newsletter - Airi / Nanotec IT

Transcript

newsletter - Airi / Nanotec IT
nanotec IT
newsletter
Numero 12 gennaio-febbraio 2011
3
Editoriale
Ricerca & Sviluppo
The Avidin-Nucleic Acids Nano Assemblies (ANANAS), as powerful molecular amplifiers in in vitro diagnostics
Thermotherapy with Magnetic Nanoparticles
Disordered optical materials: from fundamental research to applications in solar energy
Nanostructured cathodes and anodes for lithium ion batteries for automotive applications
A new anti-counterfeiting marking system
Nanotechnology in textile applications: research @ Centexbel
Interactive and smart nanotechnological textiles: fabrication routes and functional properties
5
8
11
15
19
22
26
The Nanocode Project
Le nanotecnologie in 10 settori applicativi: i rapporti del progetto ObservatoryNano
AIRI/Nanotec IT briefing su tessili protettivi nanomodificati The Systex project: vision paper for the smart textiles industry in Europe Tiny technology makes high tech industry cool
Nanotecnologie e 7° Programma Quadro: Sesto Report sulla partecipazione delle PMI
29
29
31
31
31
32
Il Libro Bianco INAIL sui nanomateriali ingegnerizzati e gli effetti sulla salute e sicurezza dei lavoratori
Nanometrologia: Co-nanomet e l’Associazione Vamas Italia
ECSIN-Centro Europeo di Studi sulla Sostenibilità delle Nanotecnologie
Scheda di sicurezza per i nanomateriali: nuova guida svizzera
33
33
34
35
Bando PON per distretti tecnologici e laboratori pubblico-privati
Eurotrans-Bio: sesto bando per R&S nelle biotecnologie per PMI
36
36
La Piattaforma Europea Nanofutures
Università della Tuscia ed Airc insieme per la lotta ai tumori
Cresce il numero di spin-off sulle nanotecnologie
Nanoshare: New start-up on micro-and nano-technologies
36
37
37
37
NanotechItaly 2010
Nanochallenge and Polymerchallenge 2010
4° Conferenza del Programma N.I.C di Federchimica
Nanotech Tokyo 2011
39
39
40
40
BioInItaly Investment Forum
ImagineNano 2011 Graphita 2011
EuroNanoforum 2011
41
41
41
43
Notizie
Progetti Europei
Regolamentazione, linee guida e standards
Bandi
Altre notizie dall'Italia
Seminari&Convegni
Prossimi eventi
Altri eventi
Airi
nanotec IT
Supplemento a Notizie Airi
n. 174 sett.ott.nov.dic. 2010
Anno XXV - 2010
Quadrimestrale
Abbonamento annuo
• Soci Euro 25,00
• Non soci Euro 40,00
Spedizione in abb. postale
comma 20 lett. B art. 2
L. 23.12.96 n. 662
Roma/Romanina
Pubblicità 45%
Autorizzazione Tribunale
di Roma n. 216
del 29 aprile 1986
Redazione AIRI:
00198 Roma
Viale Gorizia, 25/c
tel. 06.8848831, 06.8546662
fax 06.8552949
e-mail: [email protected]
www.airi.it - www.nanotec.it
Immagine Università di
Trieste - Libro Nanomondi,
area Science Park, 2007
p r i m o
p i a n o
Editoriale
I
n Italia l’attività nel campo delle nanotecnologie è negli anni
passati costantemente aumentata e, come messo in evidenza
dal 3° Censimento AIRI/Nanotec IT delle Nanotecnologie in Italia
(in corso di pubblicazione), il Paese può vantare, accanto ad una
ricerca accademica competitiva, sovente con posizioni di eccellenza, anche una presenza crescente di imprese private, grandi
e PMI.
Il Convegno Internazionale NanotechItaly2010, tenutosi a Venezia
il 20–22 ottobre 2010, che è diventato ormai un appuntamento
di riferimento per quanti in Italia sono attivi in questo campo,
anche quest’anno ha visto nei tre giorni una partecipazione notevole, con interventi da parte di rappresentanti del mondo della ricerca pubblica e di quello delle imprese che hanno fornito
una panoramica ampia di questo attività. Gli articoli di questa
Newsletter ne sono un esempio significativo.
fortemente incrementato le risorse dedicate a questo settore andandosi a collocare, in particolare i primi due, tra i Paesi di punta, almeno in termini di entità dello sforzo economico. L’Unione
Europea a sua volta, che già nel 7° Programma Quadro (20072013) ha dedicato a questo settore più di 3500 milioni di Euro,
è intenzionata a rafforzare ed ottimizzare questo impegno ed è
in corso un’azione volta a definire una Piattaforma Europea per
le Nanotecnologie alla quale faranno riferimento i finanziamenti
in questo settore nell’ambito dell’8° Programma Quadro, il quale
dovrà indirizzare e sostenere l’azione di R&S dell’Unione Europea
per il raggiungimento degli obiettivi indicati dall’Agenda Europa
2020.
Nel sottolineare questi aspetti positivi, tuttavia, non si possono
però nascondere alcune criticità che penalizzano l’azione in questo campo. Se consideriamo, infatti, l’entità dell’impegno economico, esso risulta sensibilmente inferiore non solo a quello dei
paesi più avanzati ma anche a quello dei paesi emergenti piu’
attivi, il che, se non corretto a tempo, rischia di non far cogliere
appieno al Paese le opportunità offerte dalle nanotecnologie, con
implicazioni negative sul suo posizionamento competitivo, visto il
ruolo chiave che tutti attribuiscono alle nanotecnologie nel processo di innovazione.
In Italia la spesa per la attività di R&S nelle nanotecnologie è,
come detto, lontano da quella dei Paesi suddetti, ma la limitatezza delle risorse finanziarie (pubbliche), peraltro generalizzata, non
è tuttavia il solo fattore che penalizza l’azione nelle nanotecnologie in Italia. Un altro aspetto critico è il fatto che l’attività, pur
avendo prodotto in molti casi risultati notevoli, è andata avanti,
almeno fino a poco tempo, fa senza un disegno strategico definito che ottimizzasse gli sforzi. Molti dei Paesi leader del settore,
a partire da Stati Uniti e Germania, hanno attivato da tempo iniziative nazionali specifiche per le nanotecnologie, con obiettivi e
linee strategiche precise e fondi (consistenti) dedicati. Esse si sono
rivelate fondamentali per indirizzare e rendere piu’ efficace l’azione di quei Paesi, contribuendo al raggiungimento della attuale
posizione di forza.
Complessivamente, a livello globale, la spesa (pubblica e privata)
per la attività di R&S nelle nanotecnologie ha raggiunto, infatti
ormai una somma di più di 13 miliardi di Dollari. Gli Stati Uniti,
con circa 1500 milioni di dollari, ed il Giappone, con 600 milioni
di dollari rimangono i Paesi maggiormente impegnati, seguiti dalla Germania, che in Europa è di gran lunga la piu attiva, mentre
anche Paesi come Cina, Russia e India negli ultimi 2-3 anni hanno
AIRI/Nanotec IT ha più volte sollecitato l’attivazione anche in Italia
di una Iniziativa Nazionale per le Nanotecnologie (INN) con fondi
dedicati adeguati ed un disegno strategico definito, per perseguire proprio tali obiettivi. Purtroppo ciò fin’ora non è avvenuto
nonostante quanti sono impegnati in questo campo, in particolare le imprese, ne abbiano riconosciuto l’utilità e ne lamentino
apertamente la mancanza.
N e w s l e t t e r
N a n o t e c
i t
3
p r i m o
p i a n o
Ultimamente sono state avviate, nell’ambito della ricerca pubblica, varie iniziative di tipo organizzativo e programmatico, che
possono contribuire a limitare questa carenza, ma questo da solo
non è certamente sufficiente.
Nel contesto della iniziativa in corso per la realizzazione di una
Piattaforma Europea per Nanotecnologie, è stata avviata anche
un’azione volta a definire una Piattaforma Italiana. Questa attività, alla quale AIRI/Nanotec IT partecipa e contribuisce attivamente, dovrebbe consentire di focalizzare obiettivi ed esigenze delle
nanotecnologie in Italia in relazione a quelli messi in evidenza
nell’ambito della Piattaforme Europea e puo’ costituire un ulteriore passo avanti per ottimizzare l’impegno in questo campo.
L’attivazione di una iniziativa specifica di sostegno e di indirizzo
(anche l’Iran ne ha una..) rimarrebbe comunque un obiettivo da
perseguire. Essa, infatti, contribuirebbe ad ottimizzazione l’attività promossa sulla base degli obiettivi indicati dalla Piattaforma
inquadrandola in un disegno strategico Nazionale complessivo
e, inoltre, consentirebbe di cavalcare meglio l’evoluzione dello
sviluppo delle nanotecnologie (ancora in una fase iniziale) facilitando al contempo una azione volta a far si esso avvenga in maniera responsabile. AIRI/Nanotec IT, facendosi portavoce dei propri iscritti, è convinta dell’importanza strategica di una Iniziativa
Nazionale per le Nanotecnologie e seguiterà ad adoperarsi perché questo possa realizzarsi.
Elvio Mantovani
Direttore AIRI/Nanotec IT
4
N e w s l e t t e r
N a n o t e c
i t
RICERCA
&
S V IL U PPO
The Avidin-Nucleic Acids Nano
Assemblies (ANANAS),
as powerful molecular
amplifiers in in vitro diagnostics
Margherita Morpurgo
ANANAS Nanotech S.r.l. in collaboration with the University of Padova and Istituti
ZooProfilattici delle Venezie (IZV) e della Lombardia ed Emilia Romagna (IZSLER),
Italy.
ANANAS Nanotech
A
NANAS Nanotech is an Italian University spin-off that was
founded in 2007 with the mission to transform into commercial
products the patented polyavidin nanoparticle platform developed within the University benches.
The ANANAS nanoparticles are a novel kind of stable, fully biocompatible poly-avidin nanoassemblies, with controllable and application-adaptable size, obtainable by means of a highly reproducible and economic self-assembly-guided preparation method
[1] These patented particles extend the potentialities of worldwide used avidin-biotin-based technologies in in vitro diagnostics and drug-delivery applications. In diagnostics about 200-fold
higher sensitivity is obtained without the need for the operator
to change his technological platform. High drug payloads can be
targeted to localized body sites using a straightforward nanoparticle loading strategy. Winner of the 2007 nanochallenge international prize, the company has launched its first high sensitivity
IVD kit for research use in July 2010. The IVD products pipeline
has been growing since then. ANANAS Nanotech products are
currently dedicated to research labs. The company also addresses IVD kit producers that can increase the performance of their
products with minimal impact on the final analytical protocol (no
need for the operator to change his/her hardware or mode of
operating). In addition, the higher sensitivity allows reducing the
amount of the primary antibody necessary for analysis with the
end result of reducing analysis costs.
body) and a signal generating element, so that the signal can be
localized where the analyte is present (Figure 1)
However, classic avidin-biotin technology potentials are limited by
the maximum number (4) of ligands that can be brought together by the individual avidin unit.
The ANANAS particles are nanosystems (about 100 nm in diameter) potentially capable of overcoming such limits since they
have a “core” composed of several avidin units and, consequently, they are characterized by higher and precisely defined biotin
loading capacity (Figure 1).
Technology
Avidin is a protein from egg white that is capable of binding with
high affinity (Kd~10-15M) four biotin molecules. This property represents the basis for its exploitation as a molecular tool in many
biotechnological applications among which immunodiagnostics
and drug delivery [2]. The protein in fact is used as a universal tool
capable of bringing together different chemical and biochemical
function, provided that have been previously covalently linked to
a biotin moiety (an easy procedure). In diagnostics, avidin is used
to bring together an analyte recognizing molecules (eg. An anti-
The performance of the ANANAS particles, has been assessed in
several in vitro diagnostics configurations and compared to that
of benchmark reagents currently in the market in three analytical
set-ups.
Figure 2 shows the results of an Enzyme-Linked ImmunoSorbent
Assay (ELISA) experiment in which detection of a biotinylated antibody was achieved with either a commercial avidin-HRP conjugate or the ANANAS integrated system. The latter gives rise to a
positive response (characterized by signal/standard deviation > 2)
at all points tested. This corresponds to a detection limit of less
Figure 1. The ANANAS concept vs monomerica avidin.
N e w s l e t t e r
N a n o t e c
i t
5
RICERCA
&
S V IL U PPO
than 0.023 pg/well. In the same analytical set-up, the positive signal onset for the commercial competitor avidin-HRP was at 6.17
pg/well. The ANANAS enhanced sensitivity is due to both lower
noise and higher signal intensities. The enhancement factor in
this analytical set-up (calculated from the ratio of the two onset
values) was of about 240 fold.
Figure 3 shows the analytical performance of the ANANAS system in a blot assay where the analyte was mouse IgG from serum, which was diluted serially into PBS/BSA. In this case, the
ANANAS performance was compared to that of the commercial
competitor Vectastain ABC from Vector Labs, which relies on a
patented avidin-based amplifying technology. The results of this
assay can be used to predict the efficacy of detection in Western
or Southern blots.
Figure 3. Detection of mouse IgGs from serum in a dot blot experiment using the
ANANAS system and commercial enhanced Vectatstain ABC system. Spots (1µl) were
made with mouse serum serially diluted from 1:10000 to 1:640000 in PBS/BSA.
Figure 2 ANANAS (o) vs commercial avidin-HRP (•) in a model ELISA assay. Arrows
indicate the positive signal onsets (signal/stdv >2).
As in ELISA, the ANANAS system shows significantly higher sensitivity than the commercial competitor, due to both reduced noise
and higher signal. In this experimental set-up the ABC system
positive onset was at mouse serum dilution of 1/80.000, which
corresponds to about 125 pg of IgG/spot, whereas positive signal with the ANANAS system was observed also at the higher
dilution tested (1/640000), which corresponds to about 16 pg of
IgG. Therefore, the enhancement factor is > 8 fold. This result is
of particular interest, since the ABC system itself already relies on
a signal amplifying technology.
Figure 4 shows preliminary data obtained in a real analytical context, namely in the detection of anti-BHV1 (Bovine herpes virus
type 1) IgGs in cow milk. The presence of these antibodies in milk
is due to either infection or immunization with BHV1.
Figure 4. Detection of anti-BHV1 IgGs in six positive cow milk samples, each diluted with negative milk. The dilutions tested are 1 to 10; 1 to 20, 1 to 50 and 1 to 125.
6
N e w s l e t t e r
N a n o t e c
i t
RICERCA
&
S V IL U PPO
Known positive milk samples were diluted in negative milk to simulate a real stable situation, in which bulk milk is obtained upon
pooling together the product of several cows. In this situation the
presence of an infected animal (and thus the early diagnosis of an
infected stable) may be masked by diluting seropositive milk with
that of healthy animals. The results show that the ANANAS integrated detection system yields to significantly higher reading values
than the competitor system, despite the shorter development time
used. In all milk tested, a clear positive response was observed in
all of the dilutions investigated (up to 1 to 125). Experiments with
a larger pool of samples, aimed at estimating the actual sensitivity
and specificity of the integrated system are currently underway.
Additional information: Experimentals
Goat-IgGs, rabbit-anti-Goat IgGs were purchased from KPL.
Horseradish Peroxidase (HRP), Avidin-HRP conjugate and TMB
were from Sigma Aldrich. ANANAS particles containing about
300 avidin units/particle were prepared and provided by ANANAS
Nanotech. Detection antibodies and horseradish peroxidase (HRP)
were biotinylated according to standard protocols. Anti-mouse
IgG ABC Vectatstain detection reagents were purchased from
Vector Labs (USA); Anti-bovine IgG1 monoclonal antibody (MAb)
and BHV1-antigen coated microwell plates were kindly provided
by IZSLER (Brescia, Italy); IBR Positive and negative cow milk samples were provided by IZV (Legnaro, Padova, Italy).
Conclusions
The novel Nanoassembled ANANAS system improves the performance of present in vitro diagnostics technologies within classic
assay platforms. The system can be easily integrated in the majority of the immunodiagnostics set-ups, where it allows improving
the sensitivity without the need for the user to invest in novel
instrumentation. The sensitivity reached with colour-based developments is on the same scale as the one obtained with ECL integrated with classic avidin-based or HRP-antibody conjugates. The
ANANAS technology then represents an easy and low cost alternative to improve research and diagnostic laboratories sensitivity.
Performance on a generic ELISA platform
96 well polystyrene plates (Nunc Maxisorp) were conditioned
with rabbit anti-goat IgG. After washing, serial (1/4) dilutions of
biotinylated goat IgGs (from 55 to 0.023 pg/well) were incubated
for 1 h. After well washing, detection was performed using commercial avidin-HRP conjugate or the ANANAS particles followed
by biotin-HRP. After the final wash, detection was achieved using
TMB as the HRP substrate and reading the plate at 450 nm after
2-20 minutes incubation.
The ANANAS Team
The ANANAS team comprises technical and Industrial skills.
Margherita Morpurgo is ANANAS CSO, is assistant professor
at the School of Pharmacy at the University of Padova. She has
more than 15 years of experience in chemistry, biochemistry, avidin-biotin technology and drug delivery, with a training record
that includes long term collaborations with major international
research Institutions and current international network of collaborations. Her research interests focus on the development of
organic and inorganic assemblies for drug delivery and diagnostic
use. Key personnel in the R&D team include Mauro Pignatto
and Sonia Facchin, a pharmaceutical chemist and biologist who
joined the ANANAS project since its early stage. Davide Merlin,
ANANAS CFO has a long professional experience in business
planning, market analysis, and start-up strategy developed by
an international consulting firm. Paolo Gubitta, has more than
10 years of experience in research and consulting in the field of
organizational development, strategy of small and medium size
company, recruitment and selection of highly qualified people.
Nicola Realdon, associate professor at the School of Pharmacy
at Padova University is expert in Pharmaceutical technology and
legislation. Before starting his academic career he worked several
years in pharma industry. He has extensive experience in production, quality assurance and regulatory affairs acquired in pharmaceutical industries. The institutional partners of ANANAS are The
University of Padova and Veneto Nanotech.
Performance on a blot platform
Serial amounts of biotinylated goat IgG were spotted on a PVDF
membrane. After quenching, detection was achieved with the
Vectastain-ABC system or ANANAS particles + biotin-HRP, followed by colour development with the diaminobenzidine (DAB)
substrate.
Detection of IBR positive cows from milk samples
BHV1 antigen was trapped onto Nunc Maxisorp plates by a virus
specific MAb coated to the solid phase. Positive cow milk samples
were serially diluted into negative milk and incubated for 1h at
37°C. After washing, an anti-bovine IgG1 MAb, HRP conjugated
(IZSLER) or biotinylated and, followed by ANANAS and biotinHRP, were delivered; colour development was finally achieved
with TMB.
References
[1]M. Pignatto, N. Realdon, M. Morpurgo, Optimized Avidin
Nucleic Acid Nanoassemblies by a Tailored PEGylation Strategy
and Their Application as Molecular Amplifiers in Detection,
Bioconjug Chem, (2010).
[2] H.P. Lesch, M.U. Kaikkonen, J.T. Pikkarainen, S. Yla-Herttuala,
Avidin-biotin technology in targeted therapy, Expert Opin
Drug Del, 7(5) (2010) 551-564.
Contacts
Margherita Morpurgo
ANANAS Nanotech S.r.l, Padova
[email protected], [email protected]
N e w s l e t t e r
N a n o t e c
i t
7
RICERCA
&
S V IL U PPO
Thermotherapy with Magnetic
Nanoparticles
Monika Fischler, Andreas Jordan
MagForce Nanotechnologies AG, Berlin, Germany
T
he therapeutic effectiveness of heat in the treatment of cancer has been known for decades and many of the corresponding
molecular mechanisms are understood [1]. Although various successful clinical trials have been conducted [2-4], due to complicated technical setup and heat distribution problems, hyperthermia
is not yet well established as a therapeutic method.
Thermotherapy using magnetic nanoparticles is a new approach for the local treatment of solid tumors and one of the
first clinical applications of nanotechnology in cancer therapy.
The principle of the NanoTherm therapy, developed by MagForce
Nanotechnologies AG, is the introduction of an aqueous magnetic fluid containing nanoparticles into a tumor. The particles are
activated by a magnetic field that changes its polarity 100,000
times per second, and thus heat is produced. Depending on
the duration of treatment and the achieved intratumoral temperatures, the tumor cells are either directly destroyed (thermal
ablation) or sensitized for concomitant chemo- or radiotherapy
(hyperthermia).
With this new procedure, it is possible to combat the tumor from
inside, thereby sparing surrounding healthy tissue. The nanoparticles remain in place at the treatment area, allowing for repeated treatments and the integration into multimodal therapy
concepts.
The first component of the NanoTherm therapy is NanoTherm, a
so called ferrofluid, meaning a liquid that reacts to the presence
of a magnetic field. The liquid’s magnetic characteristic stems
from its iron-oxide nanoparticles. Despite an average diameter of
approximately only 15 nanometers, the nanoparticles possess a
strong magnetic character (referred to as superparamagnetism).
Due to their special aminosilane coating, these small magnets
can be finely dispersed in water, forming a colloidal solution that
is dispensable with a syringe. Once inside the alternating magnetic field applicator (NanoActivator), these specifically designed
nanoparticles are responsible for the production of warmth. As
a “transducer” the nanoparticles can very efficiently change
magnetic field energy into heat and, due to their coating structure, remain in the tumor tissue as a stable deposit. The unique
characteristics of NanoTherm nanoparticles are the basis for the
NanoTherm therapy.
8
N e w s l e t t e r
N a n o t e c
i t
Fig 1: The NanoTherm magnetic fluid
Fig. 2 Screenshot of the NanoPlan therapy planning software
The next component of the NanoTherm therapy is the NanoPlan
therapy software, which supports the treating physician in the development of a treatment planning. Based on the distribution of
the nanoparticles as shown in a post-operative CT scan, NanoPlan
uses the Bioheat-Transfer equation to estimate the treatment
RICERCA
&
S V IL U PPO
temperatures as a function of the magnetic field strength. The
intuitive workflow guides the user through a series of treatment
parameters questions. As a result, the software creates a threedimensional image of the tumor, the nanoparticle depots, and
the thermometry catheter for direct temperature measurements.
In addition, an estimation of the temperature distribution can
be shown in correlation with the field strength. By changing the
given parameters, it is possible to simulate different scenarios and
the optimal treatment field strength can be determined. The final
step of the NanoTherm therapy is carried out in the magnetic field
applicator NanoActivator, which was developed specifically for
the therapy. The machine’s 100 kHz oscillating coil current can be
continuously adjusted between 100 and 500 amperes, resulting
in a magnetic field strength of approximately 2 to 15 kA/m. The
resulting magnetic field activates the iron oxide nanoparticles in
the NanoTherm magnetic fluid, by which therapeutic treatment
temperatures within the tumor are achieved. The NanoActivator
can be used for tumors in all areas of the body.
In more than 15 years of basic research and numerous preclinical studies, the advantages of NanoTherm therapy have been
demonstrated, e.g. in prostate carcinoma [5, 6] and glioblastoma
animal models [7]. Since 2003, various clinical studies (phase I
and II) have been performed in collaboration with different clinical partners, demonstrating the safety and efficacy of the new
method in humans for different tumour entities, i.e. glioblastoma
multiforme [8, 9], prostate cancer [10, 11], and residual tumours
(ovarian and cervical carcinoma, sarcoma) [12]. Thermotherapy
was thereby applied in combination with radio or chemotherapy,
exploiting the well known synergistic effects between the different therapies.
In the phase II glioblastoma multiforme trial completed in 2009
[8], a combined treatment of fractionated stereotactic radiotherapy and NanoTherm therapy was applied to 66 patients (59
with recurrent glioblastoma). In the single-arm two-centre study,
the patients received neuronavigationally-controlled intratumoral
injection of the nanoparticles, followed by 6 thermotherapy sessions in the alternating magnetic field applicator. Treatment was
combined with fractionated stereotactic radiotherapy with a median dose of 30 Gy in a median fractionation of 5x2 Gy/week.
Median time between primary diagnosis and first tumour recurrence was 8.0 months.
Median overall survival after diagnosis of the first tumour recurrence was 13.4 months, side effects were mild to moderate and
no serious complications were observed. Survival in the historical
control was 6.2 months after conventional treatments [13]. Due
to this positive outcome, MagForce received European regulatory
approval for its medical products NanoTherm and NanoActivator
for the treatment of brain tumours.
Fig. 3 The NanoActivator causes the particles to oscillate in an alternating
magnetic field and generates heat in the tumour.
For future applications, MagForce is working on a new generation of nanoparticles that can offer even greater therapeutic potential to its NanoTherm therapy. Through modification of the
nanoparticle surface with functional drug delivery systems that
can be triggered by the heat generated by the particles, it is possible to combine hyperthermia with chemotherapy in an optimal
N e w s l e t t e r
N a n o t e c
i t
9
RICERCA
&
S V IL U PPO
timeframe. Additionally, in order to develop multifunctional nanocarriers with multiple therapeutic applications, MagForce is
also exploring the use of targeting ligands with tumour localizing
properties along with stealth coatings for a future systemic administration.
The Berlin based company MagForce Nanotechnologies AG focuses on the use of nanotechnology for the treatment of solid
tumors. The company’s proprietary NanoTherm® therapy consists
of three components: NanoTherm® (a magnetic fluid), NanoPlan®
(a therapy planning software), and NanoActivator™ (an alternating magnetic field applicator).
References
1.Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J,
Riess H, Felix R, Schlag PM. Hyperthermia in combined treatment of cancer. Lancet Oncology 2002; 3:487-497.
2.Sneed PK, Stauffer PR, McDermott MW, Diederich CJ,
Lamborn KR, Prados MD, Chang S, Weaver KA, Spry L,
Malec MK, Lamb SA, Voss B, Davis RL, Wara WM, Larson
DA, Phillips TL, Gutin PH. Survival benefit of hyperthermia
in a prospective randomized trial of brachytherapy boost +/hyperthermia for glioblastoma multiforme. Int J Radiat Oncol
Biol Phys 1998;40:287-295.
3.Issels RD, Lindner LH, Verweij J, Wust P, Reichardt P, Schem
BC, Abdel-Rahman S, Daugaard S, Salat C, Wendtner CM,
Vujaskovic Z, Wessalowski R, Jauch KW, Durr HR, Ploner
F, Baur-Melnyk A, Mansmann U, Hiddemann W, Blay JY,
Hohenberger P. Neo-adjuvant chemotherapy alone or with
regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study. Lancet Oncol
2010;11:561-570.
4. van der Zee J, Gonzalez Gonzalez D, van Rhoon GC, van Dijk
JD, van Putten WL, Hart AA. Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced
pelvic tumours: a prospective, randomised, multicentre trial.
Dutch Deep Hyperthermia Group. Lancet 2000;355:11191125.
5. Johannsen M, Thiesen B, Jordan A, Taymoorian K, Gneveckow
U, Waldöfner N, Scholz R, Koch M, Lein M, Jung K, Loening
SA. Magnetic fluid hyperthermia (MFH) reduces prostate
cancer growth in the orthotopic Dunning R3327 rat model.
Prostate 2005;64:283-292.
6. Johannsen M, Thiesen B, Gneveckow U, Taymoorian K,
Waldöfner N, Scholz R, Deger S, Jung K, Loening SA, Jordan
A. Thermotherapy using magnetic nanoparticles combined
with external radiation in an orthotopic rat model of prostate cancer. Prostate 2006;66:97-104.
7. Jordan A, Scholz R, Maier-Hauff K, van Landeghem FK,
Waldoefner N, Teichgraeber U, Pinkernelle J, Bruhn H,
Neumann F, Thiesen B, von Deimling A, Felix R. The effect
10
N e w s l e t t e r
N a n o t e c
i t
of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neurooncol 2006;78:7-14.
8.Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen
B, Orawa H, Budach V, Jordan A. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol
2010;Sep 16. [Epub ahead of print]
9.Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P,
Thiesen B, Feussner A, von Deimling A, Waldoefner N, Felix
R, Jordan A. Intracranial thermotherapy using magnetic
nanoparticles combined with external beam radiotherapy:
Results of a feasibility study on patients with glioblastoma
multiforme. J Neurooncol 2007;81:53-60.
10. Johannsen M, Gneveckow U, Taymoorian K, Thiesen B,
Waldofner N, Scholz R, Jung K, Jordan A, Wust P, Loening
SA. Morbidity and quality of life during thermotherapy using
magnetic nanoparticles in locally recurrent prostate cancer:
Results of a prospective phase I trial. Int J Hyperthermia
2007;23:315-323.
11. Johannsen M, Gneveckow U, Thiesen B, Taymoorian K,
Cho CH, Waldöfner N, Scholz R, Jordan A, Loening SA,
Wust P. Thermotherapy of Prostate Cancer Using Magnetic
Nanoparticles: Feasibility, Imaging, and Three-Dimensional
Temperature Distribution. Eur Urol 2007;52:1653-1662.
12.Wust P, Gneveckow U, Johannsen M, Bohmer D, Henkel T,
Kahmann F, Sehouli J, Felix R, Ricke J, Jordan A. Magnetic
nanoparticles for interstitial thermotherapy--feasibility, tolerance and achieved temperatures. Int J Hyperthermia
2006;22:673-685.
13.Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn
MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger
K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ,
Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T,
Weller M, Lacombe D, Cairncross JG, Mirimanoff RO. Effects
of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in
a randomised phase III study: 5-year analysis of the EORTCNCIC trial. Lancet Oncol 2009;10:459-466.
Contacts
Dr. Monika Fischler
MagForce Nanotechnologies AG
Berlinbiotechpark, Max-Dohrn-Str. 8-10
10589 Berlin
phone +49 30 30838061
Email [email protected]
RICERCA
&
S V IL U PPO
Disordered optical materials:
from fundamental research to
applications in solar energy
Diederik S. Wiersma
European Laboratory for Non-linear Spectroscopy (LENS), National Institute of
Opics (CNR-INO).
Photonic nano structures
T
he transport of light in complex dielectric materials is a rich
and fascinating topic of research. With complex dielectrics we
intend dielectric structures with an index of refraction that has
variations on a length scales that is very roughly comparable to
the wavelength. Such structures strongly scatter light. A possible
building block for constructing a complex dielectric is a micro
sphere of diameter comparable to the wavelength and of a certain refractive index that is different from its surrounding medium. The single scattering from such a sphere has a rich structure due to internal resonances in the sphere, but its behaviour
is well-understood and can be calculated using the formalism of
Mie-scattering. A complex dielectric material can then be realized
by micro-assembly of several micro spheres. The spheres can be
assembled in various ways with as two opposite possibilities a
completely disordered packing and a fully ordered assembly. (See
Fig.1.)
Figure 1 Micro assembly of a complex photonic system. The two extremes are fully
disordered assembly (left) leading to random multiple light scattering and ordered
assembly (right) resulting in a photonic crystal or possibly a photonic band gap
material.
Even though the same spheres with the same single scattering
properties are used, their cumulative behaviour after assembly
will depend heavily on the way the spheres as packed together.
This is due to the interference between the scattered waves and
the way the waves are multiply scattered from one sphere to
another. If the spheres are packed according to a crystal-like
structure then the interference will be constructive only in certain well defined directions, giving rise to Bragg refraction and
reflection. In the disordered case the light waves will perform a
random walk from one sphere to the other. The occurrence of
interference effects is now less obvious to understand, however
also in random systems interference effects turn out to be very
important [1].
Figure 2 Output of a random laser made by grinding a laser crystal into a powder
and exciting it optically. The random series of lines is due to the speckle generated
by the random structure and corresponds to the modes of the random laser. [From:
Stefano Gottardo, Riccardo Sapienza, Pedro D. García, Alvaro Blanco, Diederik S.
Wiersma, and Cefe López, Resonance-driven random lasing, Nature Photonics 2,
429 (2008).]
N e w s l e t t e r
N a n o t e c
i t
11
RICERCA
&
S V IL U PPO
Interference of light in random dielectric systems influences the
transport of light in a way that is similar to the interference that
occurs for electrons when they propagate in disordered conducting materials. As a result, several interference phenomena that
are known to occur for electrons appear to have their counterpart
in optics as well. Interesting examples are correlations and memory effects in laser speckle, universal conductance fluctuations of
light, weak localization, and Anderson localization [2]. In the case
of Anderson localization the interference effects are so strong
that the transport comes to a halt and the light becomes localized
in randomly distributed modes inside the system. Interference effects in multiple scattering can furthermore be used to study the
dynamics of optically dense colloidal systems.
Also in ordered systems interference can give rise to dramatic
effects. If the scattering of the spheres that constitute a photonic crystal is strong enough (that is the refractive index contrast
between the spheres and their surrounding medium is large and
their diameter is resonant with the wavelength) the interference
can become destructive in all direction, for a certain range of
frequencies. In analogy with the behaviour of electrons in semiconductors this range of optical frequencies is referred to as a
photonic band gap. Inside a photonic band gap the density of
light modes becomes zero, which means that even vacuum fluctuations are suppressed. A small impurity inside such a photonic
band gap material will give rise to a localized mode around this
impurity.
12
form of local maxima and minima. Speckle occurs in any disordered material, no matter what its specific microscopic structure or
level of disorder.
Anderson localization and solar cells
In very strongly scattering materials interference effects can lead
to a strong version of localization, also called Anderson localization, being the optical counterpart of localization of electrons
in strongly disordered conductors. Anderson localization inhibits
the free propagation of waves and the optical diffusion process
thereby comes practically to a halt. Although the detailed mechanism behind localization is quite complex, one can visualize the
effect as being due to the formation of randomly shaped but closed modes with an overall exponentially decaying amplitude. (See
Figure 3.) The average spatial extend of these localized modes defines a length scale called the localization length. The connection
between weak and strong localization is then also immediately
clear. While in the case of weak localization the interference occurs outside the sample between light waves that have travelled
along half-closed loops, in strong localization the same interference occurs inside the sample along closed-loop paths [2].
The micro assembly of complex photonic materials as depicted in
Fig.1 is concerned with three dimensional structures. The same
principle can be applied to lower dimensional systems. In the case
of 2D structures one uses a planar waveguide in which a pattern
can be created, e.g. simply by inserting sub-micron sized holes.
The behaviour of light in three dimensional systems is often difficult to describe theoretically. The advantage of lower dimensional structures is that an analytical theoretical description is often
available, facilitating the interpretation of experimental results.
2D structures in particular, turn out to be extremely interesting
for applications in the field of solar energy and lighting [3].
Figure 3 Spatial distribution of the light inside a random sample. In a regular
disordered structure the distribution is dominated by speckle (left) while in the
case of Anderson localization the light is highly localized in space and hence
trapped in random modes (right). [From: D.S. Wiersma, P. Bartolini, A. Lagendijk,
and R. Righini, Localization of Light in a disordered medium, Nature 390, 671
(1997).]
How interference effects occur in disordered structures
Interference often determines the optical properties of materials
and leads, in the case of photonic crystals, to a coloured appearance that depends on viewing angle. More supprising, maybe,
is the fact that interference also is important in disordered structures. If we shine a laser beam on a white material like a piece of
paper we see a grainy pattern of intensity maxima and minima.
This is due to interference between waves that have been scattered randomly inside the paper and is called laser speckle. (See
Fig. 2, in which the speckle pattern created by a random laser
is shown.) Speckle is present also inside a random system in the
Localization is expected to occur when the disorder is so strong
that the mean free path ζ becomes smaller then the reciprocal
wavevector, so that: k ζ <= 1. The product k ζ is therefore often
used as parameter to characterize the amount of optical disorder,
with the disorder increasing for decreasing k ζ. Most optical materials in daily life have k ζ values that are much bigger than one
and are therefore only weakly to modestly scattering. Even for
very dense clouds we have k ζ values that are bigger than 10^6,
so that light is diffusively transported instead of trapped. This is
also the reason that sunlight can penetrate clouds diffusively. If
clouds were to Anderson localize light, the incident sun would
N e w s l e t t e r
N a n o t e c
i t
RICERCA
&
S V IL U PPO
be mostly reflected back leaving the earth completely dark on a
cloudy day.
Anderson localization is a phenomenon that is very interesting
from a fundamental point of view, while at the same time could
be used in applications, for instance, to trap and thereby efficiently absorb light in solar cells [4,3]. A spin-off company of the CNR,
called Lambda Energy (www.lambdaenergy.com), is planning to
target this type of application, as well as that of using Anderson
localization, and nanostructured photonic materials in general, to
create efficient light sources and diffusers.
Many processes in nature are actually based on Lévy flights. An
important example is that of the search pattern that animals
follow in search for food. Honey bees that are placed in a new
environment will perform a Lévy flight to scan the area. By performing a Lévy flight they can cover a much vaster region then by
performing a normal random walk. At the same time they manage to gather detailed local information in their search. Other
examples of Lévy processes can be found, for instance, in the
trend of the stock market, the distribution of human travel, and
the diffusion of liquids in the earth’s crust.
Beyond diffusion: optical Levy flights
In our understanding of transport processes we usually assume
that the distance covered at every step of the random walker is
not varying very much. This simplification seems reasonable at
first sight, since it allows to consider only the average value of
this step length, the so called mean free path. Physicists use this
simplification, which is based on the central limit theorem, very
often. In a Lévy flight the step length of the random walk is far
from constant and this means that in some occasions very large
steps can occur. These large steps not only mean that the random
walker can cover a much vaster area, but they also lead to the
counter-intuitive property that the average step length diverges
[5-7].
Given the vast amount of literature on optical random walks and
light diffusion one might wonder if it is possible to find or realize
an optical material in which light waves perform a Lévy flight.
In such a Lévy glass the photons would perform a random walk
with a step length distribution given by Lévy statistics. The result
would be an optical super diffuser. A relatively easy, but so far
unexplored possibility to do this, using high refractive index scattering particles (Titanium Dioxide in our case) in a glass matrix.
The local density of scattering particles is modified by including
glass microspheres of a well-chosen size distribution. These glass
microspheres do not scatter since they are incorporated in a glass
host with the same refractive index. Their purpose is to modify
locally the density of scattering elements. In Figure 4 the concept
of an optical Lévy flight is visualized.
The power-law step size distribution of a Lévy flight is expected to
give rise to strong fluctuations in the transport properties of individual samples. In the total transmission profile one should therefore observe large differences from one disorder realization to
another. In comparison, a common diffusive sample would show
nearly no fluctuations. The characteristics of the Lévy flight also
survive if we perform an average over a large number of samples. In that case we observe that the Lévy flight spreads the light
much more efficiently than the regular Gaussian system. This is
a direct consequence of the superdiffusive transport in Lévy systems. It is very interesting to examine interference effects like
Anderson localization in such optical super diffusers, with many
open questions left to address [8].
Figure 4 Flights of fancy: an inhomogeneous disordered photonic material can be
used to create optical Lévy flights. This new material is also termed Lévy glass and
behaves as a superdiffuser for light. [From: Pierre Barthelemy, Jacopo Bertolotti,
and Diederik S. Wiersma, A Lévy flight for light, Nature 453, 427 (2008).]
Applications
The research on light diffusion and disordered photonic structures in general has seen an enormous boost in recent years. One of
the reasons is that most photonic materials, and especially photonic crystals, intrinsically suffer from structural order [9]. It is simply
impossible to make a perfect photonic crystal without some level
of randomness. This made it ever so important to understand
how disorder affects the propagation of light and what the physics is behind disorder related optical phenomena. It also became
clear, however, that disorder is not necessarily a disadvantage. It
was found, for instance, that disorder in photonic crystals can
N e w s l e t t e r
N a n o t e c
i t
13
RICERCA
&
S V IL U PPO
lead to a very efficient trapping mechanism for optical waves.
This is very promising for optical memory applications, slow light
devices and even quantum optical devices, where the disorder
can be actually used as an advantage [10].
Another fascinating application of diffusive materials is that of
random lasing [11,12]. The multiple scattering process is capable
of trapping light very efficiently and, combined with an appropriate gain medium, this can be used to create a laser source. Such a
random laser uses multiple scattering as confinement mechanism
and requires no mirrors or other form of cavity. (See Figure 2.)
The output of such a disordered amplifying material is, of course,
spread out over a broad angular range, but has otherwise several
properties that are similar to the emission from a regular laser.
Apart from having a narrow spectrum, the output of a random
laser can have a surprisingly high level of coherence, in the sense
that the photon statistics have the typical characteristics of the
coherent state as produced by a laser. A random laser is capable
of generating such output with an optical cavity.
Coming back to Lévy glass, one would like to use this material
first of all to study the physics of Lévy transport processes in an
easy and controlled way in the laboratory. In addition, this material has a very new optical appearance which could make it
interesting for jewelry or art objects. Another property which can
make it interesting for applications is its very efficient diffusive
power. This can help the distribution of environmental light in
lighting applications. It would also be interesting to try to implement optical gain in these Lévy glasses to obtain a random laser
based on superdiffusion.
The LENS laboratory
LENS is a European center of excellence of the University of
Florence that focusses on basic research and applications in various fields of physics and chemistry, including atomic physics,
photonics, chemical physics, and life sciences (www.lens.unifi.it).
LENS is the largest laser facility in Italy and part of the Italian roadmap of large scale infrastructures. The institute is also closely
linked to the Italian research council CNR and thereby has a bridge function between university and CNR. The institute provides
access to its equipment and knowledge to all members of the
European Community via European research and training programs and currently organizes an international PhD school.
References
[1] See, for instance, P. Sheng, Introduction to Wave Scattering,
Localization, and Mesoscopic Phenomena Academic Press,
San Diego, 1995.
[2] Ad Lagendijk, Bart van Tiggelen, and Diederik S. Wiersma,
Fifty years of Anderson localization, Physics Today 62, 24
(2009).
14
N e w s l e t t e r
N a n o t e c
i t
[3] Francesco Riboli, Pierre Barthelemy, Silvia Vignolini, Francesca
Intonti, Alfredo De Rossi, Sylvain Combrie, Diederik S.
Wiersma, Anderson localization of near-visible light in two
dimensions, Opt. Lett., in press (2010).
[4] John, S. Electromagnetic Absorption in a Disordered Medium
near a Photon Mobility Edge. Phys. Rev. Lett. 53, 2169-2172
(1984).
[5] Mandelbrot, B. The Fractal Geometry of Nature (V.H. Freeman
and co., 1977).
[6] Mantegna, R. N. & Stanley, H. E. Stochastic process with
ultraslow convergence to a Gaussian: The truncated L´evy
flight. Physical Review Letters 73, 2946–2949 (1994).
[7] Shlesinger, M. F., Zaslavsky, G. M. & Klafter, J. Strange kinetics. Nature 363, 31–37 (1993).
[8] Jacopo Bertolotti, Kevin Vynck, and Diederik S. Wiersma,
Multiple Scattering of Light in Superdiffusive Media, Phys.
Rev. Lett. 105, 163902 (2010).
[9] See e.g. Koenderink, F., Lagendijk, A., & Vos, W. L. Optical
extinction due to intrinsic structural variations of photonic
crystals. Phys. Rev. B 72, 153102 (2005).
[10] D.S. Wiersma, Random Quantum Networks, Science 327,
1333 (2010).
[11] Lawandy, N. M., Balachandran, R. M., Gomes, A. S. L. &
Sauvain, E. Laser action in strongly scattering media. Nature
368, 436-438 (1994); D.S. Wiersma and S. Cavalieri, A temperature-tunable random laser, Nature 414, 708 (2001).
[12]D.S. Wiersma, The Physics and Applications of Random
Lasers, Nature Physics 4, 359 (2008) (review article).
Contacts
Diederik Sybolt Wiersma
European Laboratory for Non-linear Spectroscopy (LENS), National Institute of
Opics (CNR-INO), Via Nello Carrara 1, Sesto Fiorentino (Florence), Italy
Tel. +390554572492
[email protected]
RICERCA
&
S V IL U PPO
Nanostructured cathodes and
anodes for lithium ion batteries
for automotive applications
Silvia Bodoardo *, Francesca di Lupo*,
Matteo Destro*, Alain Tuel**
* Politecnico di Torino
** IRCELYON, Institut de Recherches sur la Catalyse et l'environnement de Lyon
Introduction
I
t is well known that the main efforts in the development of
Li-ion systems go towards a lower cost, lower pollution but high
specific performance and arise from huge market applications
like portable electronic devices, like portable phones, camcorders
and lap-top computers and the huge market of electric vehicles
(EVs) and hybrid-electric vehicles (HEVs) [1-3]. In particular, the
investigation on new materials for the positive and negative electrodes is one of the basic lines of research. For automotive application, where very big amounts of materials are used, some
important characteristics must be taken into particular account:
low environmental impact, safety, high performance and low
costs. High performance can be achieved by using suitable cathodic materials that also highly influence the battery cost and
the environmental impact. Safe Li-ion cells can be assembled by
using polymeric instead of liquid electrolytes or by changing the
anodic material. In Politecnico di Torino, the electrochemistry
group is studying new materials to be applied as electrodes and
electrolyte in lithium ion batteries. In Politecnico labs such materials are synthesized and characterized in little cells (about 1 cm2)
and in coffee bags. Actual researches are supported by regional,
national and European funding and also by international companies. Here are reported some of the results obtained thanks to a
fruitful collaboration between IRCELYON, leader on the synthesis
of nano and mesostructured materials, and Politecnico of Torino,
well known research centre on the materials for electrochemical generators. Researches on cathodic materials [4] are at the
present very advanced and posed the basis of a patent and next
future industrial application. The results presented here on anodic materials, although promising, are actually only preliminary.
During the presentation, it will be pointed out as a deep study
of nanostructured materials, starting from the synthesis to the
electrode production, is fundamental for practical application in
the automotive field.
Experimental
The lithium iron phosphate samples were prepared by direct mild
hydrothermal synthesis following [4]. Starting materials were
FeSO4·7H2O, H3PO4, LiOH in the stoichiometric ratio 1:1:3 and
hexadecyl-trimethylammonium bromide (C19H42BrN, CTAB). The
receipt was bettered adding a co-solvent during the synthesis [5].
The BET surface area of calcined sample is 60 m²/g. XRD data
show that the sample is highly crystalline and very pure. Different
preparation methods were used to synthesize TiO2. In particular samples were synthesized starting from P123 and Ti(OEt)4 or
Ti(OBu)4, from TBAB (Tetrabutyl ammonium bromide) and Ti(OPr)4
and from CTAB or C18TAB (Octadecyl Trimethyl Ammonium
Bromide) and TiOSO4. The data here reported are relative to the
preparation of TiO2 starting from TBAB (defined just above) and
Ti(OPr)4. The components were mixed in a solution of TABT and
at the boiling point is added Ti(OPr)4. The mixture was stirred for
3 h, washed with water and ethanol and then calcined in air in
the temperature range 250° C – 550° C. The final sample presented a BET surface area of 122 m²/g .
Fe2O3 was prepared as a replica of SBA15 mesoporous sample.
SBA15 was impregnated woth FeNO3 9H2O and calcined in air
at 300 and 600 °C. Silica was removed with NaOH solution.
Voltammetric and galvanostatic tests were carried out using liquid
electrolyte (1M LiPF6 in a 1:1 mixture of ethylene carbonate (EC)
and diethyl carbonate (DEC).
Results and discussion
Cathodic material
LiFePO4 was chosen as cathodic material as it is intrinsically safe
and it has a low environmental impact. The reported synthesis is
low cost and very simple. A patent is pending on the presented
process.
The addition of the template together with the
co-solvent during the synthesis of LiFePO4 leads to the formation
of a very pure sample covered by a thin carbon layer, as shown by
HRTEM image in Fig.1.
N e w s l e t t e r
N a n o t e c
i t
15
RICERCA
&
S V IL U PPO
Anodic material
The substitution of graphite, commonly used as anodic material,
with oxides at higher voltage, makes the complete cell more stable and therefore more safe, but with lower voltage. The use of
a template assisted synthesis makes possible to obtain nanostructured particles also in the case of anodic materials. In particular
here is presented a TiO2 sample whose particles size is lower of 10
nm, (Fig.3). TiO2 particles are very well crystallized.
Fig.1 HRTEM image of LiFePO4/C composite
Electrochemical tests (Fig.2), at room temperature, show the very
good performance of the LiFePO4 samples: the plot puts in evidence the good cycling stability of this sample, which shows a
high rate capability and even a slight progressive improvement
of the charge coefficient at high discharge regimes. The capacity
at C/20 is very close to the theoretical value (170 mAhg-1). A very
low decrease in capacity is present at high Crates (e.g. 20C). This
makes this sample particularly attractive for automotive applications as it can be fast charged and discharged.
This C layer is thick enough to assure a good electronic conductivity, but it is also permeable to Li+ ions, to assure the ionic conductivity. Cathodic particles are nanostructured: its average size
is about 40 nm. These two characteristics, nanosize and carbon
coating, permits the complete charge and discharge of the active
material contained in the sample.
250
C/20
C/10
C/5
140
C/10
C/2
1C
2C
3C
120
5C
10C
C/5
-1
160
1C
20C
100
80
60
40
Charge
Discharge
20
0
0
50
100
150
Cycle number
200
250
300
N e w s l e t t e r
N a n o t e c
i t
C/10
200
C/5
150
1C
100
C/2
C/5
1C
50
0
Fig.2 Charge–discharge cycling test of LiFePO4/C sample at different C-rate (from
C/20 to 20C) EC/DEC mixture.
16
Preliminary data of charge and discharge of one of the prepared
samples show a good cyclability of TiO2 (Fig.4). The specific capacity is not far from the theoretical one. The studied sample shows
an important loss of capacity after the first cycles, but after these,
the electrochemical performance are promising as there is a very
slow fading during cycling even at higher C rates.
Electrochemical experiments on the complete cell are still running
Specific Capacity (mAhg )
-1
Specific Capacity (mAh g )
180
Fig. 3 HRTEM image of TiO2 sample.
Charge
Discharge
0
50
850
900
950
1000
Cycle number
Fig. 4 Charge–discharge cycling test of TiO2 sample at different C-rate (from C/20
to 1C)
RICERCA
Fe2O3 was also synthesized ad it is an interesting material to be
used as anode for Liion cells. It is a very low cost and highly environmental friendly materials. Moreover its theoretical capacity
is higher than 1000 mAhg-1, making it very attractive for the automotive application. The TEM micrograph (Fig. 5) shows a well
crystallized, nanosized and ordered sample.
&
S V IL U PPO
To understand this behaviour, it must be taken into consideration the electrochemical mechanism of charge and discharge of
Fe2O3. As reported in [7] during reduction, metallic iron is formed,
causing the mesoporous structure to collapse and making the
following charge reaction very difficult.
Fe2O3 + 6Li+ + 6e ↔ 3Li2O + 2Fe
This reaction can be reversible, but the mesoporous structure
cannot be obtained again during cycling.
To increase the electrochemical performance, new nanostructured
sample have been prepared at lower temperature and nanorods
have been obtained which show higher electrochemical activity
[8]. Other synthetic ways will be carried out to get nanospheres.
Fig. 5 HRTEM image of Fe2O3 sample.
Nevertheless, though the structural characteristics are very interesting by the nanotechnological viewpoint, the electrochemical
performance are quite unsatisfying, as shown in Fig. 6.
The electrochemical activity falls after few cycles.
-1
Specific Capacity (mAhg )
1600
1400
C/10
1200
1000
800
Charge
Discharge
600
400
200
0
Conclusion
Nanostructured materials are very important for electrochemical
cells in particular for automotive applications. As for Li-ion cells
high surface area is needed, the synthesis of nanosized particles
is a milestone.
LiFePO4, here presented, shows all characteristics necessary to be
a very interesting cathode as it is intrinsically safe, environmental
friendly and low cost as starting materials and preparation method. The coverage with a thin C layer makes it ready for use.
TiO2 produced as nanoparticles looks to be a very interesting
material for the application as anodic material. Unfortunately
TiO2 presents a too high voltage to be coupled with LiFePO4 for
automotive application, but, being more safe than the common
carbonaceous materials, it can lead to interesting performance
if coupled with high voltage cathodes. Moreover the use of nanotechnology has to be tailored according to both the application and the reaction mechanism occurring during the practical
application (in the presented cases charge and discharge of the
electrochemical cells) in order to assure high performance.
0
5
10
15
20
25
30
35
40
45
50
Cycle number
Fig. 6 Charge–discharge cycling test of Fe2O3 sample at different C-rate (from C/20
to 1C)
References
[1] B. Scrosati, Nature 373 (1995) 557.
[2] M. Piana, M. Arrabito, S. Bodoardo, A. D’Epifanio, D. Satolli,
F. Croce, B. Scrosati, Ionics 8 (2002) 17.
[3] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J.
Electrochem. Soc. 144 (1997) 1188.
[4] G. Meligrana, C. Gerbaldi, A. Tuel, S. Bodoardo, N. Penazzi,
Journal of Power Sources 160 (2006) 516–522
[5] S. Bodoardo, G. Meligrana, C. Gerbaldi, F. Di Lupo, N.
Penazzi – patent pending.
[6]S. W. Oh et al., J.Power Sources 161 (2006) 1314.
[7] H. Liu et al., Electrochimica Acta 54 (2009) 1733–1736.
[8] data to be published.
N e w s l e t t e r
N a n o t e c
i t
17
RICERCA
&
S V IL U PPO
Bio-sketch
Dr Silvia Bodoardo is assistant professor at Politecnico di Torino.
Her research activity is carried out in the electrochemistry group
and it is mainly centred on materials for electrochemical applications.
The electrochemistry group is composed by prof. Nerino Penazzi,
prof. Paolo Spinelli, Dr Carlotta Francia, Dr Giuseppina Meligrana,
Dr Claudio Gerbaldi and other 10 young researchers and Phd
students.
Present research activity of the electrochemistry group in
Politecnico follows these main lines:
• Electrochemical characterization nano- and mesoporous materials containing redox active metal species.
• Synthesis and characterization of electrodic materials for Li-ion
cells, mainly focused on Li(Fe,Mn)PO4 cathodic materials.
• Synthesis and characterization of new polymeric electrolytes
for Li-ion cells.
• Synthesis and characterization electrochromic materials
• Studies on Li-air systems
Contacts
Silvia Bodoardo
[email protected]
+390115644641
Politecnico di Torino
c.so Duca degli Abruzzi 24
10129 Torino
IRCELYON, Institut de Recherches sur la Catalyse et l'environnement de Lyon
UMR 5256 CNRSUniversité
de Lyon, 2 avenue Albert Einstein
69626 Villeurbanne Cedex, France
18
N e w s l e t t e r
N a n o t e c
i t
RICERCA
&
S V IL U PPO
A new anti-counterfeiting
marking system
P. Di Lazzaro, S. Bollanti, F. Flora, L. Mezi, D. Murra, A. Torre
ENEA, Centro Ricerche Frascati, Dept. APRAD SOR, Frascati, Italy
Introduction
C
ounterfeiting is a global problem that can have major social
and economic consequences. The spread, number and kind of
counterfeit goods has greatly increased in recent years: according
to the study of Counterfeiting Intelligence Bureau (CIB) of the
International Chamber of Commerce (ICC), counterfeit Goods
make up 5 to 7% of World Trade. In a recent update [1] OECD
has estimated in $250 billion in 2007 the worldwide value of
international trade in counterfeit and pirated goods.
As a consequence, there is a urge in developing and adopting
innovative anti-counterfeiting technologies able to ensure a real
protection and/or traceability of a number of items, including,
e.g., forensic documents, dangerous waste, strategic components
(like microprocessors in automotive/aerospace fields, both civilian
and military), pharmaceutical products, currency notes, identity/
credit/debit cards, quality control, commercial/artistic objects.
Our Laboratory in ENEA has recently developed a new method
to fight counterfeiting and to trace critical goods, based on our
know-how in the fields of optics, laser, plasma and radiationmatter interaction. Our technology allows to vary the protection
level in relation to the desired extent by properly increasing the
complexity of the marking procedure. On the other side, the specific reading technique is straightforward using a dedicated apparatus.
1. Background
In the last years at the ENEA Research Centre in Frascati expertise
has grown in the generation of ionizing radiation and on its applications. [2, 3]. A plasma source driven by two different XeCl
excimer lasers is operative and the produced radiation is used in
different fields, ranging from X-ray microscopy to radiobiology,
from micro-radiography to contact lithography and atomic spectroscopy. Based on this plasma source, we developed an apparatus for EUV projection lithography obtaining a sub-100-nm-resolution pattern on polymethylmethacrylate (PMMA) resist [4, 5].
Besides affecting the chain bonds of polymers like PMMA, the
plasma produced ionizing radiation also may alter the atomic
structure of a class of crystalline luminescent materials, thanks
to its high-energy photons. In particular conditions, the radiation
can “print” on the material an invisible trace corresponding to a
pre-determined image, patterned, e.g., on a mask. Since most
luminescent materials can be grown in form of thin films on flexible and transparent substrates, they can be used as adhesive tags
to be put on every items to be protected and traced.
2. Marking features
The writing process is free from any pigment deposit on the luminescent material. This allows, when needed, the achievement
of an extremely high resolution in writing, down to the sub-micrometer scale (not attainable with e.g., the current ink-jet printer technology). The image generated on the film (symbol, code,
number, matrix, and so on) is invisible and can also be encoded
using the state-of-the-art cryptography techniques. The ENEA
system is based on a “physical” reading of the hidden image,
performed by means of a dedicated optical device.
Also, our technology enables to vary the security degree depending on the requirements: the writing system complexity can be
increased up to a virtually inimitable marking. In fact, the image
can be transferred on the film by a simple contact mask or by
projection optics, scaling in this way the invisible mark details
from millimeter down to micrometer size and below, so that
these details cannot be distinguished using a conventional optical microscope.
It is worth to underline that the proposed system is based on
absolutely novel principles, materials and methods, which are distinct from the invisible marks made using fluorescent inks, whose
application does not permit to reach our high resolutions. ENEA
has developed both the writing radiation source and the reading/
decoding system, has tested the results and assembled a complete system to make prototype tags.
3. Experimental results
Figure 1 shows two pictures of the same region of the luminescent material, in the form of a thin film coating on a glass substrate, after exposure behind a contact mask (grid with hexagonal
symmetry). The two images are taken through an optical microscope with conventional illumination and using the specific ENEA
N e w s l e t t e r
N a n o t e c
i t
19
RICERCA
&
S V IL U PPO
patented reading technique. The mask pattern is visible only with
the appropriate reading system.
More complex patterns can be obtained by projection EUV lithography tools, using reflective masks and de-magnifying optics, which allow the reduction of the details size down to the
100-nm range. This means that our technique can be tailored on
the customer demand, up to tags that are virtually impossible to
counterfeit.
The security level of our technology can be further increased by
digital encoding of the image, applying the current state-of-theart cryptography techniques. In this case the control would rely
not only on the physical reading of the image, but also on its
decoding with the appropriate digital key/algorithm.
A prototype of a portable device able to read the invisible marks
is shown in figure 3. In this case an encoding technique has been
applied to crypt the hidden pattern. The PC screen shows the raw
data matrix (an array of tiny squares as a 2-D barcodes) written
on the film as read by the device, and the corresponding pattern
“WATER MARKING” decoded by a dedicated software.
Figure 1: – Luminescent pattern obtained by contact lithography and observed at an
optical microscope by visible light (a) and by using the ENEA reading technique (b).
In another prototype, we deposited a thin film of luminescent
material on a plastic badge commonly used for credit or identity
cards. We exposed the film to ionizing radiation trough a contact
mask, thus transferring an invisible image on it, and then we put
a standard plastic-coating to protect the badge. Figure 2 shows
a comparison between the picture of the badge taken under natural light illumination and the image observed using the specific
reading system in conjunction with an optical microscope at low
magnification
is evident that
theonly
pattern
becomes
visible
5x). It is evident
that the (2.5x).
patternIt becomes
visible
in the
second
only in the second case.
a)
b)
– a) PictureFigure
taken2 under
natural
of a standard
badge badge
(85
– a) Picture
takenlight
underillumination
natural light illumination
of a standard
mm) with an(85
invisible
markwith
within
the dashed
area;theb)dashed
Picture
taken
at the
mm×54 mm)
an invisible
mark within
area;
b) Picture
taken
microscope (magnification
2.5×) showing
the same
dashed the
areasame
as in
a), but
at the optical microscope
(magnification
2.5×) showing
dashed
area as
e ENEA reading
in a),system.
but using the ENEA reading system.
omplex20 patterns
N e w can
s l ebe
t tobtained
e r N a by
n oprojection
t e c i t EUV lithography
sing reflective masks and de-magnifying optics, which allow the
on of the details size down to the 100-nm range. This means that our
ue can be tailored on the customer demand, up to tags that are virtupossible to counterfeit.
curity level of our technology can be further increased by digital
g of the image, applying the current state-of-the-art cryptography
ues. In this case the control would rely not only on the physical read-
Figure 3: – Prototype of the portable reading device able to read the invisible
images. On the PC screen there is the coded data matrix (a 2-D binary array)
read by the ENEA device on the film, and below, the corresponding sign
“WATERMARKING” as decoded by a specific software.
An additional way to further increase the security level of our
technology consists in structuring the fluorescent film as a series
of thin layers separated each other by non-luminescent materials,
with a variable thickness. In this way, after irradiation by ionizing radiation, the spectral energy of the used ionising radiation
affects the luminescence ratio of the different layers, and therefore a mark imprinted with a ionising radiation having a spectral
energy different from a pre-determined original one can be easily
identified.
ENEA has filed a patents about the invisible marking system [6].
4. Application to radioactive waste
A critical field of marking application is related to the traceability
of radioactive waste, from both civilian (power plants, hospitals)
and military uses, in order to fight their illegal disposal.
We made irradiation experiments to check if the high-energy
photons emitted by radioactive substances were able to alter the
structure and optical properties of the proposed materials. A lu-
RICERCA
minescent material thin film deposited on a glass substrate, patterned by irradiation with EUV light through an hexagonal grid
like the one shown in figure 1, has been exposed for 40 days to a
total radiation dose of about 1700 Gy (1 Gy = 1 J/kg). The exposure has been performed by adding γ-, X- and β-radiation contributions from several radio-nuclides, like, e.g., Co-60 (emission at
1.17 MeV) and Ba-133 (emission at 0.36 MeV).
Results are reported in figure 4, where the exposed sample (sample #1) is shown before and after irradiation (Figs. 4a and 4c, respectively), as observed by an optical microscope under the same
illumination conditions of a reference one (sample #2, Figs. 4b
and 4d).
Figure 4: Optical microscope images of two luminescent materials patterned with
the invisible writing technique and observed by the ENEA reader system: a) and
b) are reference samples #1 and #2, respectively, just after EUV irradiation with
hexagonal holes mask; c) sample #1 after 40 days radioactive exposure to 1700
Gy (see text); d) sample #2 after 40 days without exposure.
It is evident that the prolonged contact with radioactive material
did not alter the contrast of the image, since the pattern, still
invisible under normal illumination, does not show any difference with respect to the reference pattern on unexposed film (cf.
figures 4c and 4d).
Our tags are therefore good candidates as identification marks
for tracing standard radioactive substances.
5. Conclusion
ENEA has developed a new anti-counterfeiting/tracing technology based on EUV lithography on luminescent materials. An arbitrary pattern can be transferred as an invisible image on thin
tags, which in turn can be put on or embedded in any object to
be protected. A compact and cheap device can read the image
and check the authenticity of the tags.
The feasibility of the application of this technology to radioactive
waste traceability has also been demonstrated.
The ENEA technology can be used alone or in conjunction with
&
S V IL U PPO
other anticounterfeiting/tracing systems.
The level of security of this technology can be evaluated by the
following standard criteria: very high cost to break, high probability to detect a clone, very low probability of false negatives,
no privacy risks. Concerning vulnerabilities, at the moment we
are not able to find practical ways to fool the product authentication.
ENEA is looking for industrial companies and research partners
interested in a joint scientific/engineering development and/or
license agreement and/or testing new applications.
Acknowledgements
Authors are pleased to thank the Solid State Laboratory, ENEA
Frascati Research Centre, for film preparation.
References
1. http://www.oecd.org/dataoecd/57/27/44088872.pdf
2.S. Bollanti, P. Albertano, M. Belli, P. Di Lazzaro, A. Ya. Faenov,
F. Flora, G. Giordano, A. Grilli, F. Ianzini, S. V. Kukhlevsky, T.
Letardi, A. Nottola, L. Palladino, T. Pikuz, A. Reale, L. Reale,
A. Scafati, M. A. Tabocchini, I.C.E. Turcu, K. Vigli-Papadaki,
and G. Schina, Soft X-ray plasma source for atmospheric
pressure microscopy, radiobiology and other applications Il
Nuovo Cimento 20 D, 1685–1701 (1998).
3.S. Bollanti, F. Bonfigli, E. Burattini, P. Di Lazzaro, F. Flora, A.
Grilli, T. Letardi, N. Lisi, A. Marinai, L. Mezi, D. Murra, and
C. Zheng, High efficiency, clean EUV plasma source at 10-30
nm, driven by a long pulsewidth excimer laser Appl. Phys B
76, 277–284 (2003).
4.S. Bollanti, P. Di Lazzaro, F. Flora, L. Mezi, D. Murra, and A.
Torre, First results of high-resolution patterning by the ENEA
laboratory-scale extreme ultraviolet projection lithography
system European Physics Letters 84 58003 (2008).
5. P. Di Lazzaro, S. Bollanti, F. Flora, L. Mezi, D. Murra, and A.
Torre, Excimer-Laser-Driven EUV Plasma Source for SingleShot Projection Lithography IEEE Transactions of Plasma
Science 37, 475–480 (2009)
6. Invisible writing method based on lithography of luminescent materials, relevant reading method and anti-counterfeiting marking system EP 09734435.2.
Contacts
Dr. Paolo Di Lazzaro
ENEA Frascati Research Centre
Via E. Fermi 45, 00044 Frascati (Italy)
Tel. +39 06 94005722
[email protected]
N e w s l e t t e r
N a n o t e c
i t
21
RICERCA
&
S V IL U PPO
Nanotechnology
in textile applications:
research @ Centexbel
Guy Buyle, Isabel De Schrijver, Pieter Heyse, Kristof Stevens,
Myriam Vanneste, Luc Ruys
Centexbel, Belgium.
Introduction
I
n spite of the textile and clothing industry being perceived as
more traditional, the field of nanotechnology is being actively researched.
Nanotechnology in combination with textile materials typically
falls within one of the following three topics [1]:
• Nanofibers: the production and application of fibres that have
a diameter which is much smaller than the one of conventional
fibres.
• Nanoadditives for extrusion: adding nanoparticles to the polymer compounds used for filament extrusion
• Nanoscale coating: this is possible in a direct way (deposition
of nanoscale coatings onto the textile) or indirect way (mixing
nanoparticles (NP) into ‘traditional’ coating or finishing products).
Slightly more generalised, we distinguish the four main topics, as
shown in Table 1 below.
A key factor for success of nanotechnology in textile applications
is that besides offering one or more novel functionalities, it should
not compromise the inherent favourable textile properties, like
processability, exibility, washability or softness. Of course, also
the safety aspect is critical, but this will not be further discussed
here.
Extrusion approach
Direct way
Nanofibres can be produced via different methods. One of the
most versatile processes is the relatively simple technique of
electrospinning [2]. It relies on electrostatic forces obtained by
applying an electrical field between the tip of a nozzle and a
collector. When the electric field is strong enough, the electrostatic forces overcome the surface tension of the polymer solution
at the nozzle tip and a jet starts. The jet elongates and the so
produced nanofibres are deposited in a random structure on the
collector.
Because nanofibres are so small, they have a very high surface
area and enable structures with small pore sizes, making them
interesting for a wide range of applications, e.g. for use as filters
or sensors. This topic is not further dealt with in this article.
Extrusion
Coating/ Finishing
Direct
Nanofibre spinning
Specific deposition techniques:
evaporation, sputtering, ALD, plasma
coating,…
Indirect
NP added in compounds for
‘traditional’ extrusion
NP added in ‘traditional’ textile coating
formulations
Table 1 Overview of how to integrate nanotechnology in textile materials.
22
Here, we will focus on the extrusion and coating approach. Both
aspects are explained in more detail. Afterwards, some examples
of research performed at Centexbel will be introduced, focussing on the potential of the application, the challenges and the
pitfalls.
N e w s l e t t e r
N a n o t e c
i t
RICERCA
Indirect way
Using nanosized fillers is one of the most common approaches to
generate nanostructured composite fibres. This means that nanoparticles are added to the polymer used for extrusion of filaments.
A major challenge for the preparation of such polymer compounds with nano-fillers is the dispersion of the nanosized material.
Due to the large surface area the nanoparticles tend to interact
differently with the polymer matrix than the bulk materials. Other
nanoparticles, like for example carbon nanotubes (CNTs), show a
strong tendency to aggregate. Breaking up these aggregates is
challenging, but required for fully utilizing the specific properties
of the nano-materials. Formation of aggregates may also strongly
interfere with the processing of compounds and yarns.
At Centexbel many of such applications have been studied, including CNTs and nanoclays. See also further.
&
S V IL U PPO
Carbon nanotubes - CNTs
For several years now, CNTs have been the subject of extensive
research, especially as additives in polymer matrices. Due to the
superior properties of CNTs with respect to electrical and thermal
conductivity as well as mechanical strength, this material is envisioned as a replacement of carbon black as conductive polymer
filler. One advantage is that far less CNT additive (about 1/5th to
1/10th) is needed compared to carbon black, to achieve comparable results.
Coating approach
Here, two methods need to be distinguished: the direct and indirect way.
Direct way
This includes the direct application of a layer with thickness in
the nanometre range onto the textiles. This can be achieved via
more advanced coating methods, eg vacuum deposition techniques like evaporation, magnetron sputtering or Atomic Layer
Deposition (ALD). Alternatively, methods like atmospheric pressure plasma coating or sol-gel deposition can be used.
A main challenge here is the textile substrate itself. When looking
at a textile substrate from the nanoscale range, it appears as a
very rough surface and it has to be considered as a 3-dimensional
structure. In addition, processing additives may stay behind and
contaminate the surface. As such, coating nano thick layers on
textiles becomes a real challenge.
Indirect way
This option refers to the addition of nanoparticles to the traditional polymer based (textile) coatings and finishes. This research topic is less common then the extrusion way, especially for systems
using water-based dispersions. Nevertheless, this can also be a
valuable approach.
One of the major challenges when working with nano-additives
in coating and finishing applications is to obtain a good pre-dispersion of the nanoparticles, which then can be added to the
standard coating and finishing products. These nanoparticle dispersions are often not commercially available or not tailored to
textile products. For this reason, research into the preparation of
coating and finishing formulations containing nanoparticles additives is a strong priority at Centexbel.
Applications
In the following paragraphs, some examples of applications are
highlighted.
Figure 1 Coating of textiles with a CNT containing formulation: if aggregation
of CNT occurs, this becomes visible as micrometer-sized dark spots (up): if welldispersed these spots are prevented and via SEM analysis the individual CNTs can
be seen (down).
CNTs can be introduced at extrusion level by adding them into
the compound or by adding them to coating formulations [3].
At Centexbel the use of CNTs as conductive additive has been
studied and the results have shown that it is possible to prepare
textile coatings with a final resistivity of 1 kΩ/sq with an addition
of less than 5 wt% CNTs in the coating formulation. The idea behind using CNTs in conductive coatings is not only to replace the
use of metal fibres for antistatic textile applications, resulting in
lighter weight and better resistance to corrosion. A new direction
is that of smart textile or electronic textile, where the components are directly deposited onto the textile substrate instead of
integrating the finished components or devices into the textile
product as is done nowadays. The advantage of the former approach is that the character of the textile (being stretchable and
flexible) can be retained, which nowadays is not really the case.
At Centexbel conductive bottom electrodes are being developed
N e w s l e t t e r
N a n o t e c
i t
23
RICERCA
&
S V IL U PPO
for devices as photovoltaic (PV) cells or piezoelectric acceleration
sensors.
Another important aspect when using nanoparticles to prepare textile coatings is to ensure a good dispersion. Due to their
small size, the surface properties of nanoparticles become very
important and due to their low weight electrostatic attraction
forces play a major role. As a result, nanoparticles show a strong
tendency to agglomerate so that actual particle sizes can easily be
on the order of several µm, as illustrated in Figure 1 (left). If this
happens, the initial advantages of the nanoparticles are lost. One
of these advantages is the possibility to achieve a finer dispersion
of the additive in the coating and thus reduce the total amount
of additive needed. The other advantage is the ability to produce
more stable fluid dispersions of the additive in the coating or finishing formulation to be used: The smaller the particle size the less
sedimentation occurs. In order to facilitate this, dispersants need
to be used that keep the nanoparticles well separated. Centexbel
has obtained very good results for CNT dispersion in textile coatings and finishes, as can be seen from Figure 1 (down).
Nanosized oxides
Another group of materials of interest are nanostructured metal
oxides such as ZnO and TiO2, which possess photocatalytic abilities (photo-oxidizing capacities against chemical and biological
species) and UV absorption properties. Others like MgO, Al2O3
and SiO2 can increase the mechanical strength, abrasion resistance or fire retardance of textile materials.
On the one hand, nanosized oxides can be introduced as additives for extrusion or traditional coating mixtures. On the other
hand, they may be directly deposited on textile materials by for
example magnetron deposition [4] or ALD deposition. Regarding
ALD, deposition of Al2O3 was performed on PET non woven, the
research focus was on characterisation of the penetration of the
coating into the non woven [5].
Clay nanoparticles
Another important class of materials are clay nanoparticles or
nanoflakes, which are composed of several types of hydrous aluminosilicates. Clay nanoparticles possess electrical, heat and chemical resistance and an ability of blocking UV light. For example,
nanoparticles of montmorillonite are one of the most commonly
used clays. Centexbel has performed research evaluating the added value of nanoclays in extrusion applications, like increasing
strength and fire retardance.
Nanosized silver
Antimicrobial properties can be obtained by the addition of nanosilver. Silver nanoparticles are so small that they are virtually
100% surface area. Since the surface of silver is active against
bacteria (via release of Ag+ ions), the activity of a silver particle
increases with its surface area. Nanosilver particles show antimi24
N e w s l e t t e r
N a n o t e c
i t
crobial properties in concentrations as low as 0.0003 - 0.0005
%. For antimicrobial applications, these low concentrations compensate for the material cost of silver. Because of its effectiveness
against a broad range of germs, even in small concentrations and
over long periods of time, it is very interesting to incorporate nanosilver, which is non-toxic for higher life forms at these low concentrations, into textile materials (e.g. medical applications and
packaging material). Centexbel is currently studying the incorporation of nanosilver into different textile materials for antibacterial applications, both via extrusion and coating (indirect way).
Sol-gel layers
In this case, a thin SiOx- layer is applied on the textile via the sol
gel method. This method stems originally from deposition on ceramic substrates but by modifying the chemistry, systems which
can be cured at temperatures compatible with the most common
polymers could be developed.
Figure 2 Coating of textiles with sol gel can improve the abrasion resistance as
can be seen by comparing the result of Martindale Testing (EN ISO12947 - part
2) after 100.000 cycles on an untreated (left) and treated (right) woven PES
substrate.
Tests on textile reveal that sol gel layers can be deposited with
a thickness of typically around 100nm and with a nanoporous
structure. This type of coatings can improve the abrasion resistance of the textile material significantly as shown in Figure 2.
Further, the sol gel formulation can also be functionalised, e.g. to
improve the hydro- and oleophobic properties [6].
Nanocapsules
Recently, the synthesis of nanosized phospholipid vesicles filled
with an antibiotic (sodium azide – NaN3) has been reported [7].
Only when exposed to toxins released by pathogenic bacteria,
these nanovesicles open up and release their content. Within the
Bacteriosafe research project [8], this smart response of the nanocapsules is being investigated to see how it can be used for a
novel type of antibacterial wound dressings.
Immobilising similar types of smart nanocapsules that are specifically triggered clearly opens a lot of new possibilities for textile
functionalisation.
RICERCA
&
S V IL U PPO
Conclusion
Introducing “nano” into textile applications can be realised via
several methods: nano-fibre spinning, mixing in nano-additives
during extrusion, deposition of nanolayers or including nanoparticles into existing coatings.
Some examples of promising potential applications were highlighted, some of which are already extensively researched (e.g.
use of CNTs), others are emerging in the textile industry (e.g.
smart nanocapsules).
Irrespective of the method followed or application targeted, it is
crucial that the typical textile properties (flexibility, washability,
softness) for that application are not negatively influenced.
Acknowledgement
The research results reported in this article stem from different
European and regional projects. Therefore, the authors acknowledge the finance received for: FP7 project DEPHOTEX (214459-2),
FP7 project BACTERIOSAFE (245500), F6 project ACTECO
(515859-2), IWT VIS-CO 60874 CNT, IWT VIS-CO 070657 Nano
silver, IWT VIS-CO 40751 Sol-gel, IWT VIS-CO 030917 Ceratex II.
References
[1] “Report on Nanotechnology and Textiles”, http://www.observatorynano.eu/project/document/, 2010.
[2] Teo W.E. and Ramakrishna S., “A review on electrospinning
design and nanofibre assemblies”, Nanotechnology 17 R89R106, 2006.
[3] Eufinger K. et al., “Carbon nanotubes as additives in conductive textile coatings”, Unitex, 4-5, pp. 12-13, 2009.
[4] Wei Q.F. et al., “Surface Functionalisation of Polymer Fibers
by Sputter Coating”, J. Industrial Textiles, 35 (4), 287-294,
2006.
[5] Musschoot J. et al., “Conformality Of Atomic Layer
Deposition On Non-Wovens” ALD2010, Seoul (Korea), June
20-23, 2010.
[6] Stevens K., “Sol-gel application for textiles: towards new
ecological finishes”, 22nd IFATCC, Stresa (Italy), May 2010.
[7] Zhou J. et al., “A Thin Film Detection/Response System for
Pathogenic Bacteria”, J. Am. Chem. Soc. DOI: 10.1021/
ja101554a., 2010.
[8] Bacteriosafe – FP7 project, website: http://www.mpip-mainz.
mpg.de/eu-projekte/bacteriosafe/
Contacts
Guy Buyle
Centexbel, Technologiepark 7, BE-9052 Zwijnaarde, Belgium,
Tel: +32-9-220 41 51 - Fax: +32-9-220 49 55
[email protected]
N e w s l e t t e r
N a n o t e c
i t
25
RICERCA
&
S V IL U PPO
Interactive and smart
nanotechnological textiles:
fabrication routes and
functional properties
Francesco Toschi*, Valeria Guglielmotti*, Silvia Orlanducci*,
Emanuela Tamburri*, Ilaria Cianchetta*, Daniela Sordi*, Maria
Letizia Terranova*, Massimiliano Lucci**, Marco Rossi ***, Antonio
Andretta****, Paolo De Stefanis*****
* MINAS Lab. - Universita di Roma “Tor Vergata” - Dipartimento di Scienze e
Tecnologie Chimiche
** MINAS Lab. - Universita di Roma “Tor Vergata” - Dipartimento di Fisica
*** Università di Roma “La Sapienza” – Dipartimento di Energetica
**** Klopman International S.r.l.
***** LABOR S.r.l.
Introduction
T
he present development of technical textile market is set
to continue to grow following the consumer’s demand for the
ground-breaking innovations generated by nanotechnology .
Manipulation at the nanoscale to create synergies between natural fibers, artificial fibers and nanomoieties is generating new
functionalities while preserving basic properties, appearance and
comfort. In the coming years, textiles and clothing products will
increasingly assume intelligent functions.
Research is active both in exploring the opportunities offered by
manipulating textile materials down to the nanoscale, in order to
introduce new adaptive/active functions, and in the development
of smart fabrics/clothes by incorporating micro-electronic components into textiles.
In this context the main objective of our research groups is to
design, realize and characterize new materials in form of fibers
,yarn coatings or nanocomposites to be incorporated into conventional textiles. This communication presents today’s results
and foreseen developments concerning the fabrication of various
functional textile fibers and fabrics characterized by interesting
physical properties, as conductivity, piezoresistivity, photoluminescence, flexibility and transparency. Interesting applications of the
nano-composites produced in our labs regard gas and deformation sensing, micro/nano flexible and wearable electronics, portable solar cells, anti-static wears, electromagnetic and ionizing
radiation shielding.
Materials and Systems
Working in co-operation with Klopman International we are
developing an innovative class of protective wears using micro/
nano-engineered materials inserted in work-wear and protective-wear fabrics. A series of textiles are prepared starting from
Carbon Nanotubes (CNT), considered an ideal material for their
outstanding combination of electrical and mechanical proper26
N e w s l e t t e r
N a n o t e c
i t
ties. The CNT are treated following already settled protocols and
dispersed in different organic or inorganic media, to produce
nanocomposites and to impregnate natural fibers and polyestercotton blended fabrics. In particular we prepare polyamide- or
conductive polymer-based nanocomposite systems (Figure 1) and
inks with innovative properties using several chemical/physical
approaches, including:
- Spray casting of conductive CNT/polymers dispersions on selected areas of flexible substrates (Figure 2);
- Electropolymerization of CNT-conductive polymers nanocomposite layers;
- Weaving of CNT bundles into transparent membranes made by
textured fibers and preparation of porous nanotissues by interconnecting original fibers with nanofilaments and nanoropes;
- Synthesis of polyamide-CNT yarns and membranes;
- Preparation of conductive inks/CNT systems
A specific research line deals with the production and functional
characterizations of fibres coated by metallic nanoparticles for
biosensing based on plasmonic processes, or textiles containing
magnetic nanowires (Figure 3) which can find useful applications
for the realizations of advanced textile sensorial systems.
Figure 1: CNT/Nylon composite fiber, in the inset the I/V curve
RICERCA
We have also developed strategies for the synthesis of new
Prussian Blue analogues fluorophores. These innovative pigments,
that can are easily sprayed on natural and artificial fibers or fabrics, combine catalytic properties with photoluminescent features
and give therefore the possibility to use the same material as the
sensitive and active component for printed textile sensors.
The functional properties of the produced materials are tested by
means of mechanical, optical, electrical and piezo-resistive measurements. Electrical measurements of flexible systems are carried
out also under folding or stretching of the sheets, the piezo-resistive tests are performed by a home-made apparatus, specially
designed to measure the electro-mechanical properties of nanomaterials under low mechanical deformations. The distribution of
nanofillers inside the host matrices and the quality of the dispersions are tested by means of AFAM (acustic microscopy).
The results obtained up to now show that the inclusion of nanostructures greatly improve some properties or add new properties
to the as-produced textiles. As an example, for textiles impregnated with PEDOT/CNT dispersions a surface electrical resistance of
about 75 kΩ has been measured, and under deformation a resistance variation of about 5 kΩ/cm has been detected. (Figure 4).
&
S V IL U PPO
120
nm
Figure 3: Magnetic nanowires formed by Ni nanoparticles supported on CNT
bundles
Conclusion
Taking advantage of our previous results we are now starting
with the project SENSATIONAL (Tessuti integrati con Nanosensori
di gas per la produzione di abbigliamento protettivo salvavita).
SENSATIONAL is an “Industria 2015” funded project submitted
by a network of 9 industries (Leader KLOPMAN International
S.r.l.) and 2 Universities (Roma “Tor Vergata” and “Sapienza).
The project is concerned with the integration of multi-gas sensing platform fabricated using carbon-based nanomaterials, in
work-wear and protective-wear fabrics. The sensor will be able to
monitor in real time the working environment of the subject. The
result will be accomplished by deploying a network of miniaturized gas sensors directly embedded in the fabric, realized exploiting the properties of carbon nanotubes, specifically tailored and
functionalized in order to sense the most dangerous air contaminants. The sensor array will be integrated in the textile by means
of standard printing processes, whereas a wearable, highly miniaturized electronic unit in direct contact with the textile will collect, process and wirelessly transfer the data coming from the
sensing unity.
Overall, the application of nanotechnologies to textiles makes it
possible to realize intelligent integrated systems and multifunctional wearable interfaces with a wide range of abilities in the
field of sensing, logistic, actuating, electronics and energetics.
In this context the SENSATIONAL project can be considered a
significant example of the increasing willing of universities and
industries to work together in order to get an effective nanotechnology transfer and to drive key technology developments in
this area.
Figure 2: FE-SEM image of a typical CNT/PEDOT dispersion
N e w s l e t t e r
N a n o t e c
i t
27
RICERCA
&
S V IL U PPO
Figure 4: Cotton/CNT textiles prepared by dip-coating: I/V curve and piezoresistive responses
Contacts
Francesco Toschi
Università di Roma “Tor Vergata”
Dipartimento di Scienze e Tecnologie Chimiche
00133 - Roma
[email protected]
Phone: +39 06 7259 4402
Web: http://minima.stc.uniroma2.it - http://www.nano-share.com
28
N e w s l e t t e r
N a n o t e c
i t
RICERCA
&
S Vn IL
o tU i PPO
z i e
Progetti Europei
The Nanocode Project
The European Project NanoCode: a multistakeholder dialogue providing inputs to implement the European Code of
Conducts for Nanosciences & Nanotechnologies Research
(EC CoC) commenced in January 2010. This two-year project is
funded under the Programme Capacities, in the area Science in
Society, within the 7th Framework Program (FP7). The project,
which brings together experienced partners from 10 different
countries, is led by AIRI/Nanotec IT (Italy).
The objective of NanoCode is to define and develop a framework
aimed at supporting the successful integration and implementation, at European level and beyond, of the EC CoC.
The project rest on four pillars:
• Analysis of the situation (WorkPackage 1): Identify and assess existing practices for a responsible development of N&N
• Consultation of stakeholders (WP2): point out factors/limits
hampering the implementation of the EC CoC
• Master plan definition & Code Meter (WP3): Design a scheme (MasterPlan) for the further development and implementation of the EC CoC, proposing a set of incentives and disincentives, criteria and indicators of the level of application of the EC
CoC; and possible future integration and changes
• Communication and Dissemination (WP4)
The first phase of the project provided an analysis of the approach
to the governance of nanotech in both partners’ countries and in
other key countries and a comparison of voluntary measures with
the principles and actions of the EC CoC. As an outcome of this
phase, in September 2010 has been published the “Synthesis
report on codes of conduct, voluntary measures and practices towards a responsible development of N&N” (available
on the website).
Between September and December 2010 has been held a wide
consultation of stakeholders on the scope, contents, implementation of the EC CoC, involving about 400 subjects through online survey and interviews in more than 15 countries worlwide.
Results will be published in February 2010 in the “Nanocode
synthesis report on stakeholders consultation“.
In the (on-going) last phase of the project will be developed a detailed scheme (MasterPlan) guiding the further development and
implementation of the EC CoC. The MasterPlan is intended to:
• Propose criteria and indicators to assess the level of application
of the CoC;
• Suggest and evaluate a portfolio of incentives and disincentives;
• Propose possible future integration of and changes to the
CoC.
The development of practical tool (the CodeMeter) to help
stakeholders assess their performance in complying with the
CoC’s principles will form a key element of the framework.
The project use a variety of national and international events, a
dedicated website (www.nanocode.eu) and brief publications as
tools to communicate project findings and provide a centralised
and unique source of information on the EC CoC and its application in Europe and beyond .
A series of national conferences and an international event to
disseminate final results of the project are planned between
September and November 2011.
Info
AIRI/Nanotec IT – [email protected] - www.nanocode.eu
Le nanotecnologie in 10 settori applicativi: i
rapporti del progetto ObservatoryNano
Il Progetto Europeo ObservatoryNANO si avvia al suo terzo e penultimo anno di attuazione. Nel corso dei primi due anni i partners
degli 11 settori tecnologici analizzati dal progetto hanno prodotto diverse tipologie di documenti per illustrare ed aggiornare sui
diversi aspetti in cui le nanotecnologie entrano ad integrare od a
sostituire tecnologie tradizionali.
Dopo una serie iniziale di “General Sector Reports”, finalizzati
a dare un quadro complessivo dei diversi campi applicativi, sono
stati pubblicati rapporti più specifici, chiamati “Focus Report
2010”, caratterizzati da un esame rivolto a particolari sub-settori
applicativi di ogni settore tecnologico.
La terza tipologia di documenti, pubblicata nella seconda parte
del 2010 è costituita dai “Briefings”, che sono documenti brevi,
di lettura accessibile anche ai non specialisti, e di potenziale interesse per i policy makers, che affrontano sia dal punto di vista
tecnologico che da quello economico, temi specifici riguardanti
l’introduzione di nanotecnologie in settori di rilevante impatto e
di potenziale sviluppo per l’industria Europea.
Alle analisi sugli aspetti tecnologici e sul mercato legato allo sviluppo delle nanotecnologie in diversi settori applicativi, il progetto affianca attività specifiche legate ad aspetti trasversali quali in
particolare: impatto sulla salute dell’uomo e dell’ambiente, regolamentazione e standards, aspetti etici.
AIRI/Nanotec IT è leader sia del workpackage dedicato a regolamentazione e standards, sia del Technology Sector dedicato
all’impatto delle nanotecnologie nel settore tessile.
I rapporti prodotti nell’ambito del progetto ObservatoryNANO
(riportati nelle tabelle piu sotto) sono disponibili sul sito:www.
observatory-nano.eu/project/
N e w s l e t t e r
N a n o t e c
i t
29
N o t i z i e
Focus Report 2010
Aerospace, Automotive &Transport
Coatings, Adhesives & Sealants
Nanotechnology for Biodegradable and Edible Food Packaging
Agrifood
Nanotechnologies for nutrient and biocide delivery in agricultural production
Aerogels
Chemistry & Materials
CNT and Nanodiamonds
Adhesives &Sealants
Construction
Nanotechnology in Photovoltaic
Nanotechnology in Battery
Energy
Nanotechnology in Battery for Electric Vehicles
nZVI
Environment
Health, Medicine & Nanobio
Information & Communication
Nanotechnology & therapeutic delivery
Nanotechnology in regenerative medicine
Printed Electronics
Optical Interconnects
Security
Protective materials for emergency responders
Textiles
Medical textiles and Sport/Outdoor textiles
ObservatoryNano Briefings 2010
Aerospace, Automotive &Transport
Nano-enhanced automotive plastic glazing
Agrifood
Biodegradable food packaging
Construction
Nano enabled insulation materials
Energy
Photocatalysis for water treatment
Environment
Photocatalysis for water treatment
Health, Medicine & Nanobio
Next generation sequencing
Information & Communication
Universal memory
Nanotechnology for flat panel displays
Security
Nanotechnologies for anti-counterfeiting applications
Textiles
Nano-enabled protective textiles
Info
AIRI/Nanotec IT – [email protected]
30
N e w s l e t t e r
N a n o t e c
i t
RICERCA
AIRI/Nanotec IT briefing su tessili protettivi
nanomodificati
La crescente attenzione per la salute e la sicurezza per coloro che
sono esposti ad ambienti pericolosi o svolgono professioni ad alto
rischio, fa crescere la domanda per un migliore abbigliamento
protettivo ed accessori.
I tessili protettivi sono parte della famiglia dei Dispositivi di
Protezione Individuale (DPI) e rappresentano un’area specifica
del settore dei tessili tecnici avanzati, un mercato in forte crescita
per l’industria tessile, in grado di soddisfare la domanda crescente di requisiti di elevate prestazioni.
I tessili per la protezione personale vengono prodotti con l’obiettivo di ridurre al minimo il rischio di infortuni, incidenti e infezioni,
agendo come scudi contro i rischi chimici, biologici e nucleari, le
temperature elevate, il fuoco, gli oggetti appuntiti, e i proiettili
balistici.
I tessili protettivi sono stati scelti dalla Commissione Europea
come uno dei settori della “Lead Market Initiative for Europe”,
volta a creare un quadro di mercato favorevole all’innovazione, a
rilanciare settori industriali convenzionali, e a ridurre i tempi per
l’accesso ai mercati di nuovi beni e servizi.
In questo contesto, le nanotecnologie possono giocare un
ruolo fondamentale. Nuovi trattamenti superficiali, nano-rivestimenti, nano-compositi, fibre nanometriche, e nanoparticelle
funzionali forniscono prodotti tessili caratterizzati da più elevati
livelli di protezione, uniti ad un peso inferiore, maggiore comfort,
nuove o multi-funzionalità, o processi più ecologici. L’utilizzo di
materiali dinamici integrati negli abiti permette ai prodotti di sicurezza di reagire ad agenti chimici, agenti biologici, oppure di
modificare le condizioni esterne. Materiali intelligenti uniscono
l’elettronica con i tessuti, permettendone il controllo di chi li indossa, il monitoraggio dei parametri fisiologici, e la fornitura di
energia elettrica per le funzioni di comunicazione.
Il recente briefing report pubblicato da AIRI/Nanotec IT e B&W
(Spain) nell’ambito del progetto europeo ObservatoryNano presenta in maniera sintetica una analisi dell’impatto delle nanotecnologie nel settore dei tessili protettivi. Il documento è disponibile
sul sito del progetto (Piergiorgio Zappelli, AIRI/Nanotec.it).
Reference
Briefing report ObservatoryNano: “Nano-enabled protective textiles”, AIRI/
Nanotec IT and B&W, ObservatoryNano Project - www.observatory-nano.eu/
project/
The Systex project: vision paper for the smart
textiles industry in Europe
According to the definition of CEN/TC 248 Committee working
on standardization, “Smart or intelligent textiles are functional
textiles, which interact with their environment by responding to
it. This response can be either a (visible) change in the materials
properties or result in communicating the environmental trigger
to an external read out”.
&
S Vn IL
o tU i PPO
z i e
Systex: Coordination action for enhancing the breakthrough of intelligent textile systems (e-textiles and wearable Microsystems) is
a project in the ICT theme of the Seventh Framework Programme,
based on 12 partners from 5 European countries to build up a
market-driven framework and orientation in the area of e-textiles
and wearable micro systems.
Systex has a strong market-driven focus and is geared to foster
cooperation between the different knowledge carriers: industry,
academic, government institutions, research & development and
users of the technology.
Systex is engaged in the production of the “Vision paper for the
smart textiles sector in Europe”, which is developed in order to
identify the strengths, weaknesses, opportunities and threats faced by the European smart textiles sector and to provide aids
in developing strategies which can help the stakeholders of the
sector in the commercialization of smart textiles.
The paper also identifies major stakeholders who play an influential role in the development and subsequent commercialization
of smart textiles These stakeholders include leading names in
the respective vertical markets, research institutions, textile and
machine component manufacturers, funding agencies or venture
capitalists and end users/user organizations.
The project is led by the Ghent University (Belgium), Italian partners are the University of Pisa, CNR-INFM and Smartex.
Info
www.systex.org
Tiny technology makes high tech industry cool
The collaborative pan-European project called NanoHex aims to
develop a cutting edge liquid coolant that incorporates purpose
engineered nano-particles for more efficient cooling in order to
combat the ever increasing heat loads of high-tech industries.
The three year NanoHex project which began September 1st 2009
received £5.5m from the European Commission’s Framework
7 Programme and comprises of a consortium of 12 leading
European companies and research centres, including the Italian
National Agency ENEA and the Italian SME Ingegneria Sistemi
Impianti Servizi R&D. Together they aim to upscale the manufacturing process to produce large volumes of operational nanofluids in order to take this groundbreaking product to market.
Cooling is an issue facing many industries such as microelectronics, transportation, manufacturing and power generation. This
new heat transfer fluid aims to be cleaner, greener and more
adaptable than current fluids, so that it may be used in a diverse
range of applications from computers to engines.The project seeks to couple significant technical benefit and commercial viability with environmental friendliness, to produce a nanofluid that
can be safely manufactured, applied and recycled.
“Data centres account for 2% of the global CO2 emissions and
the technological advancement of the large electric drives used
high speed trains now requires a more sophisticated heat transfer
N e w s l e t t e r
N a n o t e c
i t
31
N o t i z i e
system to extend their life time and increase performance,” said
David Mullen, Thermacore’s Senior Research and Development
Engineer and Project Director for NanoHex. “Nanofluids could
well be the solution and NanoHex is working in some very exciting areas that could not only revolutionise cooling systems for
data centres and electric drive, but the technology of the 21st
Century”.
The first results of the Project were reviewed at the annual General
Meeting held at the ItN Nanovation AG premises in Saarbruecken
(Germany) on Nov. 8-10, 2010. See the NanoHex video at http://
collaborate.cenamps.com/portal/server.pt.
554 PMI, su 437 GA firmati). NMP risulta quindi prima in termini
relativi (numero PMI su totale partecipanti).
Viene riscontrato, relativamente ai GA firmati nell’ultimo periodo in esame (gen-ott 2010), sempre all’interno del Programma
Cooperation, un incremento della quota di budget indirizzata
alle PMI, che raggiunge il 15,4%. Il numero di GA firmati nell’ambito del tema NMP ha raggiunto, sempre nello stesso periodo,
un totale di 329. L’apporto finanziaro per le PMI rappresenta il
23,2% (303MEuro sui 1.305 MEuro), con un contributo medio,
per PMI, di 269.405 Euro.
Info
Dr. Elisabetta Borsella,
Senior Scientist, ENEA-UTAPRAD
Via Enrico Fermi 45, 00044 Frascati (Rome), Italy
[email protected]
40
SEC
13 17 8
SPA
32
TPT
ENV
Nanotecnologie e 7° Programma Quadro: Sesto
Report sulla partecipazione delle PMI
Prosegue Il monitoraggio del 7° Programma Quadro con la pubblicazione del VI Report sulla partecipazione delle PMI, presentato
il 16 novembre (Unità PMI della DG Ricerca - autunno 2010). Il
Report propone una analisi della ripartizione dei finanziamenti
Europei e della suddivisione delle imprese partecipanti, per temi
progettuali ed aree di intervento per le sole PMI e/o rispetto a
tutte le Imprese coinvolte, con particolare approfondimento sul
Programma Cooperation.
I dati chiave presentati dal rapporto sono il numero di Grant
Agreements (GA), la partecipazione delle PMI in relazione a tutti
i partecipanti, la suddivisione delle PMI per progetti, i contributi
Europei per le PMI e per tutti i partecipanti.
All’interno del Programma Cooperation (il cui budget è relativo alle 10 aree tematiche, attività generali, ESA e JTIs) sono stati
impiegati, alla data del rapporto, il 32,5% di risorse del budget
previsto per quest’area (32,265 MEuro), con una partecipazione
nei progetti delle PMI che ha assorbito il 14,7% di tali risorse.
Rimangono 21,788 MEuro (il 67,5% del totale) da impiegare
entro la fine del 7°PQ. All’interno del Programma si evidenzia
come solo 4 temi su 10 abbiano raggiunto/ superato l’obbiettivo
di finanziamento del budget di progetto per le PMI, che era pari
al 15%:
• Nanotecnologie-Materiale-Processi (NMP) (23,2% del contributo comunitario erogato)
• Sicurezza (21,5%)
• Energia (18,7%)
• Trasporti (18%).
In termini di partecipazione, i temi che hanno riscontrato
la maggiore partecipazione di PMI sono Information and
Communication Technology (ICT) (1.699 su 9.995 partecipanti
totali e 1075 GA firmati), NMP (1.126 su 4112 partecipanti totali
e 329 GA firmati) e Salute (437 GA, 4.677 partecipanti in totale,
32
N e w s l e t t e r
N a n o t e c
SSH
78
i t
33
23
172
ENERGY
NMP
ICT
KBBE
134
HEALTH
Partecipazione delle PMI italiane sui diversi temi del programma Cooperation
Legenda: SEC – Sicurezza; SPA – Spazio; SSH – Scienze Socio economiche
ed Umanistiche; TPT – Trasporti; ENV – Ambente; Energy – Energia; NMP –
Nanotecnologie, Materiali, Processi; ICT – Tecnologie per l’Informazione e la
comunicazione; KBBE – Alimenti, Agricoltura, Pesca e Biotecnologie; Health Salute
Nel diagramma è riportata la suddivisione per tema delle PMI
Italiane coinvolte nel Programma Cooperation (GA firmati). Sul
tema NMP queste rappresentano il 31% di tutte le aziende
Italiane partecipanti (134 su 550).
Tale dato fa emergere che, considerando la suddivisione per Paesi,
in ambito NMP, per numero di PMI partecipanti al 7°PQ, l’Italia è
seconda soltanto alla Germania, presente con 193 PMI e seguita
dall’Inghilterra, con 129 e poi da Spagna e Francia, rispettivamente con 107 e 97. Il resto degli stati dell’UE sono largamente
distaccati. (Marco Allegri, AIRI/Nanotec IT)
Info
SME Participation in FP7 Report: Autumn 2010, European Commission, SME Unit,
DG Research
RICERCA
&
S Vn IL
o tU i PPO
z i e
Regolamentazione,
linee guida e standards
Il Libro Bianco INAIL sui nanomateriali
ingegnerizzati e gli effetti sulla salute e sicurezza
dei lavoratori
Le nanotecnologie proseguono il loro sviluppo esponenziale, tanto che l’Organizzazione Internazionale del Lavoro stima che entro
il 2020 il 20% circa di tutti i prodotti fabbricati nel mondo impiegheranno una certa quota di nanotecnologie. Tuttavia i rischi associati alla produzione e all’utilizzo di nanomateriali sono incerti;
gli studi relativi agli effetti sulla salute e all’analisi del rischio da
esposizione a nanomateriali sono limitati e non esistono metodologie validate per la valutazione del rischio in ambiente di lavoro.
Questa lacuna di conoscenze impone alla comunità scientifica del
settore della Salute e Sicurezza del Lavoro la necessità di unire gli
sforzi per sviluppare la ricerca nel settore con particolare attenzione alla analisi del rischio per i lavoratori esposti ed evidenziare
le criticità e i bisogni delle politiche di salute e sicurezza dei lavoratori, correlati con lo sviluppo delle nanotecnologie. Nell’ottica
di indirizzare gli sforzi verso un approccio responsabile e sostenibile all’utilizzo delle nanotecnologie, la collaborazione in ambito
nazionale ed internazionale risulta cruciale per valutare e gestire
correttamente questo rischio emergente.
Nel 2008, dall’esperienza dell’ISPESL, è nato il Network
Nazionale “NanOSH Italia” con le finalità di promuovere la cooperazione e avviare attività integrate di ricerca nell’ambito dei
rischi da esposizione lavorativa a nanomateriali, sviluppando un
approccio multidisciplinare per la valutazione e la gestione del
rischio.
Il Network è composto da ricercatori ISPESL che operano nel
settore della salute e sicurezza dei nanomateriali in ambiente di
lavoro, da AIRI/Nanotec IT e dai rappresentanti degli Enti e delle
Università che hanno mostrato sensibilità alla tematica a livello
nazionale.
Primo risultato di questa collaborazione è il “Libro Bianco
sull’esposizione a nanomateriali ingegnerizzati e gli effetti
sulla salute e sicurezza dei lavoratori”, pubblicato alla fine
del 2010, che propone una ricognizione sulle prospettive e sulle problematiche relative allo sviluppo delle nanotecnologie e ai
rischi in ambiente di lavoro, a livello nazionale e contribuisce ad
avviare una seria ed autorevole discussione per la definizione della regolamentazione necessaria ad assicurare uno sviluppo delle
nanotecnologie in Italia, lungo la linea dell’equilibrio tra esigenze
di competitività e sostenibilità, e riduzione del rischio per i lavoratori.
In una seconda fase è previsto l’avvio di un processo di identificazione di stakeholder nazionali attivi nel settore della salute e
sicurezza del lavoro e interessati all’impatto delle nanotecnologie
in questo settore, seppur con approccio differente alla materia
trattata. La realizzazione di tale processo di consultazione per-
metterà di acquisire il contributo e i differenti punti di vista di
quella parte del mondo istituzionale, delle imprese, della ricerca
e dell’economia, che in Italia ha, a diverso titolo, un ruolo nello
sviluppo responsabile e sostenibile delle nanotecnologie.
Attraverso questo percorso il Libro Bianco, si inserisce nell’ambito
della rete più ampia di collaborazioni nel settore delle nanotecnologie in ambito nazionale, in un’ottica integrata e di continuità
con le funzioni dell’ex ISPESL, oggi trasferite all’interno dell’INAIL
in seguito all’emanazione della Legge n. 122 del 30 luglio 2010.
Info
Ing. Fabio Boccuni
INAIL – Dipartimento di Medicina del Lavoro, ex ISPESL
Via Fontana Candida, 1 - 00040 Monteporzio Catone Tel. +39 06 9789 6025
[email protected] - www.inail.it
Nanometrologia: Co-nanomet e l’Associazione
Vamas Italia
La nanometrologia è la scienza della misurazione (metrologia) a
livello di nanoscala.
Scientificamente ed economicamente questa disciplina è indispensabile per lo sviluppo di nuovi nano-prodotti. Infatti, per verificare
e garantire la qualità del processo di produzione è indispensabile lo sviluppo di misure quantitative sufficientemente accurate e
precise in considerazione delle caratteristiche del prodotto stesso.
Misure quantitative presuppongono strumenti e procedure affidabili e stabili, nonché standard adeguati per garantire la qualità
delle misure stesse e la loro tracciabilità.
Data la potenziale dimensione dei mercati dei nuovi prodotti e
applicazioni basati sulle nanotecnologie, la diffusione di tecniche
metrologiche affidabili è diventata un’emergenza in diversi settori, non solo per garantire la funzionalità del prodotto, ma anche
per definire i protocolli che garantiscano la sicurezza dei nuovi
materiali/prodotti.
Se non si mettono a punto metodi e procedure condivise, la
Commissione potrebbe adottare il principio “no data, no market” per i prodotti nanotec fino a quando la normativa non fosse
disponibile. Questo equivarrebbe ad una moratoria delle nanotecnologie in molti promettenti settori ed, eventualmente, al ritiro di nanoprodotti già sul mercato.
Una sfida in questo campo è rappresentata quindi dallo sviluppo
e dalla creazione di nuove tecniche di misurazione e standard che
soddisfino le esigenze di fabbricazione del futuro, che permettano l’adeguamento della legislatura, oggi a volte considerata
non sufficiente per le attuali esigenze industriali, e per assicurare
quindi le necessarie garanzie per la salute dell’uomo e per la salvaguardia dell’ambiente.
N e w s l e t t e r
N a n o t e c
i t
33
N o t i z i e
Nel progetto CONANOMET (www.co-nanomet.eu) sono stati
definiti i bisogni attuali ed emergenti della nano metrologia, con
l’obiettivo di supportare lo sviluppo e lo sfruttamento economico
delle nanotecnologie a sostegno della trasformazione industriale
attualmente in corso anche nel nostro Paese. Il progetto, che si è
appena concluso, ha affrontato diverse aree connesse alle nanotecnologie: produzione di nano particelle ingegnerizzate, nano
biotecnologie, film sottili, nuove tecniche di indagine nanometrica, modellazione e simulazione dei nuovi nanomateriali.
possono ostacolare la libera circolazione dei materiali innovativi e
delle nuove tecnologie (www.vamas.org).
L’associazione VAMAS-Italia, aperta sia ai singoli individui che alle
organizzazioni, ha lo scopo di stimolare e coordinare le attività
di ricerca nel settore delle norme per i materiali avanzati per salvaguardare gli interessi delle imprese italiane e, al tempo stesso,
per rafforzare la presenza italiana nei contesti internazionali dove
vengono stabilite le strategie di sviluppo e di penetrazione dei
mercati dei materiali avanzati (www.vamasitalia.enea.it).
Info
Laura E. Depero
Responsabile del Laboratorio Chem4Tech
Università di Brescia
[email protected]
CONANOMET: www.co-nanomet.eu - www.co-nanomet.eu/page1017/TrainingResources
VAMAS (Versailles Project on Advanced Materials and Standards): www.vamas.org
VAMAS-Italia: www.vamasitalia.enea
ECSIN-Centro Europeo di Studi sulla Sostenibilità
delle Nanotecnologie
CONANOMET coinvolge 14 organizzazioni nel campo della
nano metrologia, nanotecnologie, trasferimento tecnologico e
formazione ed è coordinato da EUSPEN (European Society For
Precision Engineering And Nanotechnology www.euspen.eu –
Regno Unito).
EUSPEN è un’organizzazione che raccorda il mondo industriale e
della ricerca nel campo delle micro e nanotecnologie e ha come
obiettivo lo sviluppo e la promozione di nuovi prodotti e servizi. Il progetto ha visto la partecipazione anche dell’Unità INSTM
dell’Università degli Studi di Brescia, coordinata dalla prof. Laura
E. Depero.
Le attività del progetto hanno messo a fuoco lo stato attuale e le
esigenze nel campo della nano metrologia, proponendo direttive
di sviluppo per favorire il potenziamento dell’industria europea
anche nel rispetto della salute dell’uomo e dell’ambiente.
Nella sezione Training-Resources del sito (www.co-nanomet.eu/page1017/Training-Resources) si può reperire interessante materiale relativamente allo stato dell’arte della
nano metrologia in Europa e ai futuri sviluppi a livello globale.
Nell’ambito di CONANOMET è nata anche l’Associazione
VAMAS ITALIA - Onlus che ha sede legale presso CSMT (Centro
Servizi Multisettoriale e Tecnologico - Brescia) e sede operativa
a Brescia presso il Laboratorio Chem4Tech dell’Università degli
Studi di Brescia.
Il VAMAS, Versailles Project on Advanced Materials and Standards,
è un accordo proposto durante il summit dei G7 a Versailles nel
1982 ed elaborato da un gruppo di lavoro di esperti di tecnologia per promuovere la diffusione dei materiali avanzati. L’accordo
vuole favorire la cooperazione per sulla messa a punto di buone
pratiche e standards al fine di rimuovere le barriere tecniche che
34
N e w s l e t t e r
N a n o t e c
i t
Il 3 dicembre 2010 è stato inaugurato ECSIN-Centro Europeo
di Studi sulla Sostenibilità delle Nanotecnologie, il nuovo laboratorio di Veneto Nanotech (Distretto Italiano, cluster per le
Nanotecnologie). ECSIN unisce un forte ruolo delle Università e
della componente scientifica e di ricerca a una forte propensione
al mercato e una volontà di fornire alle imprese un supporto sempre più efficace nell’utilizzo delle nanotecnologie per la messa a
punto di prodotti innovativi.
Il Centro intende creare i presupposti che invece di frenare l’innovazione le siano favorevoli, fornendo un supporto scientifico-tecnico ad una politica di qualità in cui le norme costituiscano uno
strumento essenziale per promuovere uno sviluppo più celere,
sicuro e mirato dei nanomateriali, per facilitare l’analisi del rischio
e per generare dati utili per gli organi normativi. In particolare,
il Centro nasce per promuovere l’utilizzo corretto e consapevole
delle nanotecnologie nel rispetto della sicurezza non solo per la
salute umana e l’ambiente, ma occupandosi anche della percezione delle nanotecnologie da parte della società per facilitarne
la comprensione e l’accettabilità sociale, a cura del CIGA- Centro
Interdipartimentale per le decisioni giuridico ambientali e la certificazione di impresa dell’Università di Padova.
ECSIN è quindi il primo centro di ricerca a livello nazionale, ed uno
dei pochi a livello europeo, a considerare i tre ambiti in maniera
parallela con un approccio integrato, un aspetto fondamentale
nell’ambito di una strategia di governance relativa alla manipolazione sicura di nanoparticelle ingegnerizzate e allo sfruttamento
sostenibile dei loro potenziali benefici. In sintesi, gli obiettivi di
ECSIN sono:
• rispondere alle esigenze delle imprese, delle agenzie pubbliche e degli investitori sullo studio di sistemi di rilevamento e
di standard di misurazione degli effetti dei nanomateriali e di
RICERCA
nanoparticelle su ambiente e salute
• seguire le più avanzate prospettive di ricerca relative all’impatto
delle nanotecnologie sull’ambiente, sulla salute umana e sulla
società al fine di trasferire questo know how verso il mondo
politico ed economico per l’adozione di policy normative e
standards.
Il Centro, che si estende su una superficie di circa 1000 mq, vanta strumentazione d’eccellenza: il laboratorio per le indagini nanotossicologiche è dotato di strutture d’avanguardia tra cui due
stanze per le colture cellulari, un laboratorio di biologia molecolare e microbiologia e uno di microscopia che comprende tra
l’altro microscopi di tipo elettronico a trasmissione (TEM), confocale e a fluorescenza. Per lo studio del monitoraggio di nanoparticelle in matrici ambientali e biologiche, il laboratorio dispone di
una camera pulita classe ISO07, nella quale è presente un AFFF
(Asymmetric Flow Field Flow Fractionation) che consente la separazione di nanoparticelle in base alla loro dimensione, l’unico
strumento di questo tipo presente sul territorio nazionale.
&
S Vn IL
o tU i PPO
z i e
lentemente derivare da situazioni in cui vengono utilizzate o possano essere emesse nanoparticelle presenti in forma libera (non
legata). La guida quindi si propone di:
• mostrare, quali informazioni sono necessarie per garantire l’impiego sicuro dei nanomaterial/nano prodotti.
• offrire un ausilio sul modo di procedere per poter identificare le
informazioni rilevanti e come le stesse sono da riportare nella
SDS (forma / posto).
• contribuire a sensibilizzare i collaboratori di imprese che producono o trasformano nanomateriali/nano prodotti riguardo alle
particolari proprietà di questi materiali.
Informazioni e dettagli sul documento sono disponibili sul sito
del SECO.
Info
Safety data sheet (SDS): Guidelines for synthetic nanomaterials: www.seco.admin.
ch/themen/00385/02071/index.html?lang=de
Info
[email protected]
Scheda di sicurezza per i nanomateriali: nuova
guida svizzera
Negli ultimi anni si è osservata una continua crescita dei prodotti
e delle applicazioni che utilizzano nanomateriali ingegnerizzati e
diverse sono le attività in corso da parte di agenzie ed enti nazionali ed internazionali al fine di predisporre adeguati sistemi di
controllo e regolamentazione per l’immissione sul mercato di tali
prodotti (nano-related products).
Vi sono tuttavia diversi aspetti legati alla metrologia, caratterizzazione, studio degli impatti sull’uomo e sull’ambiente che mettono in difficoltà l’utilizzo delle procedure e metodi usati per le
sostanze in forma macroscopica e richiedono in diversi casi un
approccio dedicato. In questo ambito, notevole importanza ha il
tema delle comunicazione delle informazioni riguardanti le proprietà e caratteristiche dei nanomateriali lungo la loro catena di
produzione e successive fasi di utilizzo.
A tal proposito, è stata pubblicata recentemente dalla Segreteria
di Stato per gli Affari Economici (SECO) della Svizzera, in collaborazione con diversi altri uffici ed autorità federali, una guida dedicata all’uso della scheda di dati di sicurezza (Material Safety Data
Sheet) per i nanomateriali in forma ingegnerizzata (nanomateriali
sintetici, nel vocabolario della guida).
La scheda di dati di sicurezza (SDS) ha infatti un ruolo fondamentale. Da un lato, essa deve mettere l’industria nella situazione
di poter riconoscere un potenziale pericolo durante i processi di
fabbricazione e lavorazione. D’altro lato la stessa deve fornire le
basi necessarie per valutare potenziali pericoli per la salute e per
l’ambiente dovuti ai prodotti fabbricati.
Allo stato attuale delle conoscenze, possibili rischi possono prevaN e w s l e t t e r
N a n o t e c
i t
35
N o t i z i e
Bandi
Altre notizie dall'Italia
Bando PON per distretti tecnologici e laboratori
pubblico-privati
La Piattaforma Europea Nanofutures
L’atteso bando PON per le regioni della convergenza (Campania,
Puglia, Calabria, Sicilia) prevede:
A) per il potenziamento dei:
• distretti ad alta tecnologia esistenti (sono 10): 282 Meuro;
• laboratori pubblico-privati esistenti (sono 25): 107 Meuro
che devono presentare un piano di sviluppo strategico (del
costo compreso tra 5 e 25 Meuro) dal 16 dicembre 2010 al
15 febbraio 2011;
B) per la creazione di nuovi distretti e/o nuove aggregazioni
pubblico-privati: 526 Meuro, che devono presentare gli studi
di fattibilità dal 15 dicembre 2010 al 15 febbraio 2011
Fonte: da Notizie AIRI N 174 - Decreto del D.G. per il coordinamento e lo sviluppo della ricerca del 29.10.2010 su G.U. n. 261
dell’8.11.2010
Eurotrans-Bio: sesto bando per R&S nelle
biotecnologie per PMI
L’iniziativa EUROTRANS-BIO, attivata a livello di stati membri e
regioni Europee, ha l’obiettivo di realizzare un coordinamento dei
programmi di finanziamento pubblico nazionali e regionali per la
R&S nelle biotecnologie, al fine di supportare e facilitare progetti
cooperativi di R&S sia tra soggetti privati sia tra privati e pubblici,
in particolare PMI.
Nell’ambito di EUROTRANS-BIO stati/regioni coinvolte nell’iniziativa pubblicano bandi comuni per progetti cooperativi di R&S industriale a livello trans-nazionale. ETB si basa sullo schema ERA-NET
ed è supportato dalla CE mediante i Programmi Quadro 6 e 7.
Recentemente è stato pubblicato il sesto bando EUROTRANSBIO, aperto a tutti gli ambiti applicativi delle biotecnologie, che
offre sostegno alle PMI per la presentazione di progetti di R&S in
collaborazione con altre imprese con sede nei paesi che aderiscono al programma (Austria, Regione delle Fiandre e della Vallonia
in Belgio, Finlandia, Germania, Israele, Olanda, Regione della
Catalogna, di Madrid, Navarra e dei Paesi Baschi in Spagna). Sono
ammissibili a finanziamento le spese sostenute per il personale,
gli strumenti e le attrezzature, le consulenze, i materiali di consumo e le spese generali.
In Italia il bando è aperto nell’ambito del Fondo per l’Innovazione
Tecnologica (FIT) e prevede la concessione di un finanziamento
agevolato eventualmente integrato da un contributo diretto alla
spesa e da un contributo maggiorativo. Lo stanziamento totale
FIT per questo bando è pari a 5 Meuro.
Info
www.eurotransbio.eu - www.innovhub.it
Altre notizie dall’Italia
36
N e w s l e t t e r
N a n o t e c
i t
La Commissione Europea ha promosso lo sviluppo della
Piattaforma NANOfutures, una nuova “Integrating and innovation Platform (ETIP)” con il fine di realizzare una struttura di
riferimento per facilitare e contribuire allo sviluppo di politiche
Europee e nazionali nell’area delle nanotecnologie. Gli obiettivi
sono:
• Identificare ed ottimizzare le sinergie tra le Piattaforme
Tecnologiche Europee (ETP) e Nazionali, programmi di ricerca,
JTIs, ERA_NETs, altre azioni di supporto e progetti legati alle nanotecnologie, al fine di ridurre la frammentazione delle risorse
impegnate e favorire il coordinamento delle future strategie in
questo campo;
• Identificare obiettivi e bisogni strategici per le nanotecnologie al
fine di supportare la rapida applicazione e commercializzazione
delle nanotecnologie ed accrescere la competitività Europea;
• Costruire e diffondere una Roadmap per la ricerca industriale
nelle nanotecnologie a livello europeo (“Integrated Industrial
and Research Roadmap for European Nanotechnology”).
NANOfutures è una iniziativa volontaria, lanciata ufficialmente
nel Giugno 2010 ed ora costituita come NANOfutures a.s.b.l
(Association Sans But Lucratif) con sede a Bruxelles in Belgio.
Le attività della Piattaforma sono affiancate e supportate da un
Coordination Action FP7 (sempre con il nome CSA NANOfutures)
che ha preso avvio ad ottobre 2010.
L’Italia è ben presente all’interno della Piattaforma Europea: il
chair è il Prof. P.Matteazzi (MBN Nanomaterialia), la Segreteria
(ed il coordinamento della CSA) è gestita dalla Dr. M. Cioffi
(D’Appolonia). Altri italiani sono presenti sia nello Steering
Committee sia come contatti per le diverse altre Piattaforme
Europee con cui si relaziona NANOfutures.
Al fine di configurarsi come struttura di riferimento Nazionale
per la Piattaforma Europea NANOfutures, è stata recentemente avviata la definizione della “Italian NANOfutures National
Platform”. La realizzazione di questa Piattaforma, promossa da
Assoknowledge (Confindustria), affiancata da D’Apollonia per
la segreteria, prevede il coinvolgimento di rappresentati delle
organizzazioni, pubbliche e private, attive nelle nanotecnologie
in Italia, i quali debbono contribuire ad identificare in un’ottica
Nazionale priorità e needs in questo campo facendo riferimento a
quelli messi in evidenza nell’ambito della Piattaforma Europea.
AIRI/Nanotec IT partecipa all’iniziativa ed il suo compito è quello
di favorire, in virtù della sua conoscenza della situazione delle nanotecnologie in Italia, una ampia partecipazione alla Piattaforma
ed armonizzare le indicazioni raccolte in un documento di indirizzo facente riferimento al contesto complessivo.
La partecipazione alla definizione della Piattaforma è aperta a tut-
RICERCA
ti i soggetti (imprese, Università, centri di ricerca) interessati e con
un’attività nelle nanotecnologie.
Info
AIRI/Nanotec IT [email protected]
Università della Tuscia ed Airc insieme per la lotta
ai tumori
L’Associazione Italiana per la Ricerca sul Cancro (AIRC) ha riconosciuto l’innovativa e prestigiosa attività di ricerca in Nanomedicina
e Nanobiofisica del Centro di Biofisica e Nanoscience della Facoltà
di Scienze dell’Università della Tuscia, finanziando il progetto di
ricerca triennale “Nanotechnological study on the action of
the anticancer protein Azurin peptides on the p53/Mdm2
complex”.
Il progetto di ricerca, coordinato dal Prof. Salvatore Cannistraro si
avvarrà delle competenze dei collaboratori del suddetto Centro,
delle avanzate apparecchiature nanotecnologiche (Microsopio a
Forza Atomica, Microscopio ad Effetto Tunnelling, MicroRaman
Confocale ad Enhancement Plasmonico) in dotazione al medesimo nonchè di strumentazione appartenente al Centro Grandi
Apparecchiature di recente costituzione presso l’Università.
Il progetto finanziato si inserisce in una consolidata e proficua
collaborazione sia con l’Istituto Nazionale Tumori, Regina Elena,
di Roma che con il Department of Surgical Oncology dell’Università dell’Illinois di Chicago.
La ricerca è volta a studiare, con sofisticati ed efficaci metodi nanotecnologici, i meccanismi di azione molecolare di alcuni peptidi derivati dall’azzurrina, una proteina contenuta nel batterio
Pseudomonas aeruginosa (che tra l’altro è responsabile della colorazione azzurra delle mozzarelle!!), i quali mostrano una significativa attività antitumorale, in vitro ed in vivo.
Questi importanti farmaci sono stati autorizzati dal Federal Drug
Administration degli Stati Uniti per il secondo trial clinico e rivelano promettenti risultati in pazienti affetti da varie patologie tumorali. Lo scopo finale della ricerca finanziata dall’AIRC è quello
di contribuire all’affinamento e/o riprogettazione della struttura
di questi farmaci derivati da proteine per limitare al massimo gli
effetti collaterali della terapia.
Il riconoscimento da parte dell’AIRC della rilevanza dell’attività di
ricerca di componenti dell’Università della Tuscia va a supportare
il corredo di specificità ed eccellenze che caratterizzano settori
dell’Università stessa e che possono costituire motivo di interesse
per gli studenti e la comunità scientifica. E’ infine motivo di particolare soddisfazione il fatto che il riconoscimento arrivi da una
Fondazione come l’AIRC che finanzia la ricerca sul cancro sulla
base di donazioni di natura essenzialmente privata.
Info
Prof. Salvatore CANNISTRARO
Biophysics & Nanoscience Centre, CNISM, Facoltà di Scienze - Università della
Tuscia, I-01100 VITERBO, Italy
[email protected] ; Web: www.unitus.it/biophysics
&
S Vn IL
o tU i PPO
z i e
Cresce il numero di spin-off sulle nanotecnologie
L’annuale indagine del Laboratorio Management e Innovazione
della Scuola Superiore Sant’Anna di Pisa (Prof. Pietrabissa) offre
come sempre una fotografia di grande interesse sulle spin off
di università ed enti pubblici: sono 802, fatturano 600 Meuro/
anno, occupano 8.000 persone, hanno una bassa anzianità (5
anni), si basano sui “fondatori ricercatori”, con scarso intervento
di altri soci (industriali o finanziari), investono il 46% del fatturato
in R&S, alla quale si dedica il 60% del personale, esportano poco
(solo il 10% delle spin-off lo fa).
Interessante notare che negli anni è cresciuto il numero delle spin
off impegnate nel settore delle nanotecnologie: prima del 1990
non esistevano, dal 1991 al 2000 erano l’0,8% delle imprese
costituite nel periodo, nel 2001-2005 il 2,4% e dopo il 2008 il
5,3%.
Info
http://www.main.sssup.it/index.php
Nanoshare: New start-up
on micro-and nano-technologies
NanoShare Srl (with offices and labs in Rome and Lecce) is a
new start-up company, supported by MIUR (Italian Ministry for
Education University and Research, DM 593/2000, Article 11),
whose mission is to develop new products based on micro-and
nano-technologies. NanoShare involves faculty and research
staff of the two main University of Rome (La Sapienza and Tor
Vergata) and of two companies of INNOVA private group (the
french Invent S.a.s. and the italian Labor Srl).
There are a lot of companies always looking for ideas to implement and there are a lot of R&D groups on the road to implementing an idea based on nanotechnology. To all of them, NanoShare
Srl offers its expertise on nanomaterials and related systems in
order to define the right and affordable solution when the material is the key factor in the realizing an innovative product that
can move forward in the marketplace.
NanoShare Srl uses advanced technologies, proprietary patents,
skills and know-how of its staff on nanomaterials and systems, to
define the proper solution when the material is the key factor in
the realization of a new product direct to the market.
The NanoShare’s R&D activities are particularly addressed to the
development and functionalization of nanostructured materials
(micro-and nano-particles, micro-and nano-cage, carbon nanotubes, nanodiamonds and nanomaterial-based hybrid Carbon,
nanocolloids, etc.) to be used in various technological fields, in
which innovative solutions for specific devices and systems have
to be developed.
Among the main application/market sectors where the company
is developing solutions are: sensing; filtering; systems for microelectronics; portable systems for energy generation; material and
N e w s l e t t e r
N a n o t e c
i t
37
N o t i z i e
processes.
Nanoshare is currenyl seeking partner for bringing nanotechnology-based products to market: engineering, construction and design firms, technology companies and nanomaterials producers.
Info
Carlo FALESSI (President): [email protected]
Maria Letizia TERRANOVA: [email protected]
Marco ROSSI: [email protected]
www.nano-share.com - [email protected]
38
N e w s l e t t e r
N a n o t e c
i t
RICERCA
&
S Vn IL
o tU i PPO
z i e
Seminari&Convegni
NanotechItaly 2010
Concluso con grande successo il Convegno Internazionale
NanotechItaly2010, svoltosi a Venezia-Mestre dal 20 al 22 ottobre 2010 che ha visto nei 3 giorni di incontri la partecipazione di
circa 600 persone, 72 presentazioni orali e 101 presentazioni poster, nonché più di 80 incontri one-to-one al networking event.
La sessione di apertura ha visto la partecipazione del Rettore
dell’Università di Venezia Prof. Carlo Carraro
del Dr. Marialuisa Coppola, Assessore Economia e Sviluppo,
Ricerca e Innovazione della Regione Veneto, di Matteo Zoppas,
Acqua Minerale S. Benedetto Spa e Presidente del gruppo giovani
imprenditori Venezia.
A seguire vi sono state tre introductory lectures tenute dal
Prof. Morinobu Endo, Shinshu University (Giappone), Facultà
di Ingegneria, dal Prof. Roberto Cingolani, Istituto Italiano di
Tecnologia (IIT), Direttore Scientifico e da Christos Tokamanis,
Unità “Nano and Converging Sciences and Technologies”, DG
Ricerca, Commissione Europea, Capo Unità.
La Conferenza si è quindi articolata nelle sessioni:
• Governance nelle nanotecnologie: iniziative per una innovazione responsabile delle nanotecnologie.
• 8° International workshop Federchimica: le nanotecnologie
nell’industria Chimica.
• Nanomaterials. Dal laboratorio al mercato le applicazioni multisettoriali delle nanotecnologie.
• Nanotextiles. Le nanotecnologie per migliorate o nuove funzioni e performances nel settore tessile: tessile tecnico e abbigliamento.
• Nanomedicine. Le nanotecnologie per i la diagnostica, i farmaci (design e delivery) e la medicina rigenerativa.
• Le nanotechnologies & sustainable developement: processi ed
applicazioni nel campo dei trasporti, energia ed ambiente.
NanotechItaly2010 è stato anche il momento per lo svolgimento di
workshop e meeting dedicati, tra cui gli incontri dei progetti nazionali/europei del Virtual Institute on Nano Film, ObservatoryNano,
Nanofutures e Nanocom. Il Convegno ha trovato notevole riscontro sia da parte della stampa nazionale che locale, con articoli
dedicati su Il Sole 24 Ore e IlSole24Ore.com, Corriere.it, Ansa, Il
Gazzettino, Corriere del Veneto, Il Mattino di Padova, La Tribuna di
Treviso, NordEst News e diversi altri servizi di informazione online.
L’evento è stato organizzato da AIRI/Nanotec IT, Consiglio
Nazionale delle Ricerche (CNR) e Veneto Nanotech, in collaborazione con Assobiotec, IIT@NEST, Politecnico di Torino-Latemar,
Agenzia per la Promozione della Ricerca Europea (APRE) e con il
contributo di Federchimica.
La rassegna stampa, alcune immagini dell’evento, nonché il materiale scientifico del Convegno sono disponibili in un’area dedicata del sito dell’evento.
La prossima edizione di NanotechItaly 2011 si svolgerà a Venezia,
dal 23 al 25 novembre 2011.
Info
www.nanotechitaly.it
Nanochallenge and Polymerchallenge 2010
La VI edizione di Nanochallenge and Polymerchallenge 2010 è
stata organizzata dal distretto Veneto Nanotech e dal distretto
campano per i materiali polimerici IMAST, in collaborazione con
Intesa San Paolo, la Fondazione Cassa di Risparmio di Padova e
Rovigo, Veneto Sviluppo ed il supporto di Regione del Veneto.
Dopo uno scouting a livello internazionale, gli organizzatori
dell’evento hanno individuato dodici start-up create da scienziati
e ricercatori in cerca di investitori. Le idee, provenienti da Stati
Uniti, Spagna, India e Italia si sono ritrovate nelle aule di Palazzo
Bo, storica sede dell’Università di Padova, dal 22 al 26 novembre,
per una settimana a loro dedicata. Nei primi due giorni le aziende selezionate sulla base del contenuto fortemente innovativo
dell’idea di business sono state impegnate in aula con la formazione tenuta da Business Angels californiani. Grazie alla collaborazione tra Veneto Nanotech, Intesa Sanpaolo ed IMAST, i team
partecipanti alla competizione internazionale hanno potuto prendere parte alla “Start-up Initiative di Intesa Sanpaolo”, che ha
dato la possibilità ai partecipanti di presentare le proprie idee di
business di stampo fortemente innovativo per cercare di ottenere
dei capitali a sostegno delle proprie attività.
Il 25 novembre i partecipanti sono stati ascoltati in una sessione
a porte chiuse dalla giuria internazionale incaricata di eleggere i
vincitori della competizione. Venerdì 26 novembre, infine, presso l’Archivio Antico di Palazzo Bo, si è tenuta l’Investor Arena
Meeting durante la quale le start-up in concorso hanno avuto
l’opportunità di presentare le proprie idee di business a potenziali investitori e partner industriali. Al termine una tavola rotonda sul tema “Il rilancio del Paese dopo la crisi: innovazione
delle competenze e nuove opportunità”, la giuria internazionale ha proclamato il vincitore assegnando a Kristalia il gran premio di Nanochallenge and Polymerchallenge 2010 da 300.000
euro finanziato dalla Fondazione Cassa di Risparmio di Padova
e Rovigo.
Il team Kristalia è nato dalla collaborazione tra un’impresa indiana e un gruppo di ricercatori veneti provenienti dal laboratorio
N e w s l e t t e r
N a n o t e c
i t
39
N o t i z i e
Nanofab di Venezia, ed ha vinto il premio grazie ad un innovativo progetto che permette di ricoprire con nano strutture la
polvere di diamanti e utilizzarla per usi industriali. A convincere
la giuria internazionale è stata la rilevanza e l’immediata applicabilità sul mercato, di un’innovazione importante per il settore
delle macchine utensili per la lavorazione e il taglio della pietra e
dei metalli.
Da tempo infatti l’utensileria utilizza la polvere diamantata per
rendere gli attrezzi più taglienti: fino ad oggi però, la lavorazione del diamante necessaria al suo utilizzo ne comprometteva la
qualità, finendo per preferirgli polveri di cobalto ritenute però a
vari livelli molto pericolose. “Grazie alla deposizione di queste
nano strutture di carburo di titanio – spiegano i ricercatori del
team vincitore - , il diamante risulta protetto e quindi utilizzabile
per periodi molto più lunghi, meno costoso e meno inquinante
delle polveri di cobalto”. Tutte proprietà che hanno già convinto
una famosa impresa del vicentino a stringere un accordo commerciale con la nuova impresa, che promette quindi di trasferire
in maniera positiva il proprio know-how su un territorio, come
quello del Veneto, che è tra i leader nel mondo nella produzione
di utensileria diamantata.
Tra gli altri progetti innovativi che hanno destato particolare attenzione nella giuria il team Nanotred, nato dalla collaborazione
di ricercatori delle Università di Verona e Padova, che ha presentato un progetto potenzialmente rivoluzionario per la diagnosi e
la cura del cancro alla prostata attraverso nano particelle d’oro,
e il team di Genova, Nanomed, che ha invece presentato un chip
innovativo per la diagnosi di uno spettro molto ampio di patologie attraverso l’analisi di filamenti di DNA.
Info
www.nanochallenge.com
4° Conferenza del Programma N.I.C di Federchimica
L’1 ed il 2 dicembre 2010 si è tenuta presso la sede di Federchimica
a Milano la 4° Conferenza del Programma N.I.C. che ha visto la
partecipazione di diversi esperti nazionali ed internazionali che
si sono confrontati sul tema dello sviluppo industriale delle nanotecnologie. Il programma dei due giorni ha affrontato temi di
notevole interesse:
• Imprese Nanotech in differenti stadi di sviluppo;
• Il ruolo del Venture Capital e del Corporate Venturing;
• Montaggio di Progetti di R&S per cogliere le opportunità offerte dal Piano Operativo Nazionale (PON);
• Come le analisi economiche quantitative permettono decisioni
operative nelle Nanotecnologie;
• Regulatory Affairs e attività HSE per la gestione responsabile
delle nanotecnologie;
• Il territorio come fattore di successo per lo sviluppo delle nuove
imprese high tech;
• Workshop Assobiotec: La via europea alla Nanomedicina tra
crescita economica e benessere pubblico.
40
N e w s l e t t e r
N a n o t e c
i t
Airi/NanotecIT ha contribuito alla Conferenza con un del Direttore
Centro, Elvio Mantovani, dedicato alla regolamentazione delle
Nanotecnologie.
Sul sito di Federchimica è disponibile il programma della
Conferenza e alcune delle presentazioni della giornata.
Info
http://www.federchimica.it/daleggere/eventi/agendafederchimica/10-11-09/4_
Conferenza_N_I_C_-Nanotecnologie_nell_Industria_Chimica.aspx
Nanotech Tokyo 2011
16-18 febbraio 2011, Tokyo, Japan
Nanotech 2011 è uno dei principali eventi (exhibition & conference) dedicati alle nanotecnologie a livello mondiale. L’evento
ha visto la partecipazione più di 40000 visitatori e 500 aziende
espositrici, oltre a 17 conferenze tematiche focalizzate su diversi
aspetti dello sviluppo delle nanotecnologie, tra i quali: green nanotech, nanoelectronics & systems, printed electronics, photonics
nanomanufacturing, surface technologies, polymer nanotech,
nanotech standardisation. Una indicazione delle numerose tematiche trattate e data anche dalle principali aree applicative selezionate delle aziende espositrici: Materiali (290 imprese), ICT &
elettronica (243), biotecnologie e nanomedicina (202), automotive (224), ambiente ed energia (256), cosmetici (156) , agrifood
(129), aerospazio (95), construction (61), tessili (60).
L’Istituto Nazionale per il Commercio Estero (ICE), in collaborazione con AIRI/Nanotec IT, ha organizzato per il quarto
anno consecutivo la partecipazione italiana all’evento.
Alla delegazione hanno partecipato le seguenti organizzazioni:
AIRI/Nanotec IT, Veneto Nanotech, Centro Estero delle Camere
di Commercio del Veneto, Nanto Protective Coatings Srl, Xenia
Nanomaterials, Arianna Srl, Nanomaterials Srl, Silcart Srl, Taffarello
Engineering.
Numerose le iniziative attivate a supporto delle organizzazioni
partecipanti. Tra queste, la messa a disposizione di uno stand
Italia dove esporre materiale informativo/illustrativo, un workshop dedicato per illustrare la realtà Italiana e favorire i contatti,
un programma di visite a centri di ricerca dell’area.
In particolare, Il 16 febbraio si è svolta una visita al National
Institute for Materials Science (NIMS) di Tsukuba. Il 17 si è
svolto il workshop: “Nanotech in Italy: The New Frontier of
Italian Research and Innovation”, durante il quale il Direttore
di AIRI/Nanotec IT, Elvio Mantovani, ha presentato una panoramica delle situazione italiana sulle nanotecnologie (in base ai dati
del terzo Censimento Italiano delle Nanotecnologie, edito da
AIRI/Nanotec IT).
AIRI/Nanotec IT, oltre al supporto alla organizzazione della delegazione, ha preparato la documentazione illustrativa sulle nanotecnologie in Italia che è stata distribuita in loco.
Info
AIRI/Nanotec IT
[email protected] - www.nanotechexpo.jp/en/
RICERCA
&
S Vn IL
o tU i PPO
z i e
Prossimi eventi
BioInItaly Investment Forum
16-17 marzo 2011, Milano
Si svolgerà a Marzo (presso il Palazzo Besana, Piazza Belgioioso
n°1), la quarta edizione di BioInItaly, l’evento sostenuto da
Assobiotec in collaborazione con Intesa Sanpaolo ed Innovhub,
volto a promuovere e finanziare progetti innovativi di Ricercatori
ed imprese incentrati nelle diverse aree di applicazione delle
Biotecnologie.
La selezione dei progetti proposti prevede tre fasi: un percorso
formativo specifico per ogni ogni rappresentate di progetto (organizzato da Intesa San Paolo); una prima selezione da parte di
un Panel di esperti del settore: la scelta finale attraverso un incontro diretto con investitori italiani e stranieri a Milano durante
BioInItaly. Per partecipare all’iniziativa bisogna essere un impresa
operante nel settore delle biotecnologie o presentare un progetto
di Spin off/Start up.
Info
Assobiotec: http://assobiotec.federchimica.it/default.aspx
Bando: http://assobiotec.federchimica.it/Libraries/documentiPdf/BioInItaly2011_
Bando_1.sflb.ashx
ImagineNano 2011
11-14 Aprile 2011, Bilbao, Spain
L’evento internazionale ImagineNano è dedicato allo sviluppo
delle nanotecnologie a livello scientifico, industriale e sociale.
Durante i 4 giorni si svolgeranno 5 conferenze internazionali,
un forum dedicato a nanotecnologie ed industria, un brokerage event ed alcune iniziative dedicate alla divulgazione delle
nanotecnologie. E’ inoltre previsto un ampio spazio espositivo.
Tematiche principali della parte scientifica saranno nanoscienze
e nanotecnologie nei settori energia, biomedicina, ottica e applicazioni del grafene.
Organizzatori dell’evento sono Phantoms Foundation (network
di attori pubblici e privati nelle nanotecnologie in Spagna), CIC
nanoGUNE Consolider (centro scientifico e tecnologico di recente
creazione, dedicato alla ricerca di base ed applicata nelle nanotecnologie); Donostia International Physics Center Foundation (una
fondazione con sede nei Paesi Baschi dedicata alla promozione e
sviluppo della scienze dei materiali).
Le imprese, università e centri di ricerca interessati alla organizzazione di una delegazione italiana all’evento sono pregate di
informare AIRI/Nanotec IT.
Info
www.imaginenano.com
Graphita 2011
15-18 May 2011, Gran Sasso National Laboratories, Assergi - L’Aquila, Italy
The Università dell’Aquila and CNR IMM-Bologna organises the
event “A Multidisciplinary and Intersectorial European Workshop
on Synthesis, Characterization and Technological Exploitation of
Graphene”- Graphita 2010
In the latest years graphene based research has witnessed a tremendous explosion. This two dimensional “dream” material has
come into the main spotlight of fundamental and applied research
in diverse nano-science fields and has also attracted the interest
of major stakeholders in the private sector (especially industries
in the ICT sector). The technological exploitation of graphene can
be considered to be based on four fundamental interconnected
wide topics: growth and synthesis methods, nano-structuring
and tailoring of graphene properties, structural and physical characterization, and device design and applications.
The aim of the workshop is to bring together scientists and engineers working on different technological uses of graphene in a
multidisciplinary and multisectorial (academia/industry) environment. Participants will be offered the chance to meet world class
leading scientists in the field. The scope of the workshop is to
informally network all the participants to enhance their potential
research on graphene. Participation of early stage researchers,
PhD students and post-docs is strongly encouraged.
Topics of the event will be:
• Growth and synthesis
• Investigation of fundamental physical properties
• Structuring and tailoring of electronic and transport properties
• Electronic and opto-electronic nanostructured devices, design
and applications
• Mechanical, chemical and biological sensing devices and applications
• Energy storage and harvesting: devices and applications
• Chemistry on graphene
• Processes
Deadline for abstract submission is 4 March 2011. Please note
that total number of participants to the event is limited to 200 by
the workshop facilities.
Info
http://graphita.bo.imm.cnr.it
EuroNanoforum 2011
May 30 - June 1, Budapest, Hungary
The EuroNanoForum is a biannual event of the European
Commission hosted within the framework of the Presidency of
the European Union since 2003. EuroNanoForum 2011 (ENF
2011) will be the fifth event in this series featured as a prominent
event of the Hungarian Presidency on 30 May – 1 June 2011 in
Budapest.
For the first time, EuroNanoForum is joining forces with another
N e w s l e t t e r
N a n o t e c
i t
41
N o t i z i e
leading European nanotechnology event, Nanotech Europe, to
provide a single meeting point for the whole nanotechnology community. Previous EuroNanoForum and Nanotech Europe
events have each attracted 700-1000 participants.
The three-day event includes a full conference program, an extensive exhibition and effective matchmaking, ensuring attendees will be able to network with leading industrial, research and
political decision makers.
The Lund Declaration of July 2009 specifies the Grand Challenges
faced by European society and businesses should be solved by
sustainable solutions in several areas such as global warming,
tightening supplies of energy, water and food, ageing societies,
public health, pandemics and security with the overarching challenge of turning Europe into an eco-efficient economy. Abstracts
are expected to specify potential contributions to solving such
grand challenges with nanotechnology.
EuroNanoForum 2011 contributions may address scientific, industrial and/or societal aspects:
• Science and technology, highlighting world-class research.
• Innovation and business, identifying nanotechnology opportunities and barriers throughout the value chain.
• Society, taking a holistic approach to address societal benefits
and risks.
Info
www.euronanoforum2011.eu
42
N e w s l e t t e r
N a n o t e c
i t
RICERCA
&
S Vn IL
o tU i PPO
z i e
Altri eventi
February 14-17, 2011, Lausanne, Switzerland
NanoImpactNet conference in Lausanne
February 23-25, 2011, Torino, Italia
Magnet 2011
February 27, March 2, 2011, Cairo, Egypt
NanotechInsight
June 7 - 9, 2011, Vienna, Austria
VIENNANO ´11 – 4th Vienna International Conference on
Nano Technology
June 13 – 16, 2011, Boston, USA
NSTI Nanotech 2011
June 26 - July 1, 2011, Granada, Spain
European Polymer Congress
March 14-16 marzo, Milano, Italia
Bio Europe spring 2011
March 22-23, Dresden, Germany
Smart Systems Integration 2011
April 5-7, 2011, Nancy, France
INRS Occupational Health Research Conference 2011:
Risks associated to Nanoparticles and Nanomaterials
April 11-14, 2011, Bilbao, Spain
ImagineNano 2011
May 15-18, 2011, Assergi (L’Aquila), Italy
GraphITA 2011
May 15-18, 2011, Ascona, Switzerland
Nano and Water 2011
May 17-20, 2011, Faenza, Italy
13th CCT Ceramics, Cells and Tissue - Meeting Seminar on
“Regenerative nanomedicine, tissue and genetic
engineering and the role of ceramics”
May 23-26, 2011, Cernobbio, Lake Como, Italy
Euspen 11th International Conference and Exhibition
May 29th-June 3rd, 2011, Gargnano, Lake Garda, Italy
EUPOC 2011 - Biobased Polymers and Related Biomaterials
30 May-1 June, 2011, Budapest, Hungary
EuroNanoForum 2011
June 6-10, 2011, Stuttgart, Germany
3rd iNTeg-Risk Conference 2011
June 7-9, 2011, London, UK
NanoMaterials
N e w s l e t t e r
N a n o t e c
i t
43
P U B B LICIT à
L i s t i n o p r e z z i [ a l n e t t o d i I VA 2 0 % ]
è possibile inserire messaggi promozionali sia sulla newsletter che sul sito web www.nanotec.it
1. NANOTEC IT NEWSLETTER
Sulla Newsletter sono riportate le notizie più importanti (disponibili anche su www.nanotec.it), quali
risultati di ricerche ed applicazioni, eventi, corsi, iniziative di Nanotec IT e degli iscritti, articoli su tendenze e su risultati di ricerche, su politiche della ricerca, su problematiche connesse alla diffusione delle
nanotecnologie.
Destinatari (attivi o interessati alle nanotecnologie): industrie, istituti universitari, enti pubblici di ricerca,
associazioni industriali e pubbliche amministrazioni.
Gli ordini devono pervenire a AIRI/Nanotec IT entro il 20 maggio 2011 per il secondo numero del
2011.
Gli iscritti ad AIRI / Nanotec IT usufruiscono di uno sconto del 30% sulla tariffe previste.
II e III di copertina - per ogni numero
1
pagina
cm
20x29
1/2
“
“
20x14,5
1/3
“
“
20x7
1/6
“
“
10x7 ?
?
?
?
IV di copertina - per ogni numero
1
pagina
cm
20x29
1/2
“
“
20x14,5
1/3
“
“
20x7
1/6
“
“
10x7
? 1.000,00
? 600,00
? 400,00
? 250,00
800,00
500,00
350,00
200,00
2. SITO WEB (www.nanotec.it)
Banner
Dimensioni 150x50 pixel (o equivalenti), risoluzione 200 dpi.
12 mesi
3 mesi
? 1500,00
? 500,00
Airi
nanotec IT
AVVISO PER I LETTORI
MODALITà DI DISTRIBUZIONE
DI NANOTEC IT NEWSLETTER
Gentile lettore,
Newsletter Nanotec IT viene distribuita in forma cartacea (e gratuita) alle organizzazioni iscritte ad AIRI/Nanotec IT ed ai soggetti che collaborano con l’Associazione per la
realizzazione di pubblicazioni ed eventi, in particolare tutte le organizzazioni che hanno
risposto al Censimento delle nanotecnologie, viene inoltre distribuita durante gli eventi
organizzati dal Centro.
La rivista è inviata in formato elettronico ad un ampio indirizzario di soggetti a livello italiano ed internazionale, al fine di favorire una più efficace promozione delle nanotecnologie
e la conoscenza dell’attività in corso, in particolare a livello italiano.
Tutti i numeri della rivista sono infine scaricabili gratuitamente da www.nanotec.it
Rimane possibile richiedere eventuali copie su carta mediante il versamento di un contributo per spese di tecniche e di spedizione di 20 Euro all’anno (per dettagli: info@nanotec.
it, www.nanotec.it).
Nota importante:
Nel caso lo riteniate opportuno o vogliate essere inseriti ex-novo nella mailing list della
Newsletter vi preghiamo di comunicare il vostro attuale indirizzo e-mail a info@nanotec.
it o di contattare i nostri uffici.
Pubblicazione notizie ed articoli sulle nanotecnologie:
Nanotec IT è interessata a ricevere articoli, notizie ed informazioni in genere su attività di
ricerca nel campo delle nanotecnologie da pubblicare su Newsletter Nanotec IT. Quanti
volessero sruttare tale opportunità sono pregati di contattare la redazione.
Per informazioni
Andrea Porcari
tel. 068848831, 068546662 - e-mail: [email protected]
AIRI / N a n o t e c IT M e m b e r s
INDUSTRY
1.APE RESEARCH
2. BRACCO IMAGING
3.COLOROBBIA
4.CRF - FIAT Research Centre
5.CSM – Centro Sviluppo Materiali
6.CTG - Group Technical Centre– ItalCementi
7. DE NORA Tecnologie Elettrochimiche
8. HITECH 2000
9.ELSAG Datamat
10.ENI
11.FINMECCANICA
12.PIRELLI TYRE
12.SAES GETTERS
13.SELEX Communications
14.SELEX Sistemi Integrati
15.STMICROELECTRONICS
16.TETHIS
17.TRUSTECH
18.SMILAB
19.VENETO NANOTECH
46
N e w s l e t t e r
N a n o t e c
i t
Universities
1.CHILAB- Polytechnic of Torino
2.INSTM (Inter- University Consortium for Material Sciences and
Technologies) - representing 44 Italian Universities
3. University of Modena and Reggio Emilia (Unimore)
Public Research Institutions
1.CNR - Molecular Design Department
2.CNR - Materials and Devices Department
3.CNR - Institute of Industrial Technologies and Automation - ITIA
4.Scuola Superiore S.Anna - CRIM
(Centre for Applied Research in Micro and Nano Engineering)
5.ENEA (Nat. Agency for New Technologies, Energy, Environment)
6. Bruno Kessler Foundation - Center for Materials and Microsystems
7.SINCROTRONE Trieste (Electra lab)
NanoCode
Implementing the European Commission
Code of Conduct for Nanotechnologies
NANO
CODE
www.nanocode.eu
ObservatoryNano
The European observatory
on nanotechnologies
www.observatorynano.eu
nanotec IT
Nanotec IT - Centro Italiano per le Nanotecnologie
Il centro è stato creato nel 2003 da AIRI, Associazione Italiana per la Ricerca Industriale, per farne un punto di riferimento
nazionale per le nanotecnologie per industria, ricerca pubblica, istituzioni governative.
La sua missione è quella di promuovere lo sviluppo e l’applicazione delle nanotecnologie in Italia, al fine di accrescere il
posizionamento competitivo del Paese.
Nanotec IT contribuisce a:
• Raccogliere e diffondere informazioni sulle nanotecnologie circa risultati e tendenze di R&S, applicazioni, dati
previsioni di mercato, politiche/strategie nazionali
• Indirizzare/stimolare l’interesse e l’attività delle imprese, grandi e PMI, verso queste tecnologie
• Sollecitare azioni nazionali atte a promuovere e sostenere le iniziative in questo campo
• Agevolare contatti e collaborazioni, a livello nazionale ed internazionale, tra ricerca pubblica e imprese, e tra imprese
• Favorire il trasferimento tecnologico
• Perseguire uno sviluppo responsabile delle nanotecnologie
Nanotec IT- Italian Centre for Nanotechnology- started in 2003 by AIRI - Italian Association for Industrial Research – as an
internal division, is a national bridging point connecting industry, public research, and governmental institutions.
Its mission is to promote nanotechnology and its applications in Italy to increase through it the competitive position of the
Country.
The Nanotec IT activity aims to :
•Stimulate the interest and the commitment in nanotechnology within the Italian enterprises;
•Inform government, opinion leaders, and the public, to foster correct and timely initiatives for the development
of nanotechnology and its applications
• Favour networking and exchange of information to promote cooperation;
• Facilitate the use of research results and technology transfer;
• Contribute to a responsible development of nanotechnology.
AIRI- Associazione Italiana per la Ricerca Industriale
Nata nel 1974 per promuovere lo sviluppo della ricerca e dell’innovazione industriale e stimolare la collaborazione
tra settore privato e pubblico, AIRI rappresenta oggi un essenziale punto di confluenza per più di 110 Soci:
• Grandi imprese e PMI attive nella ricerca industriale
• Università, Centri di ricerca pubblici e privati
• Associazioni industriali, Parchi scientifici, Istituti finanziari che operano a supporto della R&S
I Soci raccolgono il 45% circa degli addetti alla ricerca in Italia.
Questa larga rappresentatività permette ad AIRI di agire quale interlocutore rilevante per tutti i decisori
che sostengono la ricerca industriale come strategia per lo sviluppo tecnologico del Paese.
AIRI- Italian Association for Industrial Research
Founded in 1974 with the aim of promoting industrial research and enhancing co-operation between private
and public sector, today AIRI is the focal point for more than 110 members:
• Large companies and SMEs operating in R&D
• Universities, public and private research Centers
• Industrial associations, Scientific parks and Banks supporting R&D activities
Researchers from AIRI members represent about the 45% of the country.
Due to this broad representative base, AIRI is a key opinion leader for decision-makers sustaining
industrial research as strategy for the technological development of the Country.
AIRI/Nanotec IT - Viale Gorizia 25/c, 00198 Roma
tel. 068848831 – 068546662, fax 068552949
[email protected]; www.nanotec.it; www.airi.it