Stelle da record

Transcript

Stelle da record
Luigi Fontana
Stelle da record
La più vicina, la più luminosa,
la più giovane, la più importante...
9788895650487
GRUPPO
EDITORE
Luigi Fontana
Stelle da record
La più vicina, la più luminosa,
la più giovane, la più importante...
GRUPPO
EDITORE
Questo libro è dedicato alle due persone più importanti della mia vita.
Al mio papà, che quando mi regalò un piccolo telescopio, nel 1980,
certo non immaginava quanto avrebbe inluenzato la mia vita.
E a mia moglie Alessandra, che accetta nella nostra vita
i numerosi eredi di quel telescopio, e tutte quelle piccole stranezze
necessarie per vivere con un appassionato di astronomia.
In copertina
La stella Proxima Centauri ripresa dalla camera WFPC2 del telescopio
spaziale Hubble. È una “stella da record” perché è la più vicina al Sole, ma
non è visibile a occhio nudo.
Sommario
Introduzione . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.
4
1. La stella più “veloce” . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.
6
2. La stella più vicina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.
24
3. La stella più luminosa . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.
35
4. La stella più debole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.
51
5. La stella più importante . . . . . . . . . . . . . . . . . . . . . . . . . . p.
66
6. La stella più calda e quella più fredda . . . . . . . . . . . . . . . p.
83
7. La stella più vecchia e quella più giovane . . . . . . . . . . . . p.
98
8. La stella più grande e quella più piccola . . . . . . . . . . . . . . p. 117
9. Le stelle più… strane . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 137
3
Introduzione
Immaginate di essere sotto un bel cielo stellato, in una tiepida notte
estiva. Attorno a voi, per chilometri e chilometri, non ci sono luci
artiiciali, nemmeno un paesino, una casa e neppure una strada. Buio
completo. La Via Lattea divide maestosamente in due la volta celeste, e ovunque guardate vedete stelle, tante stelle. Un’inondazione
di stelle. Brillanti e deboli, delicatamente colorate oppure bianche,
il cielo ne è pieno.
l desiderio di saperne di più, sui quegli innumerevoli puntini luminosi, è grande, e antico quanto l’uomo, come ben testimoniano miti
e leggende di ogni epoca e di ogni civiltà.
Ebbene, se avete in mano questo libro, vivete in un’epoca fortunata,
almeno per avere risposte circa le stelle. Ironia della sorte, oggi abbiamo dificoltà ad ammirare il irmamento, perché l’inquinamento
luminoso ci obbliga a raggiungere posti molto isolati per goderne,
ma in compenso sappiamo moltissimo su quei puntini luminosi che
hanno affascinato i nostri progenitori sin dalla notte dei tempi. Immensamente più di quanto ne sapessero Aristotele o Galileo, ma anche ben più di quanto se ne sapesse per esempio all’epoca di Edwin
Hubble (attorno al 1920) quando si cominciò a comprendere l’Universo nel suo insieme.
Anche se l’astronomia vanta una storia millenaria, da meno di duecento anni sappiamo davvero qualcosa sui “fratelli cosmici” del
nostro Sole. Risale appena al 1838, infatti, la prima misura di una
distanza stellare, e addirittura a un secolo dopo la comprensione di
come e perché una stella “funziona” e si evolve. E diversi tasselli di
questo complicato puzzle sono ancora oggi da sistemare.
Questo libro è nato per raccontare, in maniera accessibile, molti “record” riguardanti le stelle. Descrivendo la stella più calda, quella più
fredda, la più vicina o la più giovane, racconteremo poco per volta
come si è arrivati a tutte queste informazioni, e alla ine sapremo parecchio in più sui “puntini luminosi” che popolano il cielo notturno.
La sequenza dei capitoli ricalca per lo più l’ordine cronologico delle
scoperte che hanno permesso di determinare i vari primati delle stelle; ma si può tranquillamente saltare subito al capitolo che interessa,
per soddisfare una curiosità speciica. E nel farlo, magari, si scoprirà
4
anche qualcosa di interessante o inaspettato, come spesso è avvenuto per gli astronomi che quelle scoperte le hanno fatte.
Come in tutte le scienze, anche in astronomia ogni risposta porta con
sé nuove domande, e strumenti migliori portano nuovi risultati. Di
conseguenza, alcuni dei record riportati in questo libro sono destinati a cambiare, magari nel prossimo futuro. Ma questo è semplicemente segno del fatto che l’astronomia, oggi, è una scienza straordinariamente vitale, e il progresso della conoscenza in questo campo
è davvero impetuoso, soprattutto grazie agli strumenti resisi disponibili negli ultimi decenni, dai telescopi giganti ai sensori CCD, dai
supercomputer agli osservatori spaziali.
Molte discipline, dalla spettroscopia alla isica nucleare, hanno permesso di scoprire questi “record”. Esporre tutto rigorosamente in
queste pagine sarebbe dificile e noioso. È l’eterno limite della divulgazione. Pertanto, spero che non me ne vorranno, i lettori più
esperti, per qualche necessaria approssimazione.
Se qualcosa non risulta chiaro, si può saltare tranquillamente. Il discorso generale non sfuggirà di certo. L’importante è non dimenticarsi di una cosa, dopo che si è chiuso questo libro: andare a sdraiarsi sotto un bel cielo stellato, in una tiepida notte estiva...
Luigi Fontana
5
capitolo
1
La stella più “veloce”
Uno dei molti nomi dati al irmamento è quello di “sfera delle stelle
isse”. Tale nome, come è facile immaginare, deriva dal fatto che apparentemente - la posizione reciproca delle stelle in cielo non varia
con il trascorrere delle stagioni e degli anni. In effetti, se una persona
molto volenterosa realizzasse con la massima accuratezza possibile
una mappa del cielo ogni anno per cinquant’anni, avvalendosi solo
degli strumenti disponibili in epoca pretelescopica, tra la prima e l’ultima mappa sarebbe molto dificile notare qualsiasi differenza.
Questa apparente immutabilità, unita a considerazioni religiose e ilosoiche, sostanzialmente indiscusse per due millenni, aveva reso solidissimo il convincimento che la “sfera delle stelle isse” fosse davvero
immutabile ed eterna. C’erano state, è vero, delle stelle “nuove”, come
quella riportata da Tycho Brahe nel 1572 o quella osservata da Keplero
nel 1604, ma erano sempre rimaste visibili solo poche settimane, per poi
scomparire senza lasciare alcuna traccia (almeno per l’occhio nudo).
I saggi dell’epoca, per lo più, le avevano liquidate come fenomeni
atmosferici o comunque vicini, appartenenti al mondo “sublunare”
il che aveva, bene o male, salvaguardato la perfezione delle stelle
isse. Tra i contrari a questa idea, spiccava lo stesso Keplero, che
stimò la stella molto più lontana della Luna, e quindi appartenente
alla sfera delle stelle isse. Ma la breve durata nel tempo di questa
stella aveva solo incrinato e non scardinato, per così dire, l’idea di
immutabilità del irmamento.
Nemmeno l’avvento del telescopio, nei primi anni del XVII secolo,
aveva cambiato molto le cose. Si potevano osservare più stelle, e
determinarne la posizione con maggiore precisione, ma in ogni caso
sembravano rimanere reciprocamente immobili.
Le stelle non sono “isse”!
Per dare una scossa a questa visione del cosmo, bisogna attendere il
1718, cioè oltre un secolo dopo l’introduzione del telescopio. Fu allora che il famoso astronomo inglese Edmund Halley (1656-1742),
confrontando le proprie osservazioni “astrometriche” (cioè relative
6
alla posizione precisa delle stelle) con quelle di Ipparco, tramandate
da Tolomeo nel suo Almagesto, e risalenti quindi a circa 1850 anni
prima, fece una scoperta rivoluzionaria.
Halley evidenziò che tre stelle molto brillanti (Sirio, Arturo e Alde-
Busto di Edmund Halley.
7
Lo spostamento della stella Arturo tra la posizione riportata da Ipparco e
quella misurata all’epoca di Halley. Lo spostamento non è entusiasmante,
ma risulta evidente.
baran) avevano un “moto proprio”, cioè si erano spostate rispetto
alle altre stelle in maniera inequivocabile, pur considerando le incertezze delle osservazioni antiche.
In particolare, Arturo, secondo le ricerche di Halley, si era spostata
verso sud di circa 33’, vale a dire poco più del diametro apparente
della Luna Piena. Un angolo certo non enorme, ma molto maggiore dell’incertezza delle misure di Ipparco, e comunque suficiente a
deformare in maniera visibile, per un osservatore allenato, la costellazione del Boote, alla quale appartiene Arturo.
In realtà, lo spostamento di Arturo in un periodo simile è alquanto
maggiore, circa 1° (equivalente a 60’), ma questo non toglie nulla al
valore del lavoro di Halley. Egli, semplicemente, aveva fatto il meglio
possibile con dati e strumenti molto meno precisi di quelli attuali.
La scoperta di Halley aveva un’importanza fondamentale per l’astronomia dell’epoca, anche se per un motivo legato solo indirettamente al moto proprio. Bisogna ricordare che in quegli anni l’idea
che le stelle fossero dei corpi celesti simili al nostro Sole, ma immensamente più lontani, era ormai accettata praticamente da tutto
8
il mondo scientiico. Mancava tuttavia la misura di una qualsiasi
distanza stellare.
Il metodo da utilizzare per realizzare questa fondamentale misura
era già noto da tempo: si sarebbe usata la “parallasse annua”, ovvero
lo spostamento apparente delle stelle dovuto al movimento di rivoluzione terrestre. Più la stella è vicina, più è grande la sua parallasse.
Ma gli strumenti disponibili non erano ancora abbastanza precisi,
perciò si cercava di stabilire in base ad altre caratteristiche osservabili quali stelle fossero particolarmente vicine, per tentare poi su di
esse una misura della parallasse.
Sino ad allora, gli astronomi, in mancanza di altro, avevano scelto
le stelle su cui tentare queste osservazioni seguendo l’idea che “le
stelle brillanti, mediamente, saranno anche le più vicine”.
Ma su questa strada si trovano due ostacoli concettuali. Il primo
ostacolo, di gran lunga il più importante, è che 300 anni fa nessuno
nemmeno sospettava che la luminosità delle stelle variasse addirittura di milioni di volte, tra le stelle meno luminose e quelle più luminose. Di conseguenza, la luminosità apparente, cioè quella che si
osserva dalla Terra, è un parametro del tutto inafidabile per supporre che una stella sia più vicina di un’altra. In effetti, oggi sappiamo
che la stella più vicina al Sistema Solare non è nemmeno visibile a
occhio nudo, mentre cinque delle dieci più brillanti sono astri luminosissimi, ma sono molto lontani.
Il secondo ostacolo - meno importante ma ugualmente interessante - è
che non era possibile all’epoca misurare con precisione il rapporto di
luminosità tra il Sole e una stella (rapporto che vale circa dieci miliardi per Sirio, la stella più brillante). Perciò, non si aveva nemmeno
un’idea dell’ordine di grandezza delle distanze in gioco. Si erano posti
soltanto - grazie a ripetuti fallimenti di misure di parallasse, dall’epoca di Galileo in poi - dei limiti minimi di distanza, sempre più alti.
Con queste premesse, un elevato moto proprio era prezioso, poiché
rappresentava un indicatore di “vicinanza” molto più afidabile. Infatti, se le velocità (nello spazio) delle stelle sono distribuite in modo
ragionevolmente uniforme, si può assumere che le stelle più “veloci” siano, in media, anche le più vicine. Ragionamento ineccepibile
e che, a posteriori, sappiamo essere esatto.
Ecco quindi l’interesse degli astronomi per le stelle dotate di grande
moto proprio. Erano buone candidate per tentare la misura di una
distanza stellare, un risultato che avrebbe veramente rivoluzionato
9
l’astronomia, producendo per la prima volta una scala delle distanze
che si estendesse al di là dei modesti conini del Sistema Solare. E
che, per inciso, avrebbe regalato al suo autore un posto d’onore nella
storia dell’astronomia!
Misurare la velocità delle stelle
Purtroppo per Halley e per i suoi contemporanei, occorse quasi un
altro secolo, prima che gli strumenti diventassero abbastanza precisi
per poter misurare il moto proprio di una stella, almeno delle più
veloci, con osservazioni separate tra loro solo di qualche anno, e non
di parecchi secoli.
Il miglioramento continuo dei telescopi, in particolare l’introduzione dei rifrattori acromatici dalla metà del XVIII secolo e soprattutto
l’invenzione del micrometro ilare e poi dell’eliometro (ne parleremo nel Capitolo 2) diedero un ulteriore impulso a questo settore osservativo, che conobbe la sua epoca d’oro nel corso del XIX secolo.
Ma non corriamo troppo. Ancora senza usare l’eliometro, il primo
moto proprio di una stella misurato in tempi “umani” venne annunciato da un astronomo italiano, Giuseppe Piazzi, nel 1806 (circa due
anni dopo l’effettiva scoperta).
All’epoca, Piazzi era direttore dell’Osservatorio di Palermo, dove aveva
in uso strumenti molto precisi, tra cui un celebre cerchio altazimutale
Un micrometro ilare conservato all’Osservatorio di Capodimonte.
10
uscito nel 1789 dalle sapienti
mani del massimo artigiano di strumenti scientiici
dell’epoca, l’inglese Jesse
Ramsden (noto agli astroili per lo schema per oculari
che porta il suo nome).
Con questo strumento,
nell’ultimo decennio del
XVIII secolo, il gruppo diretto da Piazzi aveva compilato il Catalogo Palermo,
che comprendeva accurate
misure di posizione per oltre 7600 stelle, basandosi
sia su osservazioni effettuate da Palermo che su
Il cerchio altazimutale costruito da
precedenti lavori di HeveRamsden e in uso all’Osservatorio di
lius (1611-1687), di FlamPalermo.
steed (predecessore di Halley come Astronomo Reale
in Inghilterra, 1646-1719) e di Lalande (1732-1807).
Abituati come siamo a scaricare tonnellate di pagine di dati via Internet in pochi secondi, risulta dificile immaginare quanto fosse
complesso lavorare utilizzando anche le osservazioni di altri. Non
solo non c’era altro che carta e penna (rigorosamente d’oca!) per
fare i calcoli, ma anche solo procurasi una copia di un libro pubblicato all’estero era una vera impresa.
Ma Piazzi non si perdeva d’animo facilmente. Il Libro Sesto del Reale Osservatorio di Palermo, edito nel 1806, elenca 220 stelle di cui
era stato apprezzato il moto proprio, una sessantina delle quali, secondo le parole dello stesso Piazzi “oltre ogni dubbio”.
Questa lista ebbe una storia piuttosto travagliata, poiché uscì nello
stesso anno in due versioni. La prima, pubblicata dall’Istituto Nazionale delle Scienze di Bologna, era basata sullo status quo del lavoro
di Piazzi al 1803. La seconda, aggiornata al 1806, fu quella pubblicata a Palermo, ed è certamente la più importante, perché è l’unica
che include la scoperta principale, riguardante la stella 61 Cygni, di
cui diremo tra poco.
11
Il motivo di questa doppia pubblicazione è veramente curioso, e sarebbe un po’ lungo da spiegare. Basti sapere che c’entra una pensione negata a Piazzi dalla Repubblica Cisalpina, in quanto nel frattempo era diventato un cittadino straniero, risiedendo nel Regno delle
due Sicilie. Solo una nota curiosa, ma che fa rilettere sul fatto che la
burocrazia sia una costante della società che tormenta ogni epoca...
La “Stella Volante”
Pensione o non pensione, la lista “palermitana” includeva la stella
doppia 61 Cygni, che aveva mostrato un moto proprio molto elevato,
di gran lunga il maggiore scoperto sino ad allora. Questa stella di
magnitudine 5, visibile a occhio nudo con relativa facilità, si trova
tra la brillante stella Deneb, che segna la coda del Cigno, e l’estremità dell’ala orientale del Cigno stesso.
Piazzi misurò per 61 Cygni un moto proprio di circa 5” (secondi
d’arco) all’anno, un valore vicinissimo a quello accettato oggi. Altre
due stelle mostrarono un moto proprio molto elevato, Delta Eri (in
Eridano) e Mu Cas (in Cassiopea). Lo stesso Piazzi, per i motivi visti prima, le raccomandò in una nota a piè pagina per un tentativo di
misura della distanza mediante parallasse. 61 Cygni fu battezzata da
Piazzi “Stella Volante”, e come tale è nota ancora oggi.
Piazzi aveva tentato, qualche anno dopo essere venuto in possesso
del cerchio altazimutale (tra il 1802 e il 1804), di misurare la parallasse di una stella, ma - ironia della sorte - restò vittima dell’idea che
le stelle più brillanti fossero in media anche più vicine (un’idea che
lui stesso avrebbe di lì a pochi anni contribuito a dimostrare sbagliata) e tentò di eseguire queste misurazioni su Sirio, Arturo, Procione,
Altair, Vega, Capella e Aldebaran.
Di queste, solo Sirio è davvero vicina, ma è anche quella per la quale
le osservazioni risultano più critiche, sia per l’abbagliante luminosità, sia per la scarsa altezza che raggiunge sull’orizzonte, anche da
Palermo. Nei lavori successivi di Piazzi, non sono registrati tentativi
di misurare la parallasse di 61 Cygni o delle altre stelle da lui stesso
indicate in base all’elevato moto proprio.
Forse, Piazzi si era reso conto che il suo strumento, pur buono, non
era suficientemente preciso per una misura del genere. Oppure,
semplicemente, preferì dedicarsi ad altro. In ogni caso, il suo nome
era ormai consegnato alla storia, grazie alla scoperta del moto proprio di 61 Cygni e soprattutto alla scoperta del primo asteroide del
12
Sistema Solare, Cerere (oggi classiicato tra i pianeti nani). Cerere
fu individuato da Palermo proprio all’alba del secolo, il 1° gennaio
1801. Ma questa è un’altra storia.
Torniamo alla 61 Cygni. L’annuncio della scoperta di Piazzi non
ebbe all’inizio una grande risonanza, ma fu rivalutato pochi anni
dopo, quando la scoperta fu confermata e diffusa, nel 1812, dal vero
“campione” dell’astrometria dell’epoca, Friedrich Wilhelm Bessel
(1784-1846), un instancabile astronomo e matematico tedesco che
giocherà un ruolo centrale nel prossimo Capitolo.
Le osservazioni di Bessel confermarono quelle di Piazzi: 61 Cygni si
sposta di 5” ogni anno. Non che 5” siano un angolo entusiasmante. È
appena il tre per mille del diametro della Luna Piena, oppure 1/8 del diametro del disco di Giove all’opposizione. Ma le osservazioni di Piazzi,
distribuite in una decina di anni, ed effettuate con il telescopio da 7,5
cm collegato al grande cerchio altazimutale, permettevano di effettuare
la misura con una precisione suficiente, che Bessel si limitò a riinire.
NOMI CURIOSI
Come astronomo, Piazzi aveva una certa predisposizione per i
nomi curiosi. Oltre alla “Stella Volante” segnò nei propri lavori
anche una “Stella Granato”, così chiamata per il cupo colore
rosso (Mu Cephei). Il nome deriva dal minerale granato, che
esiste in molti colori ma la cui varietà rossa è particolarmente
apprezzata e usata come gioiello sin dall’antichità. Il nome
esatto del granato rosso è “piropo”, ma bisogna ammettere che
“stella piropo” non suonerebbe troppo bene!
Infine, Piazzi diede a due stelle del Delfino i curiosi nomi Sualocin
e Rotanev. Il buffo enigma racchiuso in questi nomi, apparentemente privi di qualsiasi significato, fu svelato solo parecchi
anni dopo dall’astronomo inglese Thomas Webb. Sualocin e
Rotanev altro non sono che le parole latine Nicolaus e Venator
scritte al contrario. E Niccolò Cacciatore (Nicolaus Venator, in
latino) era l’assistente di Piazzi nella redazione delle due edizioni del Catalogo Palermo (la seconda è del 1814).
Cacciatore succedette allo stesso Piazzi alla guida dell’osservatorio, quando l’anziano sacerdote venne a mancare, ormai
ottantenne, nel 1826. Non è dato sapere se nel frattempo avesse
ottenuto la sua pensione...
13
Con Piazzi e soprattutto con Bessel, si può dire che l’astrometria
entri nell’età adulta. I metodi e gli strumenti erano ormai maturi, e la
diffusione della conoscenza nella comunità astronomica migliorava
di continuo, rendendo praticabili anche le collaborazioni tra i diversi
osservatori. Le conseguenze non tardarono.
Più veloce di 61 Cygni
Nel 1842, dopo 36 anni dalla scoperta di Piazzi, 61 Cygni era diventata ancora più celebre, essendo stata la prima stella di cui era
stata determinata la distanza. Ma perse il suo primato come stella di
maggior moto proprio, scalzata dal primo posto in questa classiica
da Groombridge 1830, una stellina gialla di magnitudine 6,4 che si
trova nell’Orsa Maggiore.
Questa stella lega tra loro due astronomi molto diversi, nati in Paesi che sono spesso stati in guerra tra loro, ma che sono uniti dalla
proverbiale tenacia dei loro abitanti. Il primo, Stephen Groombridge
(1755-1832), era inglese e in realtà non era un astronomo professionista, ma un ricco commerciante. Straordinariamente appassionato
di astronomia, e potendosi permettere gli strumenti migliori, nel
1815 si ritirò dal commercio e passò il resto della vita a fare osservazioni (e - dettaglio essenziale - anche a elaborare i dati ricavati
dalle osservazioni stesse).
Groombridge catalogò la stella che ci interessa compilando il suo
poderoso A Catalogue of Circumpolar Stars, uscito postumo nel
1838 e realizzato con uno strumento molto simile a quello di Piazzi,
ovvero un circolo altazimutale da 1,2 m di diametro, dotato di un
telescopio da 7,5 cm di apertura, con una focale di circa 1,5 m.
Con questo strumento, Groombridge catalogò quasi tutte le stelle visibili come circumpolari dal suo Osservatorio, posto nel sud-est dell’Inghilterra, ino quasi alla magnitudine 9. La qualità del suo lavoro era
talmente buona che il lavoro di riduzione dei dati, rallentato prima da
una grave infermità e poi interrotto dalla sua scomparsa, fu preso in
carico e terminato da un celebre astronomo e matematico professionista dell’epoca, George Airy (quello del “disco di Airy”, generato dalla
diffrazione della luce nei telescopi). Il Catalogo Groombridge, anche
se oggi è superato, era ancora usato all’inizio del XX secolo.
Chi si accorse del rapido moto della stella n. 1830 del Catalogo Groombridge, fu un tedesco, che curiosamente portava gli stessi nomi di
battesimo di Bessel, e che di Bessel fu anche allievo: Friedrich Wilhelm
14
Argelander (1799-1785). Groombridge 1830 fu l’ultima stella “veloce” scoperta senza l’ausilio della fotograia.
Le stelle più “veloci” oggi
note, che occupano il podio
di questa particolare classiica, sono state scoperte tutte in
tempi relativamente recenti,
grazie al confronto di immagini prese a distanza di tempo.
Un lavoro non semplice, certamente; tuttavia, bisogna riconoscere che confrontare due
immagini tranquillamente, durante il giorno e seduti alla propria scrivania, potendo dedicarvi tutto il tempo necessario
Una stampa dell’epoca che
(e contando che ogni immagine registra in maniera afidabiriproduce lo strumento usato da
Groombridge per il suo catalogo.
le e inalterabile la posizione di
un gran numero di stelle) è ben
altro che leggere un nonio collegato a un grande sestante, oppure fermare il cronometro di notte mentre si osserva all’oculare un transito,
una stella per volta, con un reticolo di ilo di ragno illuminato da una
candela, come facevano Piazzi, Bessel e Argelander.
Negli ultimi tempi, inine, le immagini vengono registrate con sistemi digitali (o sono scansioni ad altissima risoluzione di lastre fotograiche), e i confronti vengono eseguiti al computer da soisticati
programmi progettati appositamente, mentre l’astronomo - almeno
metaforicamente - può anche starsene fuori a pranzo.
La Stella di Kapteyn
Comunque, ben prima dell’avvento dei computer, la stella che scalzò
dal trono Groombridge 1830 fu notata nel 1897 da un astronomo olandese, Jacobus Cornelius Kapteyn (1851-1922), mentre collaborava a un
enorme lavoro di riduzione di dati presi da lastre fotograiche, impresa
che portò alla pubblicazione del Cape Photographic Durchmusterung,
un poderoso catalogo di oltre 400 mila stelle dell’emisfero sud.
15
ARGELANDER, NON SOLO STELLE VELOCI
Friedrich Wilhelm Argelander non fu solo un cacciatore di
stelle veloci. La sua scoperta avvenne mentre si occupava di
astrometria, un campo di studi in cui sviluppò nuovi metodi
per ridurre i dati astrometrici e misurò diverse distanze stellari.
Inoltre, iniziò uno studio sistematico delle stelle variabili e in
questo ambito stabilì il metodo, ancora oggi usato dagli amatori, per stimare visualmente la magnitudine di una stella.
Argelander fu anche il primo a determinare, confrontando i
moti propri noti fino a quel momento, la direzione approssimativa verso cui si muove il Sistema Solare, il cosiddetto “apice
solare” (che si trova nella costellazione di Ercole, ma abbastanza vicino alla stella Vega).
Una stima più precisa dell’apice solare fu fatta pochi anni
dopo da William Herschel, lo scopritore di Urano.
Kapteyn si era gettato in questo lavoro non avendo accesso a un
osservatorio “suo”, e forse fu anche la sua fortuna. Oltre a scoprire
la “Stella di Kapteyn”, individuò anche i primi indizi della rotazione
della nostra Galassia, di cui stimò per primo anche le dimensioni.
La Stella di Kapteyn è una nana rossa di magnitudine apparente 9,
distante circa 13 anni luce. Il più modesto dei binocoli la mostra
nella costellazione meridionale del Pittore, ma la sua declinazione
di -45° fa sì che sia visibile, e bassissima sull’orizzonte, solo dall’estremo meridione europeo. Si sposta in cielo di “ben” 8,6” all’anno.
Al top della classiica: la Stella di Barnard
Il primato della Stella di Kapteyn non durò a lungo. Nel 1916, l’astronomo statunitense Edward Emerson Barnard (1857-1923), sempre studiando coppie di lastre della stessa regione celeste prese a
distanza di tempo, notò una stella di magnitudine 9,5 in Oiuco, che
si muove quasi esattamente in direzione nord alla “strepitosa” velocità di 10,4” all’anno.
Il nome di Barnard restò legato non solo a questa stella, ma anche
all’importante catalogo di nebulose oscure, tutt’oggi importante riferimento per questa classe di oggetti, e a innovative applicazioni
della fotograia all’astronomia. Campi molto diversi, quindi.
Forse, l’ecletticità professionale di Barnard era un rilesso della sua
16
vita avventurosa. Nato orfano di padre, Barnard a nove anni lavorava già come assistente di un fotografo. Appassionatosi all’astronomia scoprì diverse comete, e raggiunse una certa notorietà nel natio
Tennessee, il che spinse a una raccolta di fondi per farlo studiare.
Non si laureò mai, ma anni dopo ricevette l’unica (!) laurea ad honorem mai rilasciata dalla celebre Vanderbilt University.
Il suo nome è rimasto comunque legato alle nebulose oscure e alla
veloce “Stella di Barnard”, con la quale siamo arrivati in cima alla
classiica delle stelle più veloci, almeno per quel che riguarda gli astri
di luminosità relativamente elevata. In effetti, tutte le stelle citate sin
qui sono visibili con un binocolo, se non addirittura a occhio nudo.
Ancora più veloce
In tempi recentissimi, da quando l’elaborazione automatica di dati
ricavati dalle lastre accumulatesi negli osservatori nel corso dei decenni ha permesso di spingere le analisi sino a magnitudini prima
impensabili, il numero di stelle di cui sia noto il moto proprio è
aumentato a dismisura. E le sorprese non sono mancate.
Un gruppo di ricerca inglese ha pubblicato nel 2003 un catalogo di
stelle ad alto moto proprio, il LEHPM (Liverpool-Edimburgh High
Proper Motion). E in questo catalogo, al numero 2802, troviamo
l’attuale stella primatista di moto proprio. LEHPM 2802 supera sia
pure di pochissimo la Stella di Barnard, poiché si sposta ogni anno
di 10,73” (con un’incertezza di 0,03”).
Purtroppo, LEHPM 2802 è di magnitudine 19, e quindi al limite estremo di immagini amatoriali riprese con camere elettroniche; quindi di
ben scarso interesse per l’amatore. Come se non bastasse, il catalogo
LEHPM copre appena il 6% del cielo, per cui è probabile che da qualche parte in cielo ci sia un’altra debolissima nana rossa ancora più veloce. Non resta che attendere i risultati delle prossime osservazioni, a
partire dalla missione astrometrica GAIA, lanciata alla ine del 2013.
Comunque, con ragionevole certezza, si può affermare che tra le
stelle osservabili con un piccolo telescopio, il record della Stella di
Barnard sia destinato a durare per sempre. Essa costituisce un buon
soggetto per osservazioni amatoriali, in quanto è possibile evidenziare il moto perino con dei disegni, purché accurati, eseguiti al
telescopio a distanza di qualche anno. In fotograia, con riprese di
focale suficiente, bastano uno o due anni per mettere in risalto lo
spostamento di questa stella.
17
L’ASTROMETRIA E I SUOI STRUMENTI
L’astrometria è quella branca dell’astronomia che si occupa
della posizione degli astri, e di come questa posizione, eventualmente, vari nel tempo. Per percorrerne la storia, occorre
avere un’idea degli angoli in gioco, in quanto le misure astrometriche, in buona parte sono misure di angoli.
Ricordiamo che in un angolo giro ci sono 360 gradi (°), che un
angolo retto è 90° e che ogni grado è diviso in 60 primi d’arco
(‘) e ogni primo in 60 secondi d’arco (”). Quindi: 1° = 60’ = 3600”.
Attenzione a non confondere i primi e i secondi d’arco con i
minuti primi (m) e i secondi (s) di tempo!
La Luna Piena sottende un angolo di 0,5° (= 30’ = 1800”). La
larghezza di un mignolo, alzato contro il cielo col braccio teso,
sottende circa 1°, ovvero due lune piene affiancate (provare
per credere).
L’occhio umano riesce a distinguere, in condizioni ideali, dettagli fino a 1’ circa.
Le stelle con più alto moto proprio si muovono di qualche
secondo d’arco l’anno, mentre per misurare mediante parallasse la distanza di una stella ci vuole una risoluzione migliore
di 0,1”.
Per avere un’idea, una moneta da 2 € sottende 1” quando la
si pone a 5 km di distanza, e un angolo di 0,1” è quello che la
stessa moneta sottende da 50 km di distanza!
Il fondatore dell’astrometria può essere considerato Ipparco di
Nicea (Nicea, 190 a.C. - Rodi, 120 a.C.). Ipparco scoprì la
precessione degli equinozi, elaborò tavole trigonometriche e,
per quel che ci interessa qui, creò il primo catalogo stellare. Per
redigere questo catalogo, che comprendeva poco più di mille
stelle, raggruppate in 48 costellazioni, elaborò il sistema delle
magnitudini per descriverne la luminosità, mentre misurò le
posizioni delle stelle usando quadranti murali (per la distanza
zenitale) e strumenti assimilabili agli odierni teodoliti per quanto riguarda la posizione reciproca, riportata con un’incertezza
di circa 10’. Si ritiene che l’Atlante Farnese, celebre copia romana di una precedente opera greca andata perduta, sia basata sulle posizioni delle stelle riportate nel catalogo di Ipparco.
Il suo lavoro è andato perduto, ma Claudio Tolomeo (circa
18
90-168 d.C.) un astronomo
romano che viveva in Egitto e scriveva in greco, ce
ne riporta ampi stralci nel
suo celeberrimo Almagesto
(scritto nel 147 o 148 d. C.).
Gli strumenti degli astronomi non variarono in maniera significativa fino all’avvento del telescopio. Anche il grande Tycho Brahe,
l’ultimo grande astronomo
“pre-telescopico” utilizzava
grandi quadranti murali,
sestanti e semplici alidade
per ricavare la posizione
delle stelle e dei pianeti tra
L’atlante Farnese, conservato a
le stelle.
Napoli. Grande scultura (alta quasi
Quadranti e sestanti altro
due metri) e databile al secondo
non sono che archi di cersecolo d.C. Secondo recenti studi,
chio realizzati in ferro, ottola posizione delle stelle utilizzata
ne o addirittura legno, in
per realizzare la scultura deriva
cui una “mira” (l’alidada)
dall’opera di Ipparco.
permette di leggere un angolo, di norma rispetto alla verticale segnalata da un filo a
piombo (nel quadrante murale, usualmente fisso e posto lungo il meridiano) oppure tra due stelle, usando eventualmente
due alidade.
Come suggeriscono i nomi, il quadrante permette di misurare
angoli fino a 90°, mentre il sestante è ampio 60°. Al contrario dei quadranti, molti sestanti erano mobili e orientabili liberamente, in modo da poter misurare angoli arbitrari in cielo.
Spesso le loro dimensioni imponevano un sistema di pulegge
e contrappesi per muoverli, e magari qualcuno che aiutasse
l’astronomo nel lavoro... muscolare.
Il sestante nautico si è evoluto dal sestante per astrometria, ma
si basa anche su una immagine riflessa, per cui ha un aspetto
(e un modo d’uso) alquanto diverso.
19
La precisione di sestanti e
quadranti aumenta con
le dimensioni fisiche dello
strumento e con la maggior finezza delle divisioni
di lettura. La prima strada
fu battuta soprattutto fino
al XV secolo, e più notevole risultato in questo senso
è probabilmente il sestante murale fatto costruire
da Ulugh Beg, astronomo
persiano (1394-1449) per
l’osservatorio di Samarcanda. Scavato nella roccia,
l’enorme arco ha lo stupefacente raggio di... 36 m!
Con questo strumento, ancora esistente, e con uno
Uno dei quadranti usati da Tycho
gnomone alto 50 m, Ulugh
Brahe, tipico strumento astronomico
Beg determinò con grandi epoca pre telescopica.
de precisione la durata
Le imponenti dimensioni richiedevano
dell’anno (con un errore
l’aiuto di uno o due aiutanti per
inferiore ai 30 s) e l’inclina“puntarlo” nella zona celeste
zione dell’asse terrestre. Si
di interesse per l’astronomo.
stima che la posizione delle
stelle fosse misurabile con un’incertezza inferiore ai 3’.
Tycho Brahe, nel suo Osservatorio di Uraniborg usava strumenti fino a circa 4 m di diametro, ma si avvantaggiava nella lettura degli indici con un nonio primitivo. Ciò nulla toglie alle sue
straordinarie doti di osservatore, che gli permisero di dimezzare
le incertezze di Ulugh Beg.
Un notevole salto in questo campo venne fatto col perfezionamento, da parte di Ramsden, di una macchina per realizzare
scale incise estremamente regolari, oltre che con la sostituzione
dell’alidada con un piccolo telescopio (e si arriva così agli strumenti usati da Piazzi o da Groombridge).
Chiunque abbia un po’ di esperienza di astronomia pratica
20