Denis`s CV - TU Dresden

Transcript

Denis`s CV - TU Dresden
Dr. Denis V. Vyalikh
Institute of Solid State Physics
Dresden University of Technology
01062 Dresden, Germany
Tel.:
++49 (351) 4633-4029
e-mail:
[email protected]
Web: www.physik.tu-dresden.de/~vyalikh
http://www.facebook.com/denis.vyalikh
Personal data
Name: Denis V. Vyalikh
Date of birth: 10.08.1974 (Saint-Petersburg, Russia)
Title: Dr. rer. nat. habil. (Physics)
Nationality: Russian
Marital status: married, children: Katerina (5), Alexandra (20)
Web: www.physik.tu-dresden.de/~vyalikh; http://www.facebook.com/denis.vyalikh
Education
1991 − 1998 − student at the physical faculty of the St. Petersburg State University
(St. Petersburg, Russia).
06.1996 − Bachelor of Science (Physics) at St. Petersburg State University;
12.1998 − Master of Science (Physics) at St. Petersburg State University;
Diploma thesis: ”Scanning-tunneling microscope studying of surfaces and interfaces in SOI structures: Case
SIMOX” (adviser: Prof. V. K. Adamchuk).
11.2001 – Doctor of science at Saint-Petersburg State University. PhD Thesis title:
”Quantum-well states in thin multilayer structures”;
(advisers: Prof. G. Kaindl (Free University Berlin), Prof. V. K. Adamchuk (Saint-Petersburg State University).
11.2012 – Habilitation: “Electron-hybridization phenomena in crystalline solids: quantum wells, graphene
nanocomposites and heavy-fermion systems”; mentors: Prof. C. Laubschat (University of Technology Dresden) and Prof. V. K. Adamchuk (Saint-Petersburg State University).
Employment
09.1995 − 12.1999 − Scientific associate at Institute of Physics, St. Petersburg State University;
05.1998 – 08.1998 − Technical trainee at BESSY-II synchrotron radiation facility (Berlin, Germany).
Duties: Installation of beamline units and adjustment optical elements of the first undulator beamline U-49
PGM1 (adviser: Dr. R. Follath);
07.1999 − 12.2001 − Scientific associate at Institute of Experimental Physics, Free University Berlin (Prof. G
Kaindl research group); Particular task was implementation of vacuum components and optic elements of the
Russian-German beamline. As the results, we were able to offer an instrument with superior energy resolving
power up to 100.000 to the scientific community:
D. V. Vyalikh, S. I. Fedoseenko, I. E. Iossifov, R. Follath, S. A. Gorovikov, J.-S. Schmidt, S. L. Molodtsov, V. K. Adamchuk, W. Gudat, and G. Kaindl, Commissioning of the Russian-German XUV
Beamline at BESSY II, Synchrotron Radiation News 15 26 (2002).
01.2002 − 12.2005 − Beamline scientist at the Russian-German Beamline at BESSY-II (Berlin, Germany);
01.2006 − present − Senior Scientist at Institute of Solid State Physics, TU Dresden (Prof. C. Laubschat research group);
11. 2008 till present − Senior Scientist (honorary) of the Russian-German Laboratory at BESSY-II (Berlin).
Current efforts are concentrated on (i) the upgrade of the experimental station RGBL-1 and commission of
SR-ARPES instrument of RGBL-2, (ii) redesign of the optical components of the beamline, (iii) the elaboration of concept and optical design for the new undulator RGBL-2 beamline; Detailed information is available
on the RGL's homepage: http://www.bessy.de/rglab/
Fellowships, Awards and Services to the Community
2008, 2011, and 2014 - Research Fellowships of Deutsche ForschungsGemeinschaft (DFG);
2010 - Medal issued by Russian Embassy in Berlin for the active development of scientific and economic ties
between Russia and Germany.
2
Active Referee in Journals of Nature Publishing Group and American Physical Society.
Teaching experience
2006-2015 − Supervision of Diploma and PhD thesis in AG Laubschat (TU-Dresden).
“Investigation of structural properties in biomolecular systems using synchrotron-based spectroscopies” by
Kurt Kummer (PhD finished in July 2010). “Photoemission and X-ray absorption studies of native and metallized surface protein layer (S-layer)” by Andreas Kade (PhD finished in May 2010); “Photoemission on
EuRh2Si2 – disentanglement of surface and bulk structures” by M. Hö ppner (Diploma finished in 2012); “Electronic structure and f-d hybridization phenomena in Ce-based iron-pnictide systems” by Matthias Holder (PhD
finished in 2011); “Electronic and structural properties of graphene layers synthezied on monocristalline Ni
and Co films” by Dima Usachov (PhD thesis, 2010 – 2012). Alla Chikina (PhD thesis, 2012 – till present),
Anna Makarova (PhD thesis, 2012 – 2014), Monika Gö ttler (PhD thesis, 2013-till present).
Lectureships:
2007 ”Physics of low-dimensional systems” (Max-Planck Institute school, Dresden);
2008 ”Surfaces and Interfaces” (Max-Planck Institute school, Dresden).
2009 “Surface Science” (Max-Planck Institute school, Dresden).
Experimental techniques
Spin- and Angle-Resolved Photoelectron Spectroscopy (SR-ARPES); Near edge X-ray absorption fine structure (NEXAFS) spectroscopy, X-ray diffraction (XRD), Auger electron spectroscopy (AES); Low-energy electron diffraction (LEED); Mass spectroscopy; X-ray magnetic linear dichroism (XMLD); Scanning tunneling
microscopy (STM).
Synchrotron radiation facilities, where experiments have been carried out: BESSY, ESRF, DESY, SLS, ALS,
MAX-Lab, SPring-8.
Invited talks
•
•
•
•
•
•
•
•
•
•
•
•
“Quantum-well states in bilayers of Ag and Au metals”
Centro de Fisica de Materiales CSIC/UPV-EHU-Materials Physics Center, San Sebastian, December
2004;
“Quantum-well states in Ag/Au superstructures”
Berlin University of Technology, Institute of Solid State Physics, December 2005;
Photoemission insight into electronic properties of self-assembled surface protein layer (S-layer)”
Max-Bergmann Center, November 2006;
“Electronic structure of self-assembled monolayers and DNA molecules on gold surfaces”,
University of Potsdam, September 2007;
“Tuning the coupling between 4f and itinerant electrons”,
BESSY Users Meeting 2008;
“Fine-tuning of the hybridization between f- and d- states in a heavy-fermion materials”, University of
Cologne, January 2009;
“Photoemission insight into hybridization phenomena in solids”
University of Chemnitz, April 2009.
“Electron f-d hybridization and fine structure of "f- bands" in rare-earth heavy-fermion materials”,
ACSIN-11, October 2012;
“The dual nature of 4f electrons in rare-earth intremetallics: ARPES view”,
FU-Berlin, November 2012;
“A close look at correlated electrons in heavy-fermion metal through ARPES”,
Himeji, Japan, July 2012.
“The dual nature of 4f electrons in rare-earth intremetallics: ARPES view”,
CORPES-13, Hamburg, July 2013;
SCES-13, Tokyo, August 2013;
EastMag-13, Vladivostok, September 2013;
“ARPES insight into the properties of f-electrons in RERh2Si2 (RE = Ce, Eu and Yb)”,
Donostia International Physics Center (DIPC), Departamento de Fisica de Materiales and CFM-MPC
UPV/EHU, San-Sebastian, November 2013.
Würzburg University, November 2013.
CORPES-2014, Grenoble, July 2014; DIPC, San-Sebastian, April 2015.
39.Clemens-Winkler-Kolloquium, Frieberg, October 2015.
TATA-Institute, Mumbai, India, October 2015; Spring-8 (Kolloquium), Japan, November 2015.
International Cooperation Activity
• University of Vienna (Austria) – Graphite and Graphene based materials (Prof. T. Pichler);
3
• Donostia International Physics Center (San-Sebastian) – Graphene-based systems and 4f-intermetallics
(Theory, Prof. E. Chulkov; Departamento de Fí
sica de Materiales, UPV/EHU), Quantum-wells in
nanostructures (Experiment, Prof. E. Ortega; NanoPhysics LAB, Centro de Fisica de Materiales/UPVEHU);
• Max-Bergmann Center of Biomaterials (Dresden) – Electronic properties of self-assembled biological
materials: DNA and S-layer protein (Prof. M. Mertig);
• Ioffe Physical-Technical Institute (Saint-Petersburg) – Structural, electronic and magnetic properties of
silicides nanomaterials (Prof. I. Pronin),
• Max-Planck Institute for Chemical Physics of Solids (Dresden) – Insight into electron correlations in solids
(Prof. C. Geibel).
• Saint-Petersburg and Moscow state Universities – Graphene and carbon-based nanocomposites (Prof.
Adamchuk and Prof. E. Obrazcova).
Research Interests
Insights into heavy-fermions behavior, magnetic ordering, mixed-valence; Kondo materials; Magnetism at
the nanoscale; Functionalized graphene and carbon based systems; self-assembled macromolecules. Hybridization phenomena of electron states in solids; Photoemission and X-ray absorption experiments in realtime and femtosecond regimes.
Recently obtained funds
SFB463/B16
DFG grant
“Electronic Correlation Effects in Yb- and Eu-Compounds”
01.2006-12.2009 186.600,- EUR
VY64/1-1
DFG grant
“Electron Hybridization Phenomena in Yb- an Eu-based Heavy-Fermion Systems”
01.2009-12.2011
250.550,- EUR
LA655/12-1
DFG grant
“Rare-Earth Transition-Metal Pnictides: Heavy-Fermion Behaviour versus Magnetism
and Superconductivity”
01.2012-12.2014
221.150,- EUR
05K09ODA
BMBF grant
“Upgrade of the User-Station of the Russian-German Laboratory”
07.2009-09.2010 281.660,- EUR
05K10ODC
“Upgrade of the Russian.German Laboratory: Building-up of new photoemission end
station”
07.2010-06.2013 1.214.900,- EUR
„Upgrade and Operation of the Russian-German beamline at BESSY-II “
BMBF grant
05K12OD
BMBF grant,
05K12OD3
BMBF grant,
07.2012 – 06.2015 403.360,- EUR
“Design of new graphene-based multi-layered materials and investigation of their
electronic properties”
07.2012-06.2015 324.240,- EUR
VY64/1-3
DFG grant,
“Electron Hybridization Phenomena in Yb- an Eu-based Heavy-Fermion Systems”
04.2014-04.2017
265.700,- EUR
SFB1143
“Correlated Magnetism: From Frustration to Topology”. TPC04 “Band structure and
Fermi surfaces of frustrated metals”
01.2015-01-2018 216.000,- EUR
LA 655/17-1
“Doped-graphene for electrochemical energy storage and conversion: Impact of the
electronic structure on electrocatalytic activity in oxygen redox reactions”
08.2016-08.2019 214.000,- EUR
The detailed information about the obtained funds can be requested from Prof. Clemens Laubschat (University of Technology Dresden)
Referees
•
Prof. Dr. Clemens Laubschat, University of Technology Dresden, Germany; Institute of Solid State
Physics, tel.: ++49 (0) 351 463-33249, fax: ++49 (0) 351 463-33457;
[email protected]
•
Prof. Dr. Eckart Ruehl, Freie Universitä t Berlin, Institut fur Chemie und Biochemie - Physikalische und
Theoretische Chemie, Germany; Tel.: +49-30-838-52396;
4
[email protected]
•
Prof. Dr. Serguei Molodtsov, European XFEL GmbH, Scientific Director, Phone +49 (0)40 8998-5779, Fax
+49 (0)40 8998-1905;
[email protected] ; www.xfel.eu.
•
PD Dr. Christoph Geibel, Senior research associate with the Max-Planck-Institut für Chemische Physik
fester Stoffe (MPI-CPfS), leader of the material development group. Phone: ++49 351 46462247, Fax
++49 351 46462262;
[email protected]
Scientific activity from ISI Web of Knowledge:
Recently published high-impact papers:
1. S. Patil, A. Generalov, M. Güttler, P. Kushwaha, A. Chikina, K. Kummer, T. C. Rö del, A. F. SantanderSyro, N. Caroca-Canales, C. Geibel, S. Danzenbä cher, Yu. Kucherenko, C. Laubschat, J. W. Allen and D. V.
Vyalikh, ARPES view on surface and bulk hybridization phenomena in the antiferromagnetic Kondo lattice
CeRh2Si2, Nature Communications 7 11029 (2016). doi:10.1038/ncomms11029
The hybridization between localized 4f electrons and itinerant electrons in rareearth-based materials gives rise to their exotic properties like valence fluctuations,
Kondo behaviour, heavy-fermions, or unconventional superconductivity. Here we
present an angle-resolved photoemission spectroscopy (ARPES) study of the Kondo lattice antiferromagnet CeRh2Si2, where the surface and bulk Ce-4f spectral
responses were clearly resolved. The pronounced 4f 0 peak seen for the Ce terminated surface gets strongly suppressed in the bulk Ce-4f spectra taken from a Siterminated crystal due to much larger f-d hybridization. Most interestingly, the bulk
Ce-4f spectra reveal a fine structure near the Fermi edge reflecting the crystal electric field splitting of the bulk magnetic 4f 15/2 state. This structure presents a clear dispersion upon crossing
valence states, providing direct evidence of f-d hybridization. Our findings give precise insight into f-d hybridization phenomena and highlight their importance in the antiferromagnetic phases of Kondo lattices.
2. D. Usachov, A. Fedorov, A. E. Petukhov, O. Vilkov, A. Rybkin, M. Otrokov, A. Arnau, E. V. Chulkov, L. V.
Yashina, M. Farjam, V. K. Adamchuk, B. V. Senkovskiy, C. Laubschat, and D. V. Vyalikh
Epitaxial B-Graphene: Large-Scale Growth and Atomic Structure
ACS Nano 9 7314 (2015). doi: 10.1021/acsnano.5b02322
Embedding foreign atoms or molecules in graphene has become
the key approach in its functionalization and is intensively used for
tuning its structural and electronic properties. Here, we present an
efficient method based on chemical vapor deposition for large scale
growth of boron-doped graphene (B-graphene) on Ni(111) and
Co(0001) substrates using carborane molecules as the precursor. It
is shown that up to 19 at. % of boron can be embedded in the graphene matrix and that a planar C–B sp 2 network is formed. It is resistant to air exposure and widely retains the electronic structure of
5
graphene on metals. The large-scale and local structure of this material has been explored depending on boron content
and substrate. By resolving individual impurities with scanning tunneling microscopy we have demonstrated the possibility for preferential substitution of carbon with boron in one of the graphene sublattices (unbalanced sublattice doping) at
low doping level on the Ni(111) substrate. At high boron content the honeycomb lattice of B-graphene is strongly distorted, and therefore, it demonstrates no unballanced sublattice doping.
3. D. Usachov, A. Fedorov, M. Otrokov, A. Chikina, O. Vilkov, A. Petukhov, A. Rybkin, Yu. Koroteev, E.
Chulkov, V. Adamchuk, A. Gruneis, C. Laubschat and D. V. Vyalikh
Observation of single-spin Dirac fermions at the graphene/ferromagnet interface
Nano Letters 15 2396 (2015). doi:10.1021/nl504693u
With the discovery and first characterization of graphene, its
potential for spintronic applications was recognized immediately.
Since then, an active field of research has developed trying to
overcome the practical hurdles. One of the most severe challenges
is to find appropriate interfaces between graphene and ferromagnetic layers, which are granting efficient injection of spin-polarized
electrons. Here, we show that graphene grown under appropriate
conditions on Co(0001) demonstrates perfect structural properties
and simultaneously exhibits highly spin-polarized charge carriers.
The latter was proven by observation of a single-spin Dirac cone
near the Fermi level. This was accomplished experimentally using
spin- and angle-resolved photoelectron spectroscopy, and theoretically with density functional calculations. Our results
demonstrate that the graphene/Co(0001) system represents an interesting candidate for applications in devices using
the spin degree of freedom.
4. K. Kummer, S. Patil, A. Chikina, M. Güttler, M. Hö ppner, A. Generalov, S. Danzenbacher, S. Seiro, A.
Hannaske, C. Krellner, Yu. Kucherenko, M. Shi, M. Radovic, E. Rienks, G. Zwicknagl, K. Matho, J.W. Allen,
C. Laubschat, C. Geibel, and D. V. Vyalikh
Temperature invariant Fermi surface in the Kondo lattice YbRh2Si2
Phys. Rev. X 5 011028 (2015). doi:10.1103/PhysRevX.5.011028
Strongly correlated electron systems are one of the central topics in contemporary solid-state physics. Prominent examples for such systems are Kondo lattices,
i.e., intermetallic materials in which below a critical temperature, the Kondo temperature TK, the magnetic moments become quenched and the effective masses of
the conduction electrons approach the mass of a proton. In Ce- and Yb-based
systems, this so-called heavy-fermion behavior is caused by interactions between
the strongly localized 4f and itinerant electrons. A major and very controversially
discussed issue in this context is how the localized electronic degree of freedom
gets involved in the Fermi surface (FS) upon increasing the interaction between
both kinds of electrons or upon changing the temperature. In this paper, we show
that the FS of a prototypic Kondo lattice, YbRh 2Si2, does not change its size or
shape in a wide temperature range extending from well below to far above the
single-ion Kondo temperature T K∼ 25 K of this system. This experimental observation, obtained by means of angle-resolved photoemission spectroscopy, is in remarkable contrast to the widely believed evolution from a large FS, including the 4f
degrees of freedom, to a small FS, without the 4f’s, upon increasing temperature.
Our results explicitly demonstrate a need to further advance in theoretical approaches based on the periodic Anderson model in order to elucidate the temperature dependence of Fermi surfaces in Kondo lattices.
5. D. Usachov, A. Fedorov, O. Vilkov, B. Senkovskiy, V. K. Adamchuk, L. V. Yashina, A. A. Volykhov, M. Farjam, N. I. Verbitskiy, A. Gruneis, C. Laubschat, and D. V. Vyalikh
The Chemistry of Imperfections in N-Graphene
Nano Letters 14 4982 (2014), doi:10.1021/nl501389h
Many propositions have been already put forth for the practical use of N-graphene
in various devices, such as batteries, sensors, ultracapacitors, and next generation
electronics. However, the chemistry of nitrogen imperfections in this material still remains an enigma. Here we demonstrate a method to handle N-impurities in graphene,
which allows efficient conversion of pyridinic N to graphitic N and therefore precise
tuning of the charge carrier concentration. By applying photoemission spectroscopy
and density functional calculations, we show that the electron doping effect of graphitic
N is strongly suppressed by pyridinic N. As the latter is converted into the graphitic
configuration, the efficiency of doping rises up to half of electron charge per N atom.
6
6. A. Chikina, M. Hö ppner, S. Seiro, K. Kummer, S. Danzenbacher, S. Patil, A. Generalov, M. Guttler, Yu
Kucherenko, E.V. Chulkov, Yu M. Koroteev, K. Kopernik, C. Geibel, M. Shi, M. Radovic, C. Laubschat and
D.V. Vyalikh
Strong ferromagnetism at the surface of an antiferromagnet caused by buried magnetic moments
Nature Communications 5 3171 (2014). doi:10.1038/ncomms4171
Carrying a large, pure spin magnetic moment of 7 µB/atom in the half-filled 4f shell,
divalent europium is an outstanding element for assembling novel magnetic devices in
which a two-dimensional electron gas may be polarized due to exchange interaction
with an underlying magnetically-active Eu layer. Here we show that the Si-Rh-Si surface trilayer of the antiferromagnet EuRh 2Si2 bears a surface state which exhibits an
unexpected and large spin splitting controllable by temperature. The splitting sets in
below ~ 32.5 K, well above the ordering temperature of the Eu 4f moments (~ 24.5 K)
in the bulk, indicating a larger ordering temperature in the topmost Eu layers. The
driving force for the itinerant ferromagnetism at the surface is the aforementioned exchange interaction. Such a splitting may also be induced into states of functional surface layers deposited onto the surface of EuRh 2Si2 or similarly ordered magnetic materials with metallic or semiconducting properties.
7. M. Hö ppner, S. Seiro, A. Chikina, A. Fedorov, M. Guttler, S. Danzenbacher, A. Generalov, K. Kummer, S.
Patil, S. L. Molodtsov, Yu. Kucherenko, C. Geibel, V.N. Strocov, M. Shi, M. Radovic, T. Schmitt, C. Laubschat
and D. V. Vyalikh,
Interplay of Dirac fermions and heavy quasi-particles in solids
Nature Communications 4 1646 (2013). doi:10.1038/ncomms2654
Many-body interactions in crystalline solids can be conveniently described in terms
of quasiparticles with strongly renormalized masses as compared to those of noninteracting particles. Examples of extreme mass renormalization are on the one hand
graphene, where the charge carriers obey the linear dispersion relation of massless
Dirac fermions, and on the other hand heavy-fermion materials where the effective
electron mass approaches the mass of a proton. Here we show that both extremes,
Dirac fermions like they are found in graphene and extremely-heavy quasiparticles
characteristic for Kondo materials, may not only coexist in a solid but can undergo
strong mutual interactions. Using the example of EuRh 2Si2 we explicitly demonstrate
that these interactions can take place at the surface and in the bulk. The presence of
the linear dispersion is imposed solely by the crystal symmetry while the existence of
heavy quasiparticles is caused by the localized nature of the 4f states.
8. A. A. Makarova, E. V. Grachova, D. V. Krupenya, O. Vilkov, A. Fedorov, D. Usachov, A. Generalov, Igor O.
Koshevoy, S. P. Tunik, E. Ruhl, C. Laubschat, and D. V. Vyalikh
Self-Assembled Supramolecular Complexes with “Rods-in-Belt” Architecture in the Light of Soft Xrays
J. Phys. Chem. C 117 12385 (2013). doi:10.1021/jp404459k
One of the most important properties of the recently discovered “rods-in-belt” supramolecular complexes, containing Au-Cu or Au-Ag cluster core, is the possibility to
tune their electronic and photophysical properties through modification of the ligand
environment. This opens great perspectives for their applications in light emitting devices and in bio-imaging. Applying X-ray photoemission and absorption spectroscopy
we systematically unravel the structure of their occupied and unoccupied electronic
states near the E F. The major contribution to the highest occupied molecular orbitals is
made by the triple bonded carbons hosted in the dialkynyl-gold “rods” and the copper
(silver) atoms from the central cluster core of the heterometallic Au-Cu (Au-Ag) molecules. The lowest unoccupied molecular orbitals are located on the carbon skeleton of
the complexes, including -C≡C- and -C=C- aromatic orbitals. The onset of the valence
band in the Au-Ag systems starts at about 0.3 eV lower than that in the Au-Cu complexes, implying a slightly larger energy gap of the silver-based molecules.
9. O. Vilkov, A. Fedorov, D. Usachov, L.V. Yashina, A.V. Generalov, K. Borygina, N.I. Verbitskiy, A. Grüneis
and D.V. Vyalikh
Controlled assembly of graphene-capped nickel, cobalt and iron silicides
Scientific Reports 3 2168 (2013). doi:10.1038/srep02168
7
The unique properties of graphene have raised high expectations regarding its application in carbon-based nanoscale devices that could complement or replace traditional silicon technology. This gave rise to the vast amount of researches on how to
fabricate high-quality graphene and graphene nanocomposites that is currently going
on. Here we show that graphene can be successfully integrated with the established
metal-silicide technology. Starting from thin monocrystalline films of nickel, cobalt and
iron, we were able to form metal silicides of high quality with a variety of stoichiometries under a CVD-grown graphene layer. These graphene-capped silicides are
reliably protected against oxidation and can cover a wide range of electronic materials/device applications. Most importantly, the coupling between the graphene layer and
the silicides is rather weak and the properties of quasi-freestanding graphene are
widely preserved.
10. S. Danzenbä cher, D.V. Vyalikh, K. Kummer, C. Krellner, M. Holder, M. Hoppner, Yu. Kucherenko, C.
Geibel, M. Shi, L. Patthey, S.L. Molodtsov, and C. Laubschat
Insight into the f-Derived Fermi Surface of the Heavy-Fermion Compound YbRh 2Si2
Phys. Rev. Lett. 107 267601 (2011). doi:10.1103/PhysRevLett.107.267601
ARPES was used to study the Fermi surface of the heavy-fermion system YbRh 2Si2
at a temperature of about 10 K, i.e. a factor of two below the Kondo energy scale. We
observed sharp structures with a well-defined topology, which were analyzed by comparing with results of band structure calculations based on the local-density approximation (LDA). The observed bulk Fermi surface presents strong similarities with that
expected for a trivalent Yb state, but is slightly larger, has a strong Yb 4f character, and
deviates from the LDA results by a larger region without states around the Γ point.
These properties are qualitatively explained in the framework of a simple f-d hybridization model. Our analysis highlights the importance of taking into account surface states
and doing an appropriate projection along k z when comparing ARPES data with results
from theoretical calculations.
11. D. Usachov, O. Vilkov, A. Gruneis, D. Haberer, A. Fedorov, V. K. Adamchuk, A. B. Preobrajenski, P.
Dudin, A. Barinov, M. Oehzelt, C. Laubschat, and D. V. Vyalikh
Nitrogen-Doped Graphene: Efficient Growth, Structure, and Electronic Properties
Nano Lett. 11 (12) 5401 (2011). doi:10.1021/nl2031037
A novel strategy for efficient growth of nitrogen-doped graphene (N-graphene) on a
large scale from s-triazine molecules is presented. The growth process has been unveiled in situ using time-dependent photoemission. It has been established that a postannealing of N-graphene after gold intercalation causes a conversion of the N environment from pyridinic to graphitic, allowing to obtain more than 80 % of all embedded
nitrogen in graphitic form, which is essential for the electron doping in graphene. A
band gap, a doping level of 300 meV and a charge-carrier concentration of ~8 x 10 12
electrons per cm 2, induced by 0.4 at.% of graphitic nitrogen, have been detected by
angle-resolved photoemission spectroscopy, which offers great promise for implementation of this system in next generation electronic devices.
12. D. V. Vyalikh, S. Danzenbä cher, Yu. Kucherenko, K. Kummer, C. Krellner, C. Geibel, M.G. Holder, T.
Kim, C. Laubschat, M. Shi, L. Patthey, R. Follath, and S. L. Molodtsov
k-dependence of the crystal-field splittings of 4f states in rare-earth systems
Phys. Rev. Lett. 105 237601 (2010). doi:10.1103/PhysRevLett.105.237601
The occupation, energy separation and order of the crystal-field split 4f states are
crucial for the understanding of the magnetic properties of rare-earth systems. We
provide the experimental evidence that crystal-field split 4f states exhibit energy dispersion in momentum space leading to variations of energy spacings between them
and even of their energy sequence across the Brillion zone. These observations were
made performing angle-resolved photoemission experiments on YbRh 2Si2and properly
simulated within a simple model based on results obtained by inelastic neutron scattering experiments and band structure calculations. Our findings should be generally
applicable to rare-earth systems and have considerable impact on the understanding
of magnetism and related phenomena.
13. D. V. Vyalikh, S. Danzenbä cher, Yu. Kucherenko, C. Krellner, C.Geibel, C. Laubschat, M. Shi, L.
Patthey, R. Follath, and S.L. Molodtsov
Tuning the Hybridization at the Surface of a Heavy-Fermion System
Phys. Rev. Lett. 103, 137601 (2009). doi:10.1103/PhysRevLett.103.137601
8
Localized Yb 4f and itinerant Rh 4d states are subject to substantial hybridization effects
in the heavy-fermion material YbRh 2Si2. The proximity to the Fermi level and the high anisotropy in k space naturally raise questions regarding the role of these hybridization effects for
the observed, unusual physical properties. Using ARPES we found that the non-dispersive
behavior of the localized Yb 4f states is broken around the Γ point due to interaction with
approaching Rh 4d bands. The intriguing point here is that the hybridization strength turns
out to be systematically tunable by electron doping of the material. Gradual deposition of
silver atoms onto the atomically clean, silicon terminated surface of YbRh 2S2 leads to transfer of Ag 5s charge into the Rh 4d bands. This substantially changes the energy overlap,
and thus the hybridization strength, between the interacting Yb 4f and Rh 4d bands in the
surface and subsurface region. The shown possibility to control the variation of the f - d
hybridization at the surface of heavy-fermion materials may also be helpful for other ARPES
studies on the diverse phenomena in electron-correlated materials.
14. D. V. Vyalikh, V. V. Maslyuk, A. Bluher, A. Kade, K. Kummer, Yu. S. Dedkov, T. Bredow, I. Mertig, M.
Mertig, and S. L. Molodtsov
Charge Transport in Proteins Probed by Resonant Photoemission
Phys. Rev. Lett., 102, 098101 (2009). doi:10.1103/PhysRevLett.102.098101
Understanding of the basic mechanisms of charge transport in biomolecules has
gained fundamental interest over the past years, mainly because of two reasons. First,
charge transfer is decisive for a large variety of biological processes where locally
defined reduction or oxidation reactions are involved. Secondly, due to their unique
molecular recognition properties, biomolecules are increasingly used for the bottom-up
engineering of molecular devices where charge transduction by such molecules is
often important for the desired device functionality.
We apply resonant photoemission to investigate localization of electronic states of
the regular protein surface layer (S layer) which is frequently used as a template for the
fabrication of highly oriented metallic nanocluster arrays. The experimental results are
discussed in combination with density functional theory calculations using a linear
combination of atomic orbitals approach. Our study reveals a decay rate of excited
electrons from the LUMO with a characteristic time constant of ~ 100 fs. This result is
in agreement with recent femtosecond spectroscopy investigations where subpicosecond-regime torsional motions of the peptide chain were identified to give rise to hopping-like distal charge transport processes.
Dresden, July 19th, 2016
__________________________________________________________________________
Selected Publications from 188 published items:
96. D. Yu. Usachov, A. V. Fedorov, O. Yu. Vilkov, A. E. Petukhov, A. G. Rybkin, A. Ernst, M. M.
Otrokov, E. V. Chulkov, I. I. Ogorodnikov, M. V. Kuznetsov, L. V. Yashina, E. Yu. Kataev, A. V.
Erofeevskaya, V. Yu. Voroshnin, V. K. Adamchuk, C. Laubschat, and D. V. Vyalikh
Large-scale sublattice asymmetry in pure and boron-doped graphene
Nano Letters (2016) accepted.
doi: 10.1021/acs.nanolett.6b01795
95. A. A. Makarova, E. V. Grachova, D. Niedzialek, A. I. Solomatina, S. Sonntag, A. Fedorov, O.
Yu. Vilkov, V. S. Neudachina, C. Laubschat, S. P. Tunik and D. V. Vyalikh
A curious interplay in the films of N-heterocyclic carbene Pt II complexes upon deposition
of alkali metals
9
Scientific Reports 6 25548 (2016).
doi: 10.1038/srep25548
94. A. Amorese, G. Dellea, M. Fanciulli, S. Seiro, C. Geibel, C. Krellner, I. P. Makarova, L. Braicovich, G. Ghiringhelli, D. V. Vyalikh, N. B. Brookes, and K. Kummer
4f excitations in Ce Kondo lattices studied by resonant inelastic x-ray scattering
Phys. Rev. B 93 165134 (2016).
doi: 10.1103/PhysRevB.93.165134
93. M. Güttler, A. Generalov, M. M. Otrokov, K. Kummer, K. Kliemt, A. Fedorov, A. Chikina, S.
Danzenbä cher, S. Schulz, E. V. Chulkov, Yu. M. Koroteev, N. Caroca-Canales, M. Shi, M. Radovic, C. Geibel, C. Laubschat, P. Dudin, T. K. Kim, M. Hoesch, C. Krellner and D. V. Vyalikh
Robust and tunable itinerant ferromagnetism at the silicon surface of the antiferromagnet
GdRh2Si2
Scientific Reports 6 24254 (2016).
doi: 10.1038/srep24254
92. S. Patil, A. Generalov, M. Güttler, P. Kushwaha, A. Chikina, K. Kummer, T. C. Rö del, A. F.
Santander-Syro, N. Caroca-Canales, C. Geibel, S. Danzenbä cher, Yu. Kucherenko, C. Laubschat,
J. W. Allen and D. V. Vyalikh
ARPES view on surface and bulk hybridization phenomena in the antiferromagnetic Kondo
lattice CeRh2Si2
Nature Communications 7 11029 (2016).
doi: 10.1038/ncomms11029
91. Dmitry Yu. Usachov, Alexander V. Fedorov, Anatoly E. Petukhov, Oleg Yu. Vilkov, Artem G. Rybkin, Mikhail M. Otrokov, Andre´ s Arnau, Evgueni V. Chulkov, Lada V. Yashina, Mani Farjam, Vera K. Adamchuk,
Boris V. Senkovskiy, Clemens Laubschat, and Denis V. Vyalikh
Epitaxial B-Graphene: Large-Scale Growth and Atomic Structure
ACS Nano 9 7314 (2015).
doi: 10.1021/acsnano.5b02322
90. Dmitry Usachov, Alexander Fedorov, Mikhail Otrokov, Alla Chikina, Oleg Vilkov, Anatoly Petukhov, Artem
Rybkin, Yury Koroteev, Evgueni Chulkov, Vera Adamchuk, Alexander Gruneis, Clemens Laubschat and Denis Vyalikh
Observation of single-spin Dirac fermions at the graphene/ferromagnet interface
Nano Letters 15 2396 (2015).
doi:10.1021/nl504693u
89. K. Kummer, S. Patil, A. Chikina, M. Guttler, M. Hoppner, A. Generalov, S. Danzenbacher, S. Seiro, A.
Hannaske, C. Krellner, Yu. Kucherenko, M. Shi, M. Radovic, E. Rienks, G. Zwicknagl, K. Matho, J.W. Allen,
C. Laubschat, C. Geibel, and D. V. Vyalikh
Temperature invariant Fermi surface in the Kondo lattice YbRh2Si2
Phys. Rev. X 5 011028 (2015).
doi: 10.1103/PhysRevX.5.011028
88. Anna A. Makarova, Elena V. Grachova, Vera S. Neudachina, Lada V. Yashina, Anja Bluher, Serguei L.
Molodtsov, Michael Mertig, Hermann Ehrlich, Vera K. Adamchuk, Clemens Laubschat and Denis V. Vyalikh
Insight into Bio-metal Interface Formation in vacuo: Interplay of S-layer Protein with Copper and Iron
Scientific Reports 5 8710 (2015).
87. Elmar Yu. Kataev, Daniil M. Itkis, Alexander V. Fedorov, Boris V. Senkovsky, Dmitry Yu. Usachov, Nikolay I. Verbitskiy, Alexander Gruneis, Alexei Barinov, Daria Yu. Tsukanova, Andrey A. Volykhov, Kirill V.
Mironovich, Victor A. Krivchenko, Maksim G. Rybin, Elena D. Obraztsova, Clemens Laubschat, Denis V.
Vyalikh, and Lada V. Yashina
Oxygen Reduction by Lithiated Graphene and Graphene-Based Materials
ACS Nano 9 320 (2015).
doi:10.1021/nn5052103
86. D. Usachov, A. Fedorov, O. Vilkov, B. Senkovskiy, V. K. Adamchuk, L. V. Yashina, A.A. Volykhov, M.
Farjam, N.I. Verbitskiy, A. Gruneis, C. Laubschat, and D. V. Vyalikh
10
The chemistry of imperfections in N-graphene
Nano Letters 14 4982 (2014).
doi:10.1021/nl501389h
85. Swapnil Patil, Kurt Kummer, Ariane Hannaske, Cornelius Krellner, Markus Kuhnt, Steffen Danzenbacher,
Clemens Laubschat, Christoph Geibel and Denis Vyalikh
Crystalline Electric Field Splitting of 4f States in YbIr2Si2: An ARPES View
JPS Conf. Proc. 3 011001 (2014).
doi:10.7566/JPSCP.3.011001
84. K. Gofryk, B. Saparov, T. Durakiewicz, A. Chikina, S. Danzenbacher, D. V. Vyalikh, M. J. Graf, and A. S.
Sefat
Fermi-Surface Reconstruction and Complex Phase Equilibria in CaFe2As2
Phys. Rev. Lett. 112 186401 (2014).
doi:10.1103/PhysRevLett.112.186401
83. A. V. Fedorov, N. I. Verbitskiy, D. Haberer, C. Struzzi, L. Petaccia, D. Usachov, O. Y. Vilkov, D. V.
Vyalikh, J. Fink, M. Knupfer, B. Buchner and A. Gruneis
Observation of a universal donor-dependent vibrational mode in graphene
Nature Communications 5 3257 (2014).
doi:10.1038/ncomms4257
82. A. Chikina, M. Hoppner, S. Seiro, K. Kummer, S. Danzenbacher, S. Patil, A. Generalov, M. Guttler, Yu
Kucherenko, E.V. Chulkov, Yu M. Koroteev, K. Kopernik, C. Geibel, M. Shi, M. Radovic, C. Laubschat and
D.V. Vyalikh
Strong ferromagnetism at the surface of an antiferromagnet caused by buried magnetic moments
Nature Communications 5 3171 (2014).
doi:10.1038/ncomms4171
81. M. Hoppner, S. Seiro, A. Chikina, A. Fedorov, M. Guttler, S. Danzenbacher, A. Generalov, K. Kummer, S.
Patil, S. L. Molodtsov, Y. Kucherenko, C. Geibel, V. N. Strocov, M. Shi, M. Radovic, T. Schmitt, C. Laubschat
and D. V. Vyalikh
Interplay of Dirac fermions and heavy quasiparticles in solids
Nature Communications 4 1646 (2013).
doi:10.1038/ncomms2654
80. O. Vilkov, A. Fedorov, D. Usachov, L.V. Yashina, A.V. Generalov, K. Borygina, N.I. Verbitskiy, A. Gruneis
and D.V. Vyalikh
Controlled assembly of graphene-capped nickel, cobalt and iron silicides
Scientific Reports 3 2168 (2013).
doi:10.1038/srep02168
79. A. A. Makarova, E. V. Grachova, D. V. Krupenya, O. Vilkov, A. Fedorov, D. Usachov, A. Generalov, I. O.
Koshevoy, S. P. Tunik, E. Ruhl, C. Laubschat, and D. V. Vyalikh
Self-Assembled Supramolecular Complexes with “Rods-in-Belt” Architecture in the Light of Soft Xrays
J. Phys. Chem. C 117 12385 (2013).
doi:10.1021/jp404459k
78. D. Usachov, A. Fedorov, O. Vilkov, V. K. Adamchuk, L. V. Yashina, L. Bondarenko, A. A. Saranin, A.
Gruneis, and D. V. Vyalikh
Experimental and computational insight into the properties of the lattice-mismatched structures:
Monolayers of h-BN and graphene on Ir(111)
Phys. Rev. B 86 155151 (2012).
doi:10.1103/PhysRevB.86.155151
77.K. Kummer, D. V. Vyalikh, L. Rettig, R. Cortes, Yu. Kucherenko, C. Krellner, C. Geibel, U. Bovensiepen,
M. Wolf, and S. L. Molodtsov
Ultrafast quasiparticle dynamics in the heavy-fermion compound YbRh 2Si2
Phys. Rev. B 86, 085139 (2012).
doi:10.1103/PhysRevB.86.085139
76.M. G. Holder, A. Jesche, P. Lombardo, R. Hayn, D. V. Vyalikh, K. Kummer, S. Danzenbacher, C. Krellner,
C. Geibel, E. D. L. Rienks, S. L. Molodtsov, and C. Laubschat
11
How chemical pressure affects the fundamental properties of rare-earth pnictides: An ARPES view
Phys. Rev. B 86, 020506 (2012).
doi:10.1103/PhysRevB.86.020506
75. K. Kummer, Yu. Kucherenko, S. Danzenbä cher, C. Krellner, C. Geibel, M. G. Holder, L. V. Bekenov, T.
Muro, Y. Kato, T. Kinoshita, S. Huotari, L. Simonelli, S. L. Molodtsov, C. Laubschat, and D. V. Vyalikh
Intermediate valence in Yb compounds probed by 4f photoemission and resonant inelastic X-ray
scattering
Phys. Rev. B 84, 245104 (2011).
doi:10.1103/PhysRevB.84.245114
74.S. Danzenbä cher, D.V. Vyalikh, K. Kummer, C. Krellner, M. Holder, M. Hö ppner, Yu. Kucherenko, C.
Geibel, M. Shi, L. Patthey, S.L. Molodtsov, and C. Laubschat
Insight into the f-derived Fermi surface of the heavy-fermion compound YbRh 2Si2
Phys. Rev. Lett. 107, 267601 (2011).
doi:10.1103/PhysRevLett.107.267601
73.D. Usachov, O. Vilkov, A. Grüneis, D. Haberer, A. Fedorov, V. K. Adamchuk, A. B. Preobrajenski, P.
Dudin, A. Barinov, M. Oehzelt, C. Laubschat, and D. V. Vyalikh
Nitrogen-Doped Graphene: Efficient Growth, Structure, and Electronic Properties
Nano Lett. (2011).
doi:10.1021/nl2031037
72. D. Haberer, C. E. Giusca, Y. Wang, H. Sachdev, A. V. Fedorov, M. Farjam, S. A. Jafari, D. V. Vyalikh, D.
Usachov, X. Liu, U. Treske, M. Grobosch, O. Vilkov, V. K. Adamchuk, S. Irle, S. R. P. Silva, M. Knupfer, B.
Büchner, and A. Grüneis
Evidence for a New Two-Dimensional C4H-Type Polymer Based on Hydrogenated Graphene
Adv. Mater. 23 (2011).
doi:10.1002/adma.201102019
71.M. Wanke, K. Loser, G. Pruskil, D. V. Vyalikh, S. L. Molodtsov, S. Danzenbacher, C. Laubschat, and M.
Dahne
Electronic properties of self-assembled rare-earth silicide nanowires on Si(001)
Phys. Rev. B 83, 205417 (2011).
doi:10.1103/PhysRevB.83.205417
70. D. Haberer, L. Petaccia, M. Farjam, S. Taioli, S. A. Jafari, A. Nefedov, W. Zhang, L. Calliari, G.
Scarduelli, B. Dora, D. V. Vyalikh, T. Pichler, Ch. Woll, D. Alfe S. Simonucci, M. S. Dresselhaus, M. Knupfer,
B. Buchner, and A. Gruneis
Direct observation of a dispersionless impurity band in hydrogenated graphene
Phys. Rev. B 83, 165433 (2011).
doi:10.1103/PhysRevB.83.165433
69. C. Klingner, C. Krellner, M. Brando, C. Geibel, F. Steglich, D. V. Vyalikh, K. Kummer, S. Danzenbä cher,
S. L. Molodtsov, C. Laubschat, T. Kinoshita, Y. Kato, T. Muro
Phys. Rev. B 83, 144405 (2011) (Editors' Suggestion).
Evolution of magnetism in Yb(Rh 1-xCox)2Si2
doi:10.1103/PhysRevB.83.144405
68. K. Kummer, D. V. Vyalikh, A. Blüher, V. Sivkov, V. V. Maslyuk, T. Bredow, I. Mertig, M. Mertig, and S. L.
Molodtsov
Real-time study of the modification of the peptide bond by atomic calcium
J. Phys. Chem. B 115 2401, 2011 (2011).
doi:10.1021/jp109555j
67. D. V. Vyalikh, S. Danzenbä cher, Yu. Kucherenko, K. Kummer, C. Krellner, C. Geibel, M.G. Holder, T.
Kim, C. Laubschat, M. Shi, L. Patthey, R. Follath, and S. L. Molodtsov
k-dependence of the crystal-field splittings of 4f states in rare-earth systems
Phys. Rev. Lett. 105 237601 (2010).
doi:10.1103/PhysRevLett.105.237601
66. D. Usachov, V. K. Adamchuk, D. Haberer, A. Grüneis, H. Sachdev, A. B. Preobrajenski, C. Laubschat,
and D. V. Vyalikh
12
Quasifreestanding single-layer hexagonal boron nitride as a substrate for graphene synthesis
Phys. Rev. B 82 075415 (2010) (Editors' Suggestion).
doi:10.1103/PhysRevB.82.075415
65. D. Haberer, D. V. Vyalikh, S. Taioli, B. Dora, M. Farjam, J. Fink, D. Marchenko, T. Pichler, K. Ziegler, S.
Simonucci, M. S. Dresselhaus, M. Knupfer, B. Büchner, and A. Grüneis
Tunable Band Gap in Hydrogenated Quasi-Free-Standing Graphene
Nano Letters 10 3360 (2010).
doi:10.1021/nl101066m
64. K. Kummer, D. V. Vyalikh, G. Gavrila, A. B. Preobrajenski, A. Kick, M. Bonsch, M. Mertig, and S.L. Molodtsov
Electronic Structure of Genomic DNA: A Photoemission and X-ray Absorption Study
J. Phys. Chem. B 114 9645 (2010).
doi:10.1021/jp1013237
63. A. Kade, K. Kummer, D.V. Vyalikh, A. Bl¨uher, S. Danzenbä cher, M. Holder, A. Lanzara, A. Scholl, A.
Doran, M. Mertig, S.L. Molodtsov
X-ray damage in protein-metal hybrid structures: A photoemission electron microscopy study
J. Phys. Chem. B 114 8284 (2010).
doi:10.1021/jp1040585
62. M. G. Holder, A. Jesche, P. Lombardo, R. Hayn, D. V. Vyalikh, S. Danzenbä cher, K. Kummer, C. Krellner,
C. Geibel, Yu. Kucherenko, T. K. Kim, R. Follath, S. L. Molodtsov and C. Laubschat
CeFePO: f-d Hybridization and Quenching of Superconductivity
Phys. Rev. Lett. 104, 096402 (2010).
doi:10.1103/PhysRevLett.104.096402
61. D. V. Vyalikh, S. Danzenbä cher, C. Krellner, K. Kummer, C. Geibel, Yu. Kucherenko, C. Laubschat, M.
Shi, L. Patthey, R. Follath and S. L. Molodtsov
Tuning the dispersion of 4f -bands in the heavy-fermion material YbRh2Si2
Journal of Electron Spectroscopy and Related Phenomena 181 70 (2010).
doi:10.1016/j.elspec.2010.05.017
60. V. Yu. Aristov, G. Urbanik, K. Kummer, D. V. Vyalikh, O. V. Molodtsova, A. B. Preobrajenski, C. Hess, T.
Hä nke, B. Büchner, I. Vobornik, J. Fujii, G. Panaccione, Yu. A. Ossipyan, and M. Knupfer
Graphene synthesis on cubic SiC/Si wafers - perspectives for mass production of graphene based
electronic devices edges
Nano Letters 10, 992 (2010).
doi:10.1021/nl904115h
59. K. Kummer, V.N. Sivkov, D.V. Vyalikh, V.V. Maslyuk, A. Blueher, S.V. Nekipelov, T. Bredow, I. Mertig, M.
Mertig, and S.L. Molodtsov
Oscillator strength of the peptide bond pi* resonances at all relevant X-ray absorption edges
Phys. Rev. B 80, 155433 (2009). (Editors' Suggestion)
doi:10.1103/PhysRevB.80.155433
58. D.V. Vyalikh, S. Danzenbä cher, Yu. Kucherenko, C. Krellner, C.Geibel, C. Laubschat, M. Shi, L. Patthey,
R. Follath, and S.L. Molodtsov
Tuning the Hybridization at the Surface of a Heavy-Fermion System
Phys. Rev. Lett. 103, 137601 (2009).
doi:10.1103/PhysRevLett.103.137601
57. A. Grüneis, C. Attaccalite, A. Rubio, D. V. Vyalikh, S. L. Molodtsov, J. Fink, R. Follath, W. Eberhardt, B.
Büchner, and T. Pichler
Angle-resolved photoemission study of the graphite intercalation compound KC 8: A key to graphene
study
Phys. Rev. B 80, 075431 (2009). (Editors' Suggestion)
doi:10.1103/PhysRevB.80.075431
56. A. Grüneis, K. Kummer, and D. V. Vyalikh
Dynamics of graphene growth on a metal surface: a time-dependent photoemission study
New Journal of Physics 11, 073050 (2009).
13
doi:10.1088/1367-2630/11/7/073050
55. A. Grüneis, C. Attaccalite, A. Rubio, D. V. Vyalikh, S. L. Molodtsov, J. Fink, R. Follath, W. Eberhardt, B.
Büchner, and T. Pichler
Electronic structure and electron-phonon coupling of doped graphene layers in KC 8
Phys. Rev. B. 79, 205106 (2009). (Editors' Suggestion)
doi:10.1103/PhysRevB.79.205106
54. D. V. Vyalikh, V. V. Maslyuk, A. Blüher, A. Kade, K. Kummer, Yu. S. Dedkov, T. Bredow, I. Mertig, M.
Mertig, and S. L. Molodtsov
Charge Transport in Proteins Probed by Resonant Photoemission
Phys. Rev. Lett. 102, 098101 (2009).
doi:10.1103/PhysRevLett.102.098101
53. D.V. Vyalikh, K. Kummer, A. Kade, A. Blüher, B. Katzschner, M. Mertig, and S.L. Molodtsov
Site-specific electronic structure of bacterial surface protein layers
Appl. Phys. A 94, 455 (2009).
doi:10.1007/s00339-008-4913-4
52. S. Danzenbä cher, D. V. Vyalikh, Yu. Kucherenko, A. Kade, C. Laubschat, N. Caroca-Canales, C.
Krellner, C. Geibel, A. V. Fedorov, D. S. Dessau, R. Follath, W. Eberhardt, and S. L. Molodtsov
Hybridization Phenomena in Nearly-Half-Filled f-Shell Electron Systems: Photoemission Study of
EuNi2P2
Phys. Rev. Lett. 102, 026403 (2009).
doi:10.1103/PhysRevLett.102.026403
On “Physical Review Letters” Cover
51. I. I. Pronin, M. V. Gomoyunova, D. E. Malygin, D. V. Vyalikh, Yu. S. Dedkov, and S. L. Molodtsov
Magnetic ordering of the Fe/Si interface and its initial formation
J. Appl. Phys. 104, 104914 (2008).
doi:10.1063/1.3028252
50.Yu. S. Dedkov, D. V. Vyalikh, M. Holder, M. Weser, S. L. Molodtsov, C. Laubschat, Yu. Kucherenko, and
M. Fonin
Dispersion of 4f impurity states in photoemission spectra of Yb/W(110)
Phys. Rev. B 78, 153404 (2008).
doi:10.1103/PhysRevB.78.153404
49.A. Grüneis and D. V. Vyalikh
Tunable hybridization between electronic states of graphene and a metal surface
Phys. Rev. B 77, 193401 (2008).
doi:10.1103/PhysRevB.77.193401
48.O. V. Molodtsova, M. Knupfer, V. Yu. Aristov, D. V. Vyalikh, V. M. Zhilin, and Yu. A. Ossipyan
The unoccupied electronic structure of potassium doped copper phthalocyanine studied by near
edge absorption fine structure
Journal of Applied Physics 103, 053711 (2008).
doi:10.1063/1.2874001
47. V. Yu. Aristov, O. V. Molodtsova, V. V. Maslyuk, D. V. Vyalikh, V. M. Zhilin, Yu. A. Ossipyan, T. Bredow, I.
Mertig, and M. Knupfer
Electronic structure of the organic semiconductor copper phthalocyanine: Experiment and theory
Journal of Chemical Physics 128, 034703 (2008).
doi:10.1063/1.2822170
46. K. Kummer, D. V. Vyalikh, G. Gavrila, A. Kade, M. Weigel-Jech, M. Mertig, and S. L. Molodtsov,
High-resolution photoelectron spectroscopy of self-assembled mercaptohexanol monolayers on gold
surfaces
Journal of Electron Spectroscopy and Related Phenomena 163, 59 (2008).
doi:10.1016/j.elspec.2008.02.005
45. D. V. Vyalikh, Yu. Kucherenko, F. Schiller, M. Holder, A. Kade, S. Danzenbä cher, S. L. Molodtsov and
C. Laubschat,
14
Detecting the parity of electron wave functions in solids by quantum-well states of overlayers
New Journal of Physics 10, 043038 (2008).
doi:10.1088/1367-2630/10/4/043038
44. D. V. Vyalikh, S. Danzenbä cher, A. N. Yaresko, M. Holder, Yu. Kucherenko, C. Laubschat, C. Krellner,
Z. Hossain, C. Geibel, M. Shi, L. Patthey, and S. L. Molodtsov,
Photoemission insight into heavy-fermion behavior in YbRh 2Si2
Phys. Rev. Lett. 100, 056402 (2008).
doi:10.1103/PhysRevLett.100.056402
43. V. V. Maslyuk, I. Mertig, T. Bredow, M. Mertig, D. V. Vyalikh and S. L. Molodtsov,
Electronic structure of bacterial surface protein layers
Phys. Rev. B 77, 045419 (2008).
doi:10.1103/PhysRevB.77.045419
42. D. V. Vyalikh, Yu. Kucherenko, F. Schiller, M. Holder, A. Kade, S. L. Molodtsov and C. Laubschat,
Parity of substrate bands probed by quantum-well states of overlayer
Phys. Rev. B 76, 153406 (2007).
doi:10.1103/PhysRevB.76.153406
41. A. Kade, D. V. Vyalikh, S. Danzenbä cher, K. Kummer, A. Blüher, M. Mertig, A. Lanzara, A. Scholl, A.
Doran, and S. L. Molodtsov,
Photoemission electron microscopy of bacterial surface protein layers: X-ray damage
J. Phys. Chem. B 111, 13491, (2007).
doi:10.1021/jp073650z
40. S. Danzenbä cher, Yu. Kucherenko, D. V. Vyalikh, M. Holder, C. Laubschat, A. N. Yaresko, C. Krellner,
Z. Hossain, C. Geibel, X. J. Zhou, W. L. Yang, N. Mannella, Z. Hussain, Z.-X. Shen, M. Shi, L. Patthey, and
S. L. Molodtsov,
Momentum dependence of 4f hybridization in heavy-fermion compounds: Angle-resolved photoemission study of YbIr2Si2 and YbRh2Si2
Phys. Rev. B 75, 045109 (2007).
doi:10.1103/PhysRevB.75.045109
39. S. Danzenbä cher, Yu. Kucherenko, C. Laubschat, D. V. Vyalikh, Z. Hossain, C. Geibel, X. J. Zhou, W. L.
Yang, N. Mannella, Z. Hussain, Z.-X. Shen, and S. L. Molodtsov,
Energy Dispersion of 4f-Derived Emissions in Photoelectron Spectra of the Heavy-Fermion Compound YbIr2Si2
Phys. Rev. Lett. 96, 106402 (2006).
doi:10.1103/PhysRevLett.96.106402
38. F. Schiller, J. Cordon, D. Vyalikh, A. Rubio, and J. E. Ortega,
Reply: Comment on "Fermi Gap Stabilization of an Incommensurate Two-Dimensional Superstructure"
Phys. Rev. Lett. 96, 029702 (2006).
doi:10.1103/PhysRevLett.96.029702
37. D. V. Vyalikh, A. Kirchner, A. Kade, S. Danzenbä cher, Yu.S. Dedkov, M. Mertig, and S.L. Molodtsov,
Spectroscopic studies of the electronic properties of regularly arrayed two-dimensional protein layers
Journal of Physics: Condensed Matter 18, 131 (2006).
doi:10.1088/0953-8984/18/13/S09
36. D. V. Vyalikh, Yu. Kucherenko, S. Danzenbä cher, Yu. S. Dedkov, S. L. Molodtsov and C. Laubschat,
Wave-vector conservation upon hybridization of 4f and valence-band states observed in photoemission
spectra of Ce monolayer on the W(110)
Phys. Rev. Lett. 96, 026404 (2006).
doi:10.1103/PhysRevLett.96.026404
35. V. Yu. Aristov, O. V. Molodtsova, V. M. Zhilin, D. V. Vyalikh, and M. Knupfer,
Chemistry and electronic properties of a metal-organic semiconductor interface:In on CuPc
Phys. Rev. B 72, 165318 (2005).
15
doi:10.1103/PhysRevB.72.165318
34. M. Fonin, R. Pentcheva, Yu. S. Dedkov, M. Sperlich, D. V. Vyalikh, M. Scheffler, U. Rüdiger, and G.
Güntherodt,
Surface electronic structure of the Fe3O4(100): Evidence of a half-metal to metal transition
Phys. Rev. B 72, 104436 (2005).
doi:10.1103/PhysRevB.72.104436
33. Yu. S. Dedkov, A. S. Vinogradov, M. Fonin, C. Kö nig, D. V. Vyalikh, A. B. Preobrajenski, S. A. Krasnikov, E. Yu. Kleimenov,
M. A. Nesterov, U. Rüdiger, S. L. Molodtsov, and G. Güntherodt,
Correlations in the electronic structure of half-metallic ferromagnetic CrO 2 films:
An x-ray absorption and resonant photoemission spectroscopy study
Phys. Rev. B Rapid Communications 72, 060401 (2005).
doi:10.1103/PhysRevB.72.060401
32. D. V. Vyalikh , P. Zahn, M. Richter, Yu. S. Dedkov and S. L. Molodtsov,
Short-period oscillations in photoemission from thin films of Cr(100)
Phys. Rev. B Rapid Communications 72, 041402 (2005).
doi:10.1103/PhysRevB.72.041402
31. S. Danzenbä cher, Yu. Kucherenko, M. Heber, D. V. Vyalikh, S. L. Molodtsov, V. D. P. Servedio, and C.
Laubschat,
Wave-vector dependent intensity variations of the Kondo peak in photoemission from CePd 3
Phys. Rev. B 72, 033104 (2005).
doi:10.1103/PhysRevB.72.033104
30. C. Preinesberger, D. V. Vyalikh, F. Schiller, S. L. Molodtsov, G. Pruskil, S. K. Becker, C. Laubschat, and
M. Dä hne,
Anisotropic metallicity of dysprosium silicide nanowires on vicinal Si(001)
Appl. Phys. Lett. 87, 083107 (2005).
doi:10.1063/1.2032620
29. D. V. Vyalikh, A. Kirchner, S. Danzenbä cher, Yu. S. Dedkov, A Kade, M. Mertig, S. L. Molodtsov,
Photoemission and Near-Edge X-Ray Absorption Fine Structure studies of the bacterial surface protein layer of Bacillus sphaericus NCTC 9602
J. Phys. Chem. B 109, 18620 (2005).
doi:10.1021/jp050748+
28. A. S. Vinogradov, S. I. Fedoseenko, S. A. Krasnikov, A. B. Preobrajenski, V. N. Sivkov, D. V. Vyalikh, S.
L. Molodtsov,
V. K. Adamchuk, C. Laubschat, and G. Kaindl,
Low-lying unoccupied electronic states in 3d transition-metal fluorides probed by NEXAFS at the F 1s
threshold
Phys. Rev. B 71, 045127 (2005).
doi:10.1103/PhysRevB.71.045127
27. V. N. Makhov, M. A. Terekhin, M. Kirm, S. L. Molodtsov and D. V. Vyalikh,
A comparative study of photoemission and cross luminescence from BaF 2
Nucl. Instr. and Meth, 537, 113 (2005).
doi:10.1016/j.nima.2004.07.246
26. M.V. Gomoyunova, I.I. Pronin, N.R. Gall, D.V. Vyalikh and S.L. Molodtsov,
Interaction of cobalt with the Si(100)2 × 1 surface studied by photoelectron spectroscopy
Surface Science 578, 174-182 (2005).
doi:10.1016/j.susc.2005.01.034
25. F. Schiller, J. Cordon, D. V. Vyalikh, A. Rubio, and J. E. Ortega,
Fermi gap stabilization of an incommensurate two-dimensional superstructure
Phys. Rev. Lett. 94, 016103 (2005).
doi:10.1103/PhysRevLett.94.016103
16
24. D. V. Vyalikh, S. I. Fedoseenko, I.E. Iossifov, R. Follath, S.A. Gorovikov, J.-S. Schmidt, S. L. Molodtsov,
V. K. Adamchuk, W. Gudat, and G. Kaindl,
The Russian-German Soft X-Ray Beamline at BESSY II
AIP Conf. Proc. 705, 309 (2004).
doi:10.1063/1.1757795
23. G. N. Gavrila, H. Méndez, T. U. Kampen , D. R. T Zahn, D. V. Vyalikh, W. Braun,
Energy Band Dispersion in Well Ordered N,N’-dimethyl -3,4,9,10-Perylenetetracarboxylic diimide
Films
Appl. Phys. Lett. 85, 4657 (2004).
doi:10.1063/1.1800273
22. E. Weschke, H. Ott, E. Schierle, C. Schüß ler-Langeheine, D. V. Vyalikh, G. Kaindl, V.
Leiner, M. Ay,
T. Schmitte, H. Zabel, P.J. Jensen
Finite-size effect on magnetic ordering temperatures in long-period antiferrommagnets: Holmium thin
films
Phys. Rev. Lett. 93, 157204 (2004).
doi:10.1103/PhysRevLett.93.157204
21. D. V. Vyalikh, S. Danzenbä cher, M. Mertig, A. Kirchner, W. Pompe, Yu. S. Dedkov and S. L. Molodtsov,
Electronic structure of regular bacterial surface layers
Phys. Rev. Lett. 93, 238103 (2004).
doi:10.1103/PhysRevLett.93.238103
20. F. Schiller, D. V. Vyalikh, V. D. P. Servedio, and S. L. Molodtsov,
Photoemission study of the spin-density wave state in thin films of Cr
Phys. Rev. B 70, 174444 (2004).
doi:10.1103/PhysRevB.70.174444
19. Yu.S. Dedkov, M. Fonine, D. Vyalikh, J. O. Hauch, S.L. Molodtsov, U. Rüdiger, and G. Güntherodt,
Electronic Structure of Fe3O4(111) Surface
Phys. Rev. B 70, 073405 (2004).
doi:10.1103/PhysRevB.70.073405
18. C. Laubschat, S. L. Molodtsov, M. Finken, Yu. Kucherenko, G. Behr and D. V. Vyalikh,
Variation of 4f hybridization across the rare-earth series
Journal of Electron Spectroscopy and Related Phenomena, 137, 491-494 (2004).
doi:10.1016/j.elspec.2004.02.087
17. D. V. Vyalikh, Manuel Richter, Yu. S. Dedkov and S. L. Molodtsov,
Oscillations in photoemission from Cr/Fe/W(100) and Cr/W(100)
Journal of Magnetism and Magnetic Materials, 272, 1147-1148 (2004).
doi:10.1016/j.jmmm.2003.12.1012
16. Yu. Mikhlin, Y. Tomashevich, I. Asanov, A. Okotrub, V. Varnek and D. V. Vyalikh,
Spectroscopic and electrochemical characterization of the surface layers of chalcopyrite (CuFeS2)
reacted in acidic solutions
Applied Surface Science, 225, 395-409 (2004).
doi:10.1016/j.apsusc.2003.10.030
15. C. Preinesberger, D. V. Vyalikh, S. L. Molodtsov, F. Schiller, G. Pruskil, S. K. Becker, C. Laubschat and
M. Dä hne,
Queuing atoms: Self-Assembly of Silicide Nanowires
BESSY Highlights 2003, 22 (2003).
link
14. M. Fonin, Y. Dedkov, C. Kö nig, G. Güntherodt, U. Rüdiger, J. Mayer, D. Vyalikh and S. Molodtsov,
Room temperature spin polarization of epitaxial half-metallic Fe 3O4(111) and CrO2(100) films
Advances in Solid State Physics, 43, 55 – 80 (2003).
doi:10.1007/978-3-540-44838-9_35
17
13. S.L. Molodtsov, Yu. Kucherenko, D.V. Vyalikh, G. Behr, A. Starodubov, and C. Laubschat,
Strong Hybridization of 4f States of Heavy Rare-Earth's in Intermetallic Compounds
Phys. Rev. B 68, 193101 (2003).
doi:10.1103/PhysRevB.68.193101
12. S. I. Fedoseenko, D. V. Vyalikh, I. E. Iossifov, R. Follath, S. A. Gorovikov, R. Püttner J.-S. Schmidt,
S. L. Molodtsov, V. K. Adamchuk, W. Gudat, and G. Kaindl,
Commissioning results and performance of the high-resolution Russian–German Beamline at BESSY
II
Nucl. Instr. and Meth., 505, 718-728 (2003).
doi:10.1016/S0168-9002(03)00624-7
11. D. V. Vyalikh, E. Weschke, A. M. Shikin, Yu. S. Dedkov, V. K. Adamchuk, and G. Kaindl,
Quantum-well states in ultra-thin Au/Ag(111) double layers on W(1 1 0)
Surf. Sci., 540, L638-L642 (2003).
doi:10.1016/S0039-6028(03)00882-3
10. D. V. Vyalikh, A. M. Shikin, G. V. Prudnikova, A. Yu. Grigor'ev, A. G. Starodubov, and V. K. Adamchuk,
Quantum-well states and resonances in thin single-crystal layers of noble metals on W(110) substrates
Phys. Solid State 44, 164-170 (2002).
doi:10.1134/1.1434500
9. A.S. Vinogradov, S.I. Fedoseenko, D.V. Vyalikh, S.L. Molodtsov, V.K. Adamchuk, C. Laubschat, and G.
Kaindl,
High resolution F1 s absorption spectra of solid fluorides of 3d Elements
Optics & Spectroscopy 93, 862-69 (2002).
doi:10.1134/1.1531709
8. C. Schüß ler-Langeheine, E. Weschke, R. Meier, A.Yu. Grigoriev, H. Ott, Chandan Mazumdar, D. V.
Vyalikh,
C. Sutter, D. Abernathy, G. Grübel, and G. Kaindl,
Resonant magnetic X-ray scattering from in-situ grown holmium metal films
In: Speciation, Techniques and Facilities for Radioactive Materials at Synchrotron Light Sources,
T. Reich and D. K. Shuh (Eds.), pp. 295-301, Paris (2002).
link
7. D. V. Vyalikh, S. I. Fedoseenko, I.E. Iossifov, R. Follath, S.A. Gorovikov, J.-S. Schmidt, S. L. Molodtsov,
V. K. Adamchuk, W. Gudat, and G. Kaindl,
Commissioning of the Russian-German XUV Beamline at BESSY II
Synchrotron Radiation News, Vol. 15, N. 3, (2002) 26-28.
doi:10.1080/08940880208602954
6. A. M. Shikin, D. V. Vyalikh, G. V. Prudnikova and V. K. Adamchuk,
Phase accumulation model analysis of quantum well resonances formed in ultra-thin Ag, Au films on
W(110)
Surf. Science 487, 135-145 (2001).
doi:10.1016/S0039-6028(01)01080-9
5. A. Yu. Grigor'ev, O. V. Krupin, D. V. Vyalikh, Yu. S. Dedkov, A. M. Shikin, G. V. Prudnikova, and V. K.
Adamchuk,
Silicon Interaction with the (0001) Surface of La and Gd Layers
Phys. Solid State 43, 380-385 (2001).
doi:10.1134/1.1349492
4. C. Schüß ler-Langeheine, E. Weschke, A. Yu. Grigoriev, H. Ott, R. Meier, D. V. Vyalikh, Chandan Mazumdar,
C. Sutter, D. Abernathy, G. Grübel, and G. Kaindl,
Resonant magnetic x-ray scattering from ultrathin Ho-metal films down to a few atomic layers
J. Electr. Spectrosc. Relat. Phenom. 114, 953-957 (2001).
doi:10.1016/S0368-2048(00)00318-2
18
3. A. M. Shikin, A. Yu. Grigoriev, G. V. Prudnikova, D. V. Vyalikh, S. L. Molodtsov, and V. K. Adamchuk,
Interaction of thin silicon layers with (0001) surface of rare-earth metals
Phys. Solid State 42, 973 (2000).
doi:10.1134/1.1131322
2. A. M. Shikin, D. V. Vyalikh, Yu. S. Dedkov, G. V. Prudnikova, V. K. Adamchuk, E. Weschke, and G.
Kaindl,
Extended energy range of Ag quantum-well states in Ag(111)/Au(111)/W(110)
Phys. Rev. B Rapid Commun. 62, R2303-2306,(2000).
doi:10.1103/PhysRevB.62.R2303
1. D. V. Vyalikh and S. I. Fedoseenko,
Scanning tunneling microscopy investigation of the microtopography of SiO 2 and Si surfaces
at the Si/SiO2 interface in SIMOX structures
J. Semiconductors 33, 654-657, (1998).
doi:10.1134/1.1187749