2009 Stresa SETHI - Politecnico di Torino

Transcript

2009 Stresa SETHI - Politecnico di Torino
STRESA – June 19, 2009
Environmental Success In Treatment Objectives - Best Practices In Sustainable Soil, Sediment, and Groundwater
Remediation: An Industry and Regulatory Perspective
Proven Methods for Successfully
Engineered Introduction of Remediation
Reagents in Aquifer Systems
CARSICO
Rajandrea Sethi, Antonio Di Molfetta, Alessandro Ferrero*
DITAG – Politecnico di Torino, Carsico s.r.l.*
1
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
Reagents
‰
Oxidants:
ƒ
ƒ
ƒ
‰
Zerovalent iron (ZVI)
Sodium dithionite
ƒ
Liquids (miscible, non miscible)
ƒ
Gases
electron acceptors (i.e. Oxigen);
electron donors (i.e. Hydrogen)
ƒ
Slurries (suspensions)
ƒ
Emulsions
Others:
ƒ
ƒ
ƒ
‰
Solids
Biodegradation promoting compounds:
ƒ
ƒ
‰
ƒ
Reductants:
ƒ
ƒ
‰
Permanganate;
Fenton;
Ozone;
Sorbent material (i.e. activated carbon, zeolites)
Carbonates
Surfactants - cosolvents
Amendants: mixtures.
2
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
1
Reactive zones vs
Permeable reactive barriers
‰
Delivery of the reactant close to
the source
‰
Emplacement of the PRB
downstream the source to
intercept the plume
‰
Hot spots (good
characterization)
‰
Multiple/areal sources
‰
‰
Can decrease the remediation
time
Remediation time is controlled
by the rate of dissolution of the
contaminant
3
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
Reactive zones vs
Permeable reactive barriers
‰
Oxidants
‰
Reductants:
ƒ Zerovalent iron (ZVI)
‰
Reductants
ƒ Micro & Nano ZVI
‰
Others:
ƒ Sorbent material (i.e.
activated carbon, zeolites)
ƒ Carbonates
‰
Amendants
‰
Amendants
4
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
2
PRB Construction methods
‰
Excavation Methods:
ƒ Unsopported excavation;
ƒ Supported excavation:
□ Trench boxes
□ Sheet piling
ƒ Continuous Trenching
ƒ Biopolymer Trenching
5
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
Biopolymer trenching
‰
A biopolymer (CMC, guar) is used to support the
trench during excavation and then is degraded
‰
Advantages:
ƒ
ƒ
ƒ
ƒ
‰
eliminates dewatering
provides continuity of the trench
adaptable to a variety of soils and site
less expensive than other methods
Disadvantages:
ƒ depth could be a problem
ƒ risk of collapsing
6
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
3
Diaphragm wall excavators
U.S.
Europe
Long stick backhoe excavator
Crane & grab
7
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
Long stick backhoes
BOOM
STICK
Most common
installation
technology for
PRB installation
BUCKET
8
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
4
Excavation forces
9
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
Excavation Ranges and
Forces
Komatsu PC1250
10
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
5
LS excavation
+ easy to operate
+ doesn’t require guide wall
- oversized excavators
- precision (high BP usage)
- work across the excavation
11
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
Crane excavator with grab
‰
Developed in early 60’s by an Italian company
(ICOS) that introduced the concept of diaphragm
wall (Puller, 2003)
‰
Most common excavating machine in Europe for
slurry walls
‰
Use in PRB construction (O’Hannesin 2005, PC):
ƒ 1 pilot scale
-> Borden (Canada)
ƒ 1 ZVI placement
-> West Vancover (Canada)
ƒ 1st full scale
-> Torino (Italy)
12
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
6
Crane excavators
Crane
Grab
(a) Rope suspended
system
+ Depth
- Precision
(b) Kelly mounted
- Depth
+ Precision
(c) Hybrid
+ Depth
+ Precision
13
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
Grabs
(a) Mechanical grab
- Powerfull
(b) Hydraulic Grab
+ Powerfull
14
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
7
Comparison
Backhoe excavators1
Grab excavators2
Max. power
50 - 485 kW
240 – 400 kW
Base machine weight
7,000 - 110,000 kg
42,000 - 300,000 kg
Lifting capacity
3,500 - 40,000 kg
20,000 - 30,000 kg
Weight of bucket/grab
300 - 3,000 kg
8,000 - 24,000 (kg)
Excavation width
0.4 - 3.0 m
0.5 - 1.2 m
Excavation length
-
2 - 4.2 m
Capacity of bucket/grab
0.2 - 1
m3
1 - 1.2 m3
Bucket/grab digging force (ISO)
50 - 430 kN
300 - 400 kN
Stick crowd force
inversely proportional
to stick length
-
Excavation depths
0 - 30 m
5 - 70 m
Excavation rate
400
m2/day
300 m2/day
15
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
Grab excavator case study
1÷5 Foundry sands
and wastes disposals
CAHs contamination
in
groundwater
16
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
8
Hydrogeological
characterization
Average parameters
i=0,011
Saturated thickness
b
10 m
Hydraulic conductivity
k
1,8.10-4 m/s
Effective porosity
ne
0,2
Hydraulic gradient
i
0,011
17
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
Contaminant characterization
Direct push
Piezometers
Sampling
points
Soil
samples
Gas
samples
Water
samples
Area 1
28
-
95
-
662
>150
Area 1
Area 2
MCL
Max
conc.
µg/l
Max.
conc.
µg/l
µg/l
PCE
0.46
56
1.1
TCE
130
36
1.5
cDCE
135
0.3
60
-
0.1
0.5
GW Conc
Area 2
73
130
VC
18
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
9
Geometry of the barrier
‰
Length:
120 m (17 panels)
‰
Width:
0.6 m (0.5 m of iron)
‰
Height:
11.9-13.8 m
‰
Reactive height:
9.70-11.80 m
‰
Mass of iron:
1700 t
‰
Mass of sand:
360 t
19
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
Excavation technique
‰
Link Belt crawler
crane &
Casagrande
hydraulic grab
‰
thick. = 0.6 m
width = 4 m
capacity= 1030 l
‰
‰
Div. Rodio - TREVI
20
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
10
Guide wall & end stops
21
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
Biopolymer slurry preparation
Product
Tap water
Guar gum powder
Amount /
batch
3500 l
22.5 kg
Biocide
0.2 kg
Soda Ash
2.5 kg
22
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
11
Properties of bioslurry
‰
Pseudoplastic yield
fluid
‰
Density: 1020 kg/m3
‰
Dynamic viscosity: 40
cps
23
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
Excavation phase 1
24
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
12
Excavation phase 2
25
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
Excavation phase 3
26
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
13
Iron
27
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
Sand
28
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
14
Mixing truck
29
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
Filling operations
30
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
15
Bioslurry breakdown
Degradation of the
bioslurry by means of
enzymes recirculation
with air lifting technique
Steve Day, Geo-Solution
31
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
Final configuration of the area
32
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
16
Light
Piezometer
The PRB now
33
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
Analitycal results
Upstream
PCE
Downstream
U.M.
S27
S28
S35
S36
ug/l
<0.05
<0.05
<0.05
<0.05
TCE
ug/l
25.0
56.0
<0.05
0.4
1,2-DCE
ug/l
15.0
83.0
2.8
1.0
1,1-DCE
ug/l
<0.5
<0.5
<0.05
<0.05
VC
ug/l
<0.05
<0.05
<0.05
<0.05
Total carcinogenic
CAHs
ug/l
40.0
139.0
2.8
1.4
34
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
17
Technology comparison
Excavation
technology
Max Gate Length
Torino (Italy)
LS case study (US)
Crane with grab bucket
LS backhoe
120 m
68 m
14 m
13 m
52 % volume
89 (140) % volume
18 m2/h
8 days for 120 m
Almost the same
150 $/m2
135 $/m2
Max Depth
Usage of bioslurry
Speed
Excavation costs
@ max depth
35
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
Reagent delivery
(reactive zones)
‰
Injection methods:
ƒ Gravity
ƒ Fracturing
□ Hydraulic
□ Pneumatic
ƒ
ƒ
ƒ
ƒ
‰
Jetting
Pressure Pulse Technology
Valved tubings
Direct push
Soil mixing
36
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
18
Under gravity inside piezometers
‰
Inside 2’’-4’’ piezometers
‰
Small pressure: low viscosity
or high dilution
‰
Low injection rates
‰
Problem:
accumulation
sediment inside the well
‰
Socks can be used
o
37
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
Valved tubings
‰
Technique used in
geotechnical engineering
(permeation grouting)
‰
Valved tubing with selective
injection after isolation with
a double packer
‰
Average pressure (30 bar)
‰
Average radius of influence
‰
Multiple injections
Cattaneo, 2004
38
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
19
Hydraulic or Pneumatic
Fracturing
‰
Use of very high pressures in order
to generate fractures in the aquifer
filled with the reagent
‰
High injection rates
‰
Non homogeneous permeation and
preferential flow
www.arstechnology.com
39
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
Pressure Pulse Technology
PPT
‰
Derived
from
engineering
oil
‰
Based on the generation
of pressure waves that
determine acceleration of
the interstitial fluid and
transient modifications of
the porous media structure
‰
Not very common
Halliburton
40
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
20
Soil Mixing
‰
In situ mixing of reagents
(expecially ZVI)
‰
Bentonite and cement can be
added to reduce permeability
41
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
Direct push system
‰
Hydraulically-powered
machines
‰
Environmental sampling
(soil, gas, groundwater)
‰
Grouting and reagents
injection
42
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
21
Direct push system
Reagents preparation
TRS - Ravenna
‰
Direct injection
‰
Heated
‰
Hydratated and
mixed
www.carsico.it
43
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
Direct push system
Pumps and injection tips
‰
High pressure (69-127
bar)
‰
Average pumping rates
‰
Injection (Top-down or
bottom-up)
44
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
22
Product rheology
‰
After hydratation:
ƒ Few products are newtonian and characterized by a low
viscosity
ƒ Most of the products contain organic material,
biopolymers and/or particles: complex rheology usually
shear thinning fluids -> moderate to high pressures
required
ƒ Rheology is also influenced by dispersed particles and
colloids which can be subject to filtration inside the
porous media
45
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
AQUAREHAB (EU proj. FP7)
Injection tests
nZVI
µZVI
46
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
23
Recirculation
Sethi
47
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
Conclusions
‰
Crane & grab excavation is an effective
construction method for PRB emplacement
also for average-low depths
‰
Permeable reactive barriers and reagents
injection are complementary technologies
48
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
24
Acknowledgements
PRB
‰
PRB Design:
ƒ Studio Bortolami e Di Molfetta
ƒ Studio Buonomo Veglia
ƒ Politecnico di Torino
‰
Contractors:
‰
Technical support:
ƒ Edil MaVi, Trevi
ƒ I.M.E.S.
ƒ E.T.I.
ƒ Geo-Solutions
‰
Field Consultancy:
‰
Iron:
ƒ Ing. S. Marconetto, Ing. S. Day
ƒ Gotthart Maier
49
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
Acknowledgements
NZVI
‰
AQUAREHAB EU project FP7, Coordinator for Politecnico di Torino: Dr. Rajandrea Sethi
ƒ
ƒ
ƒ
‰
Dipartimento del Territorio, dell’Ambiente e delle Geotecnologie, Politecnico di Torino (DITAG-POLITO),
partecipanti: Antonio di Molfetta, Rajandrea Sethi, Tiziana Tosco, Silvia Comba
Dipartimento di Scienza dei materiali e dell’Ingegneria chimica, Politecnico di Torino (DISMIC-POLITO),
partecipanti: Daniele Marchisio
Partners internazionali: Flemish Institute for Technological Research; Katholieke Universiteit Leuven
KULeuven;Geological Survey of Denmark and Greenland; Helmholtz Zentrum München – Deutsches
Forschungszentrum für Gesundheit und Umwelt GmbH; CTM Centre Tecnologic;Technische Universiteit
Delft;Sapion Bodemadvies;ISODETECT Gmbh;University of Stuttgart; Wageningen Universiteit;Ben Gurion
University of the Negev GBU; Masarykova Univerzita;UNESCO-IHE Institute for Water Education;
University of Sheffield; Politecnico di Torino; Hoganas AB; University of Copenhagen; Institut National de
l'Environnement Industriel et des Risques; Environmental Institute - SME
Progetto CIPE C30, Regione Piemonte, Coordinator: Prof. Antonio Di Molfetta
ƒ
ƒ
ƒ
ƒ
ƒ
Dipartimento del Territorio, dell’Ambiente e delle Geotecnologie, Politecnico di Torino (DITAG-POLITO),
partecipanti: Antonio di Molfetta, Rajandrea Sethi, Tiziana Tosco, Silvia Comba, Valerio Zolla, Alberto
Tiraferri
Dipartimento di Scienza dei materiali e dell’Ingegneria chimica, Politecnico di Torino (DISMIC-POLITO),
partecipanti: Edoardo Garrone, Barbara Bonelli, Marco Armandi, Francesca Freyria
Dipartimento di Chimica Analitica, Università di Torino (DICHI-UNITO), partecipanti: Claudio Baiocchi,
Claudio Medana, Riccardo Aigotti
Dipartimento di Scienze Mineralogiche e Petrologiche, Università di Torino (DSMP-UNITO): Elena Belluso,
Giovanni Ferraris
INRIM: Marco Coisson, Franco Vinai
50
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
25
Pubblications
‰
2009 TOSCO T; TIRAFERRI A.; SETHI R. Ionic Strength-Dependent Transport of Microparticles in Saturated Porous Media: Modeling
Mobilization and Immobilization Phenomena under Transient Chemical Conditions. ENVIRONMENTAL SCIENCE AND
TECHNOLOGY
‰
2008 TIRAFERRI A; CHEN K.L; SETHI R.; ELIMELECH M, Reduced sedimentation and aggregation of nanoscale zerovalent iron in
the presence of guar gum, JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2008, ISSN: 0021-9797, DOI:
10.1016/j.jcis.2008.04.064
‰
2008 TIRAFERRI A; SETHI R., Enhanced Transport of Zerovalent Iron Nanoparticles in Saturated Porous Media by Guar Gum,
JOURNAL OF NANOPARTICLE RESEARCH, 2008, ISSN: 1388-0764, DOI: 10.1007/s11051-008-9405-0
‰
2007 SETHI R.; FREYRIA F; COMBA S; DI MOLFETTA A, Ferro nanoscopico per la bonifica di acquiferi contaminati, GEAM.
GEOINGEGNERIA AMBIENTALE E MINERARIA, 2007, ISSN: 1121-9041
‰
2007 FREYRIA F; BONELLI B; SETHI R.; GARRONE E; DI MOLFETTA A, Physico-chemical characterization of colloidal iron
suspensions for groundwater remediation, Marco Petrangeli Papini - Centro Stampa Universita (ITA), 3rd International Symposium on
Permeable Reactive Barriers, Rimini 8-9 nov., 2007, 2007, ISBN: 978-88-87242-98-0
‰
2006 DI MOLFETTA A; SETHI R., Clamshell excavation of a permeable reactive barrier, ENVIRONMENTAL GEOLOGY, 2006, ISSN:
0943-0105, DOI: 10.1007/s00254-006-0215-3
‰
2005 DI MOLFETTA A.; SETHI R., Barriere reattive permeabili, In: Bonifica dei siti contaminati: caratterizzazione e tecnologie di
risanamento., A CURA DI BONOMO LUCA, Mc Graw-Hill (ITA), pp. 562-60
‰
2003 DI MOLFETTA, Ingegneria degli acquiferi. Politeko
51
RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009
26