Curriculum vitae

Transcript

Curriculum vitae
Curriculum vitae
J. Ferretti
I.
PERSONAL DETAILS
• Name: Jacopo Ferretti
• Birthplace: Genoa, Italy
• Date of birth: January 11th 1980
• Nationality: Italian
• Email: [email protected]
II.
EDUCATION
• 2007: M. Sc. Degree in Physics (University of Genoa, Italy).
Title of the thesis: ”Baryon Spectroscopy”.
Thesis supervisors: Prof. E. Santopinto, Dr. A. Vassallo.
• 2011: Ph. D. Degree in Physics (University of Genoa, Italy).
Title of the thesis: ”Baryon Spectroscopy and Structure”.
Thesis supervisors: Prof. E. Santopinto, Prof. R. Bijker.
III.
FELLOWSHIPS
• 2007: INFN Research Grant (6 months).
• 2008-2010: INFN Ph. D. Grant.
• 2013-2014: UNAM Postdoc Grant.
IV.
HONOURS
• November 2011: Della Riccia Fellowship winner.
V.
COLLABORATIONS
• Scientific collaboration with Prof. Roelof Bijker (UNAM): 18.5.2010 - 6.7.2010; 27.11.2010 - 5.12.2010; May
2012 - June 2014.
VI.
TALKS
• ”Relativistic quark-diquark model of baryons”. Talk given at the Italian Physical Society XCVII National
Congress, L’Aquila, 27 September 2011.
• ”Strangeness content of the proton”. Talk given at the Italian Physical Society XCVII National Congress,
L’Aquila, 27 September 2011.
• ”Relativistic quark-diquark model of baryons. Non strange spectrum and nucleon electromagnetic form factors”.
Talk given at the conference ”Beauty in Physics: Theory and Experiment” organized in honour of Franco
Iachello, Cocoyoc, Mexico, 17 May 2012.
2
• ”Bottomonium and Charmonium”. Talk given at the conference ”XXVII Reunión Anual de la División de
Partculas y Campos de la SMF”, Mexico City, Mexico, 20-22 May 2013.
• ”Nonstrange baryon spectrum and nucleon electromagnetic form factors within the relativistic quark-diquark
model”. Talk given at the NSTAR 2013 Workshop, Peniscola, Spain, 27-30 May 2013.
• ”Meson decays in the quark model”. Talk given at the 7th International Workshop on Pion-Nucleon Partial
Wave Analysis and the Interpretation of Baryon Resonances (PWA7), Camogli (Genova), Italy, 23-27 September
2013.
• ”The X(3872) as a charmonium state plus an extra component due to continuum coupling effects”. Talk given
at the 13th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU 2013),
Rome, Italy, 30 September-4 October 2013.
• ”Higher Bottomonia. Open bottom strong decays and spectrum”. Talk given at the 13th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU 2013), Rome, Italy, 30 September-4
October 2013.
• ”Higher Bottomonia. Open bottom strong decays and spectrum”. Talk given at the International Symposium
on Lepton and Hadron Physics at Meson-Factories, Messina, Italy, 13-15 October 2013.
VII.
ARTICLES
1. E. Santopinto, R. Bijker and J. Ferretti, ”Unquenching the quark model”, Few Body Syst. 50, 199 (2011).
2. J. Ferretti, A. Vassallo and E. Santopinto, ”Relativistic quark-diquark model of baryons”, Phys. Rev. C 83,
065204 (2011).
3. M. De Sanctis, J. Ferretti, E. Santopinto and A. Vassallo, ”Electromagnetic form factors in the relativistic
interacting quark-diquark model of baryons”, Phys. Rev. C 84, 055201 (2011).
4. R. Bijker, J. Ferretti and E. Santopinto, ”ss̄ sea pair contribution to electromagnetic observables of the proton
in the unquenched quark model”, Phys. Rev. C 85, 035204 (2012).
5. J. Ferretti, G. Galatá, E. Santopinto and A. Vassallo, ”Bottomonium self-energies due to the coupling to the
meson meson continuum, Phys. Rev. C 86, 015204 (2012).
6. J. Ferretti, G. Galatá and E. Santopinto, ”Interpretation of the X(3872) as a charmonium state plus an extra
component due to the coupling to the meson-meson continuum”, Phys. Rev. C 88, 015207 (2013).
7. J. Ferretti and E. Santopinto, ”Higher mass bottomonia”, arXiv:1306.2874.
8. J. Ferretti, G. Galatá and E. Santopinto, ”Quark structure of the X(3872) and χb (3P ) resonances”,
arXiv:1401.4431.
VIII.
CONFERENCE PROCEEDINGS
1. R. Bijker, J. Ferretti and E. Santopinto, ”Configuration mixing in the quark model”, J. Phys. Conf. Ser. 403,
012039 (2012).
2. R. Bijker, J. Ferretti and E. Santopinto, ”Strangeness of the proton”, J. Phys. Conf. Ser. 387, 012011 (2012).
3. M. De Sanctis, J. Ferretti, E. Santopinto and A. Vassallo, ”Relativistic quark-diquark model of baryons: Nonstrange spectrum and nucleon electromagnetic form factors”, AIP Conf. Proc. 1488, 280 (2012).
4. E. Santopinto, R. Bijker, J. Ferretti and G. Galatá, ”Unquenching the quark model using the beauty of symmetry”, AIP Conf. Proc. 1488, 266 (2012).
5. R. Bijker, J. Ferretti and E. Santopinto, ”The strange beauty of the proton”, AIP Conf. Proc. 1488, 35 (2012).
6. E. Santopinto, R. Bijker, J. Ferretti and G. Galatá, ”Constituent quark models for baryon spectroscopy”, AIP
Conf. Proc. 1560, 451 (2013).
7. J. Ferretti, ”Relativistic quark-diquark model”, Int. J. Mod. Phys. Conf. Ser. 26, 1460117 (2014).
3
IX.
RESEARCH
I have studied some aspects of hadron spectroscopy and structure within the formalisms of two different models,
the Unquenched Quark Model (UQM) [1–10] and the Interacting Quark-Diquark Model [11–13]. These models make
it possible to study observables in hadron physics lying in the non perturbative regime of Quantum Chromodynamics
(QCD), the fundamental theory of strong interactions, because the equations of QCD cannot be solved in this regime.
The UQM is an extension of the Quark Model (QM), in which the wave function of a hadron consists of a zeroth
order configuration, corresponding to the qqq (q q̄) valence quarks, plus a sum over all possible higher Fock components
qqq − q q̄ (q q̄ − q q̄), due to the creation of q q̄ pairs. I have used the formalism of the UQM for baryons [4–6] to get
results on the strange quark contribution to electromagnetic observables of the proton [5, 6]. These calculations
require the introduction of higher Fock components in baryon wave functions (i.e. qqq − q q̄ configurations) to take
the contribution of ss̄ sea pairs into account, because the proton has zero strangeness in its valence component. In
this way the strange sea quarks contribution to the proton magnetic moment (the strange magnetic moment) and
charge radius (the strangeness radius) have been computed [5, 6]. In Ref. [7], I have extended the formalism of the
UQM to the meson sector, to calculate the self energies of 1S, 2S and 1P bottomonium states due to the coupling
to the meson-meson continuum. In Refs. [8, 9] I have calculated the cc̄ and bb̄ spectra with self energy corrections
due to the coupling to the meson-meson continuum. The results are fitted to the experimental data, in such a way
that the sum of the bare and self energies gives the values of the physical masses of the states of interest. The bare
masses are computed within the relativized QM by Godfrey and Isgur [14]. These calculations make it possible to
provide interesting predictions about the nature of still unobserved states, as well as on mesons whose nature is still
not clear, like the X(3872) [8, 10] or the χb (3P ) system [9, 10]. The open-flavor decays and radiative transitions of
cc̄ [8, 10] and bb̄ [9, 10] resonances have been computed too.
The quark-diquark model is a particular kind of QM, where the number of effective degrees of freedom is smaller
than in three QMs, since two quarks are strongly correlated to form a diquark. The diquark is thus treated as
an effective bosonic degree of freedom [11]. I have developed a relativistic constituent quark-diquark model [12],
which is the relativistic reformulation of the Interacting Quark-Diquark Model of Ref. [11], to get results on baryon
spectroscopy [12] and on the electromagnetic elastic form factors of the nucleon [13].
[1] S. Ono and N. A. Törnqvist, Z. Phys. C 23, 59 (1984); K. Heikkila, S. Ono and N. A. Törnqvist, Phys. Rev. D 29, 110
(1984) [Erratum-ibid. 29, 2136 (1984)]; S. Ono, A. I. Sanda and N. A. Törnqvist, Phys. Rev. D 34, 186 (1986).
[2] N. A. Törnqvist and P. Zenczykowski, Phys. Rev. D 29, 2139 (1984); Z. Phys. C 30, 83 (1986); P. Zenczykowski, Annals
Phys. 169, 453 (1986).
[3] P. Geiger and N. Isgur, Phys. Rev. Lett. 67, 1066 (1991); Phys. Rev. D 44, 799 (1991); 47, 5050 (1993); 55, 299 (1997).
[4] R. Bijker and E. Santopinto, Phys. Rev. C 80, 065210 (2009); E. Santopinto and R. Bijker, Phys. Rev. C 82, 062202
(2010).
[5] E. Santopinto, R. Bijker and J. Ferretti, Few Body Syst. 50, 199 (2011).
[6] R. Bijker, J. Ferretti and E. Santopinto, Phys. Rev. C 85, 035204 (2012).
[7] J. Ferretti, G. Galatá, E. Santopinto and A. Vassallo, Phys. Rev. C 86, 015204 (2012).
[8] J. Ferretti, G. Galatá and E. Santopinto, Phys. Rev. C 88, 015207 (2013).
[9] J. Ferretti and E. Santopinto, arXiv:1306.2874.
[10] J. Ferretti, G. Galatá and E. Santopinto, arXiv:1401.4431.
[11] E. Santopinto, Phys. Rev. C 72, 022201 (2005).
[12] J. Ferretti, A. Vassallo and E. Santopinto, Phys. Rev. C 83, 065204 (2011).
[13] M. De Sanctis, J. Ferretti, E. Santopinto and A. Vassallo, Phys. Rev. C 84, 055201 (2011).
[14] S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985).
Mexico City 10/02/2014, Jacopo Ferretti