
Example 3.1.27 (Brownian Motion). Consider Brownian motion, which is
EX1)tiand
= 0set µi = EXti = 0
(ii) For i = 1, . . . , m − 1 draw µ
Zi ∼=N(0,
a Markov process. Now,
and
⎛%
⎞
µi = EXti = 0
and
2
σi,i+1 =σmin(t
σi,i+1
i,i+1 ⎠i , ti+1 ) = ti .
Xti+1 = µi +σi,i+1(X
− µi ) +i ,⎝ti+1
Z.
σi+1,i+1
−.
ti min(t
and
=
)
=
t
i
σi,updating
i
σi,i
So, our
formula is
σi,i+1 = min(ti , ti+1 ) = ti .
Xti+1 | Xti = xi ∼ N µi +
Processi stocastici
// Classi di processi
So, our updating formula is
So, our updating formula is
Xti+1 = Xti +
1
2
3
4
5
6
()
*
ti+1 − ti Z.
Listing 3.8: Matlab code
3.1.
GAUSSIAN
PROCESSES
m = 10^4;
X = zeros(m,1);
h = 1/m;
()
Example 3.1.27 (Brownian Motion). Consider
which
+
ti+1 −isti
() XBrownian
ti+1 =*Xtmotion,
i
a Markov process. Now,
Xti+1 =µ X=tiEX
+ = 0 ti+1 − ti Z.
i
ti
Listing 3.8: Matlab code
and
10^4;
= zeros(m,1);
σ
min(t
i,i+1 = X
i , tMatlab
i+1 ) = ti . code
3.8:
1071 m = Listing
2
h
=
1/m;
So, our updating formula is
10^4;
X = zeros(m,1);
3
X(1) = sqrt(h)*randn;
()
*
1/m;
Xti+1 = Xti +
ti+1 − ti Z.
4
m =
µi = EXti . 2 h =
for i = 1:m-1
3
X(1) = sqrt(h)*randn;
By theorem
know that
(Xti , Xti+1 )! has a multivariate normal5 for i = 1:m-1
X(i+1) = 3.1.24,
X(i) +we
sqrt(h)
* randn;
1
X(1) = sqrt(h)*randn;
and
*
X(i+1)
= X(i)
+ code
sqrt(h) * randn;
4
Listing 3.8:
Matlab
distribution.
In particular,
3.1. GAUSSIAN6PROCESSES
107
end
7
end
!
"
!!
"
!
""
5
for 1i m= =1:m-1
8
10^4; X = zeros(m,1);
Xt i
µi
σi,i
σi,i+1
9
plot(h:h:1,X);
2
h . = 1/m;
∼N
,
= X(i) 8+ sqrt(h) * randn;
and
Xti+1
µi+1
σi,i+16 σi+1,i+1X(i+1)
3
X(1) = sqrt(h)*randn;
9
plot(h:h:1,X);
µi = EXti .
7
end 4
Using theorem 3.1.25, we have
By
3.1.24, we know that (Xti , Xti+1 )! has a multivariate normal
8
5
for theorem
i ="1:m-1
!
2
distribution.
particular,
σ
σi,i+1
6
X(i+1) = In
X(i)
+ sqrt(h) * randn;
i,i+1
.
Xti+1 | Xti = xi ∼ N µi +
(xi − µ9i ) , plot(h:h:1,X);
σi+1,i+1 −
!
"
!!
" !
""
7
endσi,i
σi, i
Xt i
µi
σi,i
σi,i+1
3.1. GAUSSIAN PROCESSES
107
8
∼N
,
.
µi+1
σi,i+1 σi+1,i+1
Algorithm 3.1.2 (Generating a Markovian Gaussian Process).
9
plot(h:h:1,X); Xti+1
andXt = µ1 + √σi,i Z.
Using theorem 3.1.25, we have
(i) Draw Z ∼ N(0, 1). Set
1
µi = EXti .
"
!
2
σi,i+1
(ii) For i = 1, . . . , m − 1 draw Z ∼ N(0, 1) and set
σi,i+1
!
By
theorem
3.1.24,
we
know
that
(X
,
X
)
has
a
multivariate
normal
.
N µi +
(x
tiXti+1
ti+1| Xti = xi ∼
i − µi ) , σi+1,i+1 −
108
PROCESSES
ETC.
⎛108
CHAPTER
3.σi, iGAUSSIAN
PROCESSES
ETC.
%CHAPTER 3.⎞ GAUSSIAN
σi,i
distribution. In particular,
2
108
CHAPTER
3.
GAUSSIAN
PRO
σ
σ
i,i+1
i,i+1
108
3.µi )GAUSSIAN
!
!!
"⎠!Z. ETC.
""
Xti+1 = µiCHAPTER
+
(Xti −
+⎝ "
σi+1,i+1PROCESSES
− Algorithm
3.1.2
(Generating
a
Markovian
Gaussian
Process).
Xt i
µ
σi,i
σi,i+1
i
σii,i Process).
Example σi,
3.1.28
(Ornstein-Uhlenbeck
The Ornstein-Uhlenbeck
∼N
, (Ornstein-Uhlenbeck
.
Example
3.1.28
Process).
The Ornstein-Uhlenbeck
√
Xti+1
µi+1
σ
σ
i,i+1
i+1,i+1
Example
3.1.28
(Ornstein-Uhlenbeck
Process). The Orn
(i)
Draw
Z
∼
N(0,
1).
Set
X
=
µ
+
σ
Z.
t
1
i,i
1
Example 3.1.28
(Ornstein-Uhlenbeck
Process).
The has
Ornstein-Uhlenbeck
process has
process
O-U: è un
processo
Gaussiano Markoviano
• Processo
process
has
3.1.27 (Brownian
Motion).
Brownian
motion, which is
Using
theoremConsider
3.1.25, we
processExample
has
= EXZti∼=N(0,
0 1) and set
(ii)ti For
µhave
= 0i = 1, . . . , m −µ1i draw
i = EX
µi = EXti = 0
a Markov process. Now,
"
!
2
µi = EXti = 0
⎛
⎞
%
σ
σ
µi X
= EX|tX
= 0 x ∼ N µ + i,i+1 (x − µ ) , σwith − i,i+1 .
2
with
ti+1 i ti =with
i
i
i
i
i+1,i+1 σ
σ
i,i+1
i,i+1 ⎠
σi, i
σi,i (X − µ ) + ⎝ σ
with and
= µi=
+ exp{α|t
Z.
− i − ti+1
ti+1
tii − ti+1
i
σi,i+1
|/2}
σi,i+1 =i+1,i+1
exp{α|t
|/2}
σi,i+1 = exp{α|ti − ti+1X
|/2}
σi, i
σi,i
σi,i+1 σ=
exp{α|t
−
t
|/2}
= ti .
i 3.1.2
i+1)(Generating
Algorithm
a Markovian Gaussian Process).
i,i+1 = min(t
i , ti+1
and σi,i = 1. So,is our updating formula is
and σformula
i,i = 1. So,
and
σ
=
1.
So,
our
updating
is our
√ updating formula
i,i
ourSo,
updating
formula isformula
and σi,iSo,
= 1.
our updating
(i) Drawis Z ∼ N(0, 1). Set Xt1Example
= µ1 + σ3.1.27
i,i Z.
(Brownian Motion).
!"# which is
!"Consider Brownian motion,
()
*
!
#
"
!
#
a
Markov
process.
Now,
X
=
exp{−α|t
−
t
|/2}X
+
1 − exp{α|ti −
"
ti+1
i
i+1
ti
Xti+1(ii)
=X
ti+1
For
i = 1,
. . . ,−mti− Z.
draw
N(0, 1) andi set
ti +
Xti+1Z=∼+exp{−α|t
− ti+1 |/2}X
+ Z. 1 −
exp{α|t
ti |}
i − ti+1 |} Z.
=
exp{−α|t
− exp{α|t
ti+11|/2}X
1 − exp{α|t
Xti+1 = exp{−α|ti −Xti+1
1i −
ti+1|/2}X
i − ti+1
µ
=
EX
=
0
ti +
i − ttii+1 |} Z.
i
t
i
⎛%
⎞
2
σ
and
σ
i,i+1
i,i+1 ⎠
Listing 3.8: Matlab
Listing 3.9: Matlab code
Xti+1 =code
µi +
(Xti − µi ) + ⎝ σi+1,i+1 − σ
= Z.
min(ti , tcode
i,i+1
i+1 ) = ti .
σi,
i
σ
Listing
3.9:
i,i Matlab
1
m = 10^4; X = zeros(m,1);
Listing 3.9: Matlab code
1
alpha = 50;
m = 10^4;
Listing 3.9: Matlab code
2
h = 1/m;
So, mour
1
alpha = 50;
= updating
10^4;2 formula is
lpha = 50; m =1 10^4;
alpha = 50;
m
=
10^4;
3
X(1) = sqrt(h)*randn;
*
Example 3.1.27
motion, which
is
X = zeros(m,1);
h(=)1/m;
2 (Brownian Motion). Consider
mean-reverting 3 Brownian
4
X
=
X
+
t
−
t
Z.
2
t
t
i+1
i
i+1
i
a
Markov
process.
Now,
4
X(1) = randn;
3
X = zeros(m,1); h = 1/m;
= zeros(m,1);
h = 1/m;
5
for i = 1:m-1
3
X
=
zeros(m,1);
h
=
1/m;
µ
=
EX
=
0
5
i
ti
(1) 6 = randn;
X(i+1) = X(i) + sqrt(h) * randn; 4 X(1) = randn;
6
for i =Listing
1:m-1 3.8: Matlab code
4
X(1)
=
randn;
and
7
end
5
7
X(i+1)
= exp(-alpha * h / 2)*X(i)...
=m min(t
ti .
= 10^4;
= zeros(m,1);
or i8 = 1:m-1 5
i , ti+1X) =
6
for iσi,i+1
= 11:m-1
8
+
sqrt(1
- exp(-alpha * h))*randn;
9
plot(h:h:1,X);
1/m;
6
for i *= h1:m-1
X(i+1)
= exp(-alpha
/ 2)*X(i)...
* h / 2)*X(i)...
So,
our updating7 formulaX(i+1)
is 2 h == exp(-alpha
9
end
X(1) (= sqrt(h)*randn;
+ sqrt(17 - exp(-alpha
h))*randn;
X(i+1) =* exp(-alpha
* h / 2)*X(i)...
*
8
+3 sqrt(1
* h))*randn;
) - exp(-alpha
10
4
nd
Xt i +
ti+1 −11ti plot(h:h:1,X);
Z.
8
+ sqrt(1 - exp(-alpha
9
endXti+1*=h))*randn;
7
Processi stocastici
// Classi di processi
9
lot(h:h:1,X); 10
11
for i = 1:m-1
X(i+1) = X(i) + sqrt(h) * randn;
Listing
3.8: Matlab code
11
plot(h:h:1,X);
7
end
1
m = 10^4; X = zeros(m,1); 8
plot(h:h:1,X);
9
plot(h:h:1,X);
2
h = 1/m;
3
X(1) = sqrt(h)*randn;
end
5
10
6
3.2
Brownian Motion