Rocket Propulsion Fundamentals

Transcript

Rocket Propulsion Fundamentals
Rocket Propulsion Fundamentals
ROCKET PROPULSION SYSTEMS
Functions
•
Thrust generation by acceleration of an internally stored
propellant for:
– launch & orbit insertion
– orbit maneuvering & maintenance
– attitude control
Basic Elements
• Propellant(s) & Propellant Storage
• Propellant Feed System
• Energy Source
• Energy Conversion
• Accelerator
Main Technologies & Energy Sources
Cold Gas Rocket
• Cold Gas Rocket Propulsion Systems (CGRPSs), thermal
• Liquid Rocket Propulsion Systems (LRPSs ), chemical
• Solid Rocket Propulsion Systems (SRPSs), chemical
• Hybrid Rocket Propulsion Systems (HRPSs), chemical
• Nuclear Rocket Propulsion Systems (NRPSs), nuclear
• Electrical Rocket Propulsion Systems (ERPSs), electrical (photovoltaic, nuclear, etc.)
Luca d’Agostino, Dipartimento di Ingegneria Aerospaziale, Università degli Studi di Pisa, 2010/11.
Rocket Propulsion Fundamentals
LIQUID ROCKET PROPULSION SYSTEMS
System Architecture
Luca d’Agostino, Dipartimento di Ingegneria Aerospaziale, Università degli Studi di Pisa, 2010/11.
Rocket Propulsion Fundamentals
SOLID & HYBRID ROCKET PROPULSION SYSTEMS
System Architecture
Luca d’Agostino, Dipartimento di Ingegneria Aerospaziale, Università degli Studi di Pisa, 2010/11.
Rocket Propulsion Fundamentals
ELECTRIC ROCKET PROPULSION SYSTEMS
System Architecture
Arcjets
Magnetoplasmadynamic (MPD) Thrusters
Electrostatic Thrusters
Hall Thrusters
Luca d’Agostino, Dipartimento di Ingegneria Aerospaziale, Università degli Studi di Pisa, 2010/11.
Rocket Propulsion Fundamentals
KEY PROPULSION TECHNOLOGIES
Operational Comparison
Luca d’Agostino, Dipartimento di Ingegneria Aerospaziale, Università degli Studi di Pisa, 2010/11.
Rocket Propulsion Fundamentals
ROCKET MASS BALANCE
Rocket Continuity Equation
•
AS
Notations and assumptions:
– control volume V , the rocket itself, bounded by:
AS the rocket external surface (impermeable, u ! dS = 0 )
Ae the nozzle exit area
– inertial frame moving at the instantaneous rocket speed:
rocket velocity v = 0 (but in general dv dt ! 0 )
flow velocity u
– rocket mass m
– propellant mass flow rate m!
– nearly uniform flow at the nozzle exit (index e)
•
Then:
!
" dV + # "u $ dS +
Ae
! t #V
where:
dm !
= # " dV
dt ! t V
m! = # !u " dS
Ae
#
AS
"u $ dS = 0
!
v
m
Ae , ! e
ue
dm
+ m! = 0
dt
is the rate of change of the rocket mass m
is the propellant flow rate ( m! ! "eue Ae in the 1D approximation)
Luca d’Agostino, Dipartimento di Ingegneria Aerospaziale, Università degli Studi di Pisa, 2010/11.
Rocket Propulsion Fundamentals
ROCKET FORCES
pa
Rocket Momentum Equation
•
Notations and assumptions:
AS
v
– uniform ambient pressure pa and gravitational body force g
•
D
In an inertial frame where v = 0 (but in general dv dt ! 0 ):
mg
!
& $ "uu $ ( p $ pa ) 1 + % () * dS + # " g dV ,
"udV = #
Ae + AS '
V
! t #V
Ae , pe , !e
d
dv
dm
ue
!
= F + FA + mg
( mv ) = m + v
dt
dt
dt
v=0
where the use of the relative pressure p ! pa is justified because a uniform pressure pa
yields no net force on closed surfaces, and:
" !g dV
F ! " % #uu $ dS " % ( p " p ) dS
!#"#$ !##"##
$
is the rocket weight
FA ! " # ( p " pa ) dS + # $ % dS
AS
AS
!
##"##
$ !
#
"#
$
is the aerodynamic force ( u ! dS = 0 on AS )
mg =
V
Ae
Ae
momentum thrust
A/D pressure force
•
a
is the rocket thrust ( ! " 0 on Ae )
pressure thrust
A/D viscous force
Notice that, projecting in the forward direction, in the 1D approximation:
! e + ( pe " pa ) Ae
F ! mu
Luca d’Agostino, Dipartimento di Ingegneria Aerospaziale, Università degli Studi di Pisa, 2010/11.
Rocket Propulsion Fundamentals
ROCKET POWERS
AS
Rocket Energy Equation
•
•
m
Notations and assumptions:
– free rocket, adiabatic conditions ( g = pa = q! = Q! = 0 )
– hR , m R formation enthalpy and mass of reacting propellants
– hP ! h!P + c pP ( T " T° ) formation enthalpy of combustion products
v
ue
Ae , ! e , Te , pe
From the energy equation for the usual control volume V :
!
!p
"
"
h
dV
+
dS
$
u
"
h
=
dV
=
0
!
( mRhR + mBOhBO ) + %Ae dS # u$ htP & 0
t
t
!# S
#V ! t
! t #V
"t
and, since mBO hBO is constant and by continuity ! m R ! t = " m! = " % #u $ dS :
Ae
1
%
(
!hR $ "u # dS + $ ' h!P + c pP ( T ! T° ) + u # u * "u # dS + 0
! Pc = Q! j + W! j
Ae
Ae
2
&
)
where:
P!c = m! (hR ! h"P )
(combustion power)
! pP ( Te " T° )
(exhaust thermal power)
Q! e ! c pP ( T " T° ) #u $ dS ! mc
%
Ae
1
1 2
1 2F 1
!
u
!
u
#
u
!
dS
$
u
m
=
ue $ Fc
e
"Ae 2
2
2 c 2
$ # 1) Me2 2
W! e
ue2 2
(
!=
"
"
"1
P!c c pP ( T # T° ) + ue2 2 1 + ($ # 1) Me2 2
W! e =
(exhaust mechanical power)
(rocket engine efficiency)
Luca d’Agostino, Dipartimento di Ingegneria Aerospaziale, Università degli Studi di Pisa, 2010/11.
Rocket Propulsion Fundamentals
FREE ROCKET PERFORMANCE
Thrust Performance Parameters
•
Effective exhaust velocity:
! e + ( pe " pa ) Ae
( p " pa ) Ae
F mu
c= !
= ue + e
m!
m!
m!
Notice:
– c is a function of the ambient pressure pa
– usually ( pe ! pa ) Ae m! << ue and therefore c ! ue (exhaust velocity)
•
Specific impulse and volume specific impulse (or density impulse):
F
F
F
and
Isp =
! c = g0 Isp
Id = =
= ! g0 Isp
! 0
mg
V! m! !
Notice:
– Isp
–
–
–
•
Id
g0
V!
mostly relevant to mass optimization
mostly relevant to volumetric and aerodynamic optimization
is the gravity acceleration at sea level
is the volumetric flow rate of the stored propellant
Problem: Show that for rockets operating with two propellants (fuel F and oxidizer O ):
m! O + m! F
Id = ! Isp g0
! "=
m! O "O + m! F " F
Luca d’Agostino, Dipartimento di Ingegneria Aerospaziale, Università degli Studi di Pisa, 2010/11.
Rocket Propulsion Fundamentals
FREE ROCKET PERFORMANCE
Tsiolkovsky’s Free Rocket Equation
•
•
•
•
Assumptions:
– straight trajectory
– no body forces, no atmosphere ( g = pa = 0 )
– constant effective exhaust velocity c
F
v
m
From the rocket mass and axial momentum balances:
Dm
Dv
and
= ! m!
m
=F
Dt
Dt
ṁ
! and eliminating m! with the continuity equation:
Using F = mc
ue
Dv
Dm
dm
! = !c
m
= mc
! dv = "c
Dt
Dt
m
Integrating between the initial and burn-out masses m0 , mBO the rocket velocity change is:
m
(Tsiolkovsky’s free rocket equation)
! v = "c ln BO
m0
Compare with Breguet eq’n for leveled cruise with lift-to-drag ratio L D and velocity v0 :
L m
! x = "v0 Isp ln BO
D m0
Problem: Why are both equations logarithmic in the vehicle mass and linear in the
propulsive (and aerodynamic) performance parameters Isp (and L D )?
Luca d’Agostino, Dipartimento di Ingegneria Aerospaziale, Università degli Studi di Pisa, 2010/11.
Rocket Propulsion Fundamentals
ROCKET THRUST PERFORMANCE
Equations and Parameters
•
Total impulse:
I=
!
tb
0
where tb is the thrust duration or burn time
Fdt
For operation at constant specific impulse:
tb
! = cmP
I = Isp g0 ! mdt
where mP is the propellant mass
0
•
Thrust profile:
" progressive dF dt > 0 (SRPS's)
$
F ( t ) ! #regressive
dF dt < 0 (SRPS's, HRPS's)
$neutral
dF dt = 0 (LRPS's, ERPS's, NRPS's, SRPS's)
%
•
Thrust-to-weight ratio:
– for free flight:
v!
F
(acceleration in g-No.)
=
g0 mg0
– for vertical take-off:
v!
F
=
!1 "
g0 mg0
F
mg0
>1
take-off
Luca d’Agostino, Dipartimento di Ingegneria Aerospaziale, Università degli Studi di Pisa, 2010/11.
Rocket Propulsion Fundamentals
PERFORMANCE OF KEY PROPULSIVE TECHNOLOGIES
Performance Comparison
Luca d’Agostino, Dipartimento di Ingegneria Aerospaziale, Università degli Studi di Pisa, 2010/11.
Rocket Propulsion Fundamentals
PERFORMANCE OF KEY PROPULSIVE TECHNOLOGIES
Exhaust Velocity v/s Vehicle Acceleration
Luca d’Agostino, Dipartimento di Ingegneria Aerospaziale, Università degli Studi di Pisa, 2010/11.
Rocket Propulsion Fundamentals
PERFORMANCE OF KEY PROPULSIVE TECHNOLOGIES
Specific Impulse v/s Thrust
Luca d’Agostino, Dipartimento di Ingegneria Aerospaziale, Università degli Studi di Pisa, 2010/11.
Rocket Propulsion Fundamentals
MAJOR LAUNCH VEHICLE FAMILIES
Luca d’Agostino, Dipartimento di Ingegneria Aerospaziale, Università degli Studi di Pisa, 2010/11.
Rocket Propulsion Fundamentals
SINGLE-STAGE ROCKETS
Rocket Masses
•
Let:
mP = propellant mass
mT = tank mass
mE = engine & propellant management mass
m L = pay-load mass (all other masses)
•
•
•
Then:
mS = mE + mT
(structural mass)
m0 = mS + mP + m L (initial mass)
m0 ! mP = mS + m L (burn-out mass)
Define:
(tankage fraction, dependent on propellant type and feed system)
! = mT mP
! = mS ( mS + mP ) (structural coefficient, ! constant for equal rocket technology)
(payload ratio)
! = m L m0
Then, using the free rocket equation mP m0 = 1 ! e ! " v c , obtain:
(
)
m E m0 + " 1 # e # $ v c
mS
mE + mT
!=
=
=
mS + mP mE + mT + mP mE m0 + " 1 # e # $ v c + 1 # e # $ v c
(
m L m0 ! m P
mS m0 ! m L
=
!
m0
m0
mS + m P m0
)
e! $v c ! %
$v
" #=
> 0 " c > cmin = !
1! %
ln %
Luca d’Agostino, Dipartimento di Ingegneria Aerospaziale, Università degli Studi di Pisa, 2010/11.
Rocket Propulsion Fundamentals
MULTISTAGE ROCKETS
Multistage Rocket Performance
•
For missions with high propellant masses ( mP comparable to m0 ):
– large tank and engine masses need to be accelerated
– final thrust and acceleration become excessive
Hence staging can be advantageous
•
For each stage i = 1, 2,... n :
!i = e " # vi
ci
" $ i (1 " !i ) % # vi = "ci ln &'$ i + !i (1 " $ i ) ()
where:
ci i th exhaust velocity
! i i th structural coefficient
!i i th payload ratio
•
For n stages:
– total velocity change:
! v = " ! vi
i
– overall payload ratio:
! = " !i
i
Luca d’Agostino, Dipartimento di Ingegneria Aerospaziale, Università degli Studi di Pisa, 2010/11.
Rocket Propulsion Fundamentals
MULTISTAGE ROCKETS
Multistage Rocket Optimization
•
Alternative approaches:
– minimum m0 for given ! v and m L ! max {!} for given ! v
!i
– maximum ! v for given m0 and m L ! max {" v} for given !
!i
•
(new design)
(new mission)
Overall velocity change and payload ratio constraint for a rocket with i = 1, 2,... n stages:
! v = " i ! vi = # " i ci ln &'$ i + %i (1 # $ i ) ()
! = " i !i
and
# ln ! = $ i ln !i
For the constrained optimization of ! v consider the augmented objective function:
(
F = ! ( i ci ln $%" i + #i (1 ! " i ) &' ! k ln # ! ( i ln #i
)
( k is a Lagrangian multiplier)
Hence, for F to be extremum for some values of the !i ’s:
(1 # $ i ) ci + k = 0
!F
=#
!"i
$ i + "i (1 # $ i ) "i
! "i =
# i (1 $ # i )
ci k $ 1
where k is determined using the constraint on the payload ratio:
# (1 $ # i )
( n th order polynomial for 1 k ! k )
! = " !i = " i
c
k
$
1
i
i
i
In general need to choose the best maximum corresponding to the n solutions for k = k j :
*
! v = max +" ) ci ln %&# i + $ij (1 " # i ) '( .
j
, i
/
where
!ij =
" i (1 # " i )
;
ci k j # 1
j = 1, 2,... n
Luca d’Agostino, Dipartimento di Ingegneria Aerospaziale, Università degli Studi di Pisa, 2010/11.
Rocket Propulsion Fundamentals
MULTISTAGE ROCKETS
Multistage Rocket Optimization (continued)
•
For equal exhaust velocities ( c1 , c2 ,... cn = c ):
%1
c
#i (
!1= ' $
k
& " i 1 ! # i *)
1n
"i %
1 # "i (
!i =
!
$
1 # " i '& i " i *)
1n
1n
,
&
1 " #i ) /
! v = "c2 ln .# i + # i ( $ %
+* 1
#
'
.i
10
i
i
•
For similar stages ( c1 , c2 ,... cn = c and ! 1 , ! 2 ,... ! n = ! ):
(equal payload ratios)
!i = ! 1 n
! v = "nc ln %&# + $ 1 n (1 " # ) '(
(equal velocity changes)
and:
% e " # v nc " $ (
!='
& 1 " $ *)
n
In particular, for an infinite number if similar stages:
lim # v = $c lim n ln '(% + & 1 n (1 $ % ) )* = $c (1 $ % ) ln &
n!"
n!"
Luca d’Agostino, Dipartimento di Ingegneria Aerospaziale, Università degli Studi di Pisa, 2010/11.
Rocket Propulsion Fundamentals
MULTISTAGE ROCKETS
Multistage Free Rockets
Problem
•
Carry out the payload fraction optimization (1st approach) of multistage rockets.
Luca d’Agostino, Dipartimento di Ingegneria Aerospaziale, Università degli Studi di Pisa, 2010/11.
Rocket Propulsion Fundamentals
ELECTRIC ROCKET OPTIMIZATION
Optimum Specific Impulse
•
Assumptions:
– electric thruster effective beam velocity c
– mission requirement ! v << c (not too unrealistic)
– propellant mass flow rate m! = mP t BO
– nearly uniform (1D) beam properties
– electric thruster efficiency ! = W! e P!el
– spacecraft specific mass ! = mS P!el
•
In the above assumptions:
1 2 1 mP 2
! =
W! e ! mc
c
2
2 t BO
P!el
! c2
!
mS = ! Wel = !
=
mP
" 2"t BO
mP
"v
for
= 1 ! e! "v c #
! v << c
m0
c
#
! c2 &
m0 = m P + mS + m L = % 1 +
mP + m L
2"t BO ('
$
exhaust beam mechanical power
spacecraft structural mass
propellant mass ratio
spacecraft initial mass
Luca d’Agostino, Dipartimento di Ingegneria Aerospaziale, Università degli Studi di Pisa, 2010/11.
Rocket Propulsion Fundamentals
ELECTRIC ROCKET OPTIMIZATION
Optimum Specific Impulse (continued)
•
Pay-load ratio:
%
%1
mL
# c 2 ( mP
#c (
!=
= 1 " '1 +
+
1
"
+
'& c 2$t *) , v - ".
m0
2$t BO *) m0
&
BO
as
#%0
c! $
%&"
( mP ! " )
( P! , m
el
S
! ")
Hence, differentiating w.r.t. c , the pay-load ratio is maximum for:
d! & 1
$ )
"( 2 #
,v = 0
+
dc ' c
2%t *
BO
corresponding to:
copt ! g0 Ispopt =
2"t BO
#
From this result:
!opt " 1 # $ v
2%
&t BO
or:
t BOopt
•
2! & # v )
=
(
+
" '1$ %*
2
Notice that t BOopt is a strong function of ! " 1 , of ! v and, to a lesser extent, of ! and ! .
Luca d’Agostino, Dipartimento di Ingegneria Aerospaziale, Università degli Studi di Pisa, 2010/11.
Rocket Propulsion Fundamentals
PROPULSION SYSTEM DESIGN PROCESS
Luca d’Agostino, Dipartimento di Ingegneria Aerospaziale, Università degli Studi di Pisa, 2010/11.
Rocket Propulsion Fundamentals
PROPULSION SYSTEM DESIGN PROCESS (continued)
Luca d’Agostino, Dipartimento di Ingegneria Aerospaziale, Università degli Studi di Pisa, 2010/11.