Diapositiva 1 - Liceo Galilei Ancona

Transcript

Diapositiva 1 - Liceo Galilei Ancona
“Verso l’esame di Stato: la progettazione didattica e i risultati
attesi a conclusione del percorso quinquennale.”
Simulazioni di prove di matematica alla luce delle
Indicazioni Nazionali e del nuovo Esame di Stato
• La seconda simulazione proposta dal MIUR
il 22 aprile 2015
• Criteri e metodologie per la costruzione della prova di matematica
per il nuovo Esame di Stato
Ancona - 27 aprile 2015
AUDITORIUM LICEO SCIENTIFICO “G.GALILEI”
27/04/2015
Marcello PEDONE.
Simulazioni di prove di matematica
1
La seconda simulazione
proposta dal MIUR
il 22 aprile 2015
I Problemi
Le soluzioni Pubblicate
27/04/2015
Marcello PEDONE.
Simulazioni di prove di matematica
2
Problema n. 1:
CURVA NORD
SOLUZIONE MATEMATICA
Quesito 1:
L’area S della curva nord
è data dall’espressione:
L’area agibile Seff. è il 90,5%
del totale e pertanto sarà
Seff. = 3696 m2
Il numero massimo di spettatori
Nmax sarà:
27/04/2015
3
La Polizia Municipale propone di aprire i cancelli di ingresso un’ora prima dell’inizio della
manifestazione sportiva. È necessario non aprirli con troppo anticipo, per limitare i costi, ma
anche evitare un afflusso troppo intenso, per motivi di sicurezza: la velocità massima di
accesso degli spettatori non deve essere superiore a 350 ingressi al minuto. In base alle
osservazioni degli anni precedenti, sai che l’andamento del numero di spettatori, aprendo gli
ingressi un’ora prima dell’inizio della manifestazione, segue una curva come quella riportata
in figura 2:
2) esprimendo il tempo t in minuti, determina il polinomio p(t) di terzo grado che meglio
riproduce questo andamento, ipotizzando che il numero di spettatori sia 0 all’apertura dei
cancelli di ingresso (t = 0) e sia pari al numero massimo consentito Nmax dopo un’ora (t = 60),
e che la velocità di accesso sia 0 al momento dell’apertura iniziale degli ingressi, e sia ancora 0
dopo un’ora, quando l’afflusso termina e il settore è riempito completamente. Verifica che la
funzione rispetti il vincolo di sicurezza sulla massima velocità di accesso degli spettatori nello
4
stadio.
Quesito 2:
Indicando con N(t) il numero di spettatori all’interno dello stadio all’istante t espresso in minuti,
risulta:
Verifichiamo che il flusso non superi il massimo consentito; per questo determiniamo il valore
del massimo della derivata prima della funzione N(t):
Il flusso quindi è minore del massimo possibile per motivi di sicurezza.
5
MAPLE
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
6
Al termine della manifestazione gli spettatori defluiscono dall’impianto; in base alle osservazioni
degli anni scorsi ogni minuto esce dall’impianto il 5% degli spettatori presenti all’interno nel
minuto precedente.
3) Determina la funzione che meglio rappresenta il deflusso degli spettatori, e, indicando con
t=0 l’apertura dei cancelli e tc (da determinare) l’istante in cui, durante il deflusso, nell’impianto
restano meno di 100 spettatori, disegna il grafico della funzione che rappresenta il numero di
spettatori presenti nell’impianto nell’intervallo [0; tc]; ipotizza che l’impianto sia riempito alla
massima capienza e che la manifestazione sportiva duri un’ora. Determina inoltre la massima
velocità di deflusso degli spettatori dall’impianto.
"alla fine della manifestazione..."
quindi è tutto finito! si aprono i cancelli
Devi organizzare i servizi di assistenza e ristoro per gli spettatori, sulla base del numero medio di
presenze nell’impianto.
ambiguità relativa all'apertura dei cancelli,
che poteva indicare il momento dell'ingresso o quello dell'uscita.
4) Determina il numero medio di spettatori presenti nell’impianto, nell’intervallo di tempo
dall’istante t = 0 (apertura dei cancelli) all’istante t = tc
Prima ipotesi soluzione quesito 3 e 4:
Indichiamo con t0 il tempo a cui la manifestazione termina e inizia il deflusso; questo è
descritto dalla relazione:
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
7
Grafico della funzione
Il valore di t0 è t0 = 120 minuti.
Il tempo cercato tc è:
Il deflusso ha il massimo all’inizio del deflusso stesso
ed è pari al 5% del numero degli spettatori e
quindi pari a 600 spettatori/minuto.
Il numero medio di spettatori nell’impianto è:
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
8
La funzione N(t) ha tre andamenti diversi negli intervalli (0,60); (60,120) e (120,216) minuti;
Il numero medio di spettatori sarà quindi:
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
9
Seconda ipotesi soluzione quesito 3 e 4:
Indicando con Nmax il numero di spettatori presenti al termine della manifestazione, poiché in
ogni minuto defluisce il 5% degli spettatori presenti un minuto prima, in ogni minuto il numero
di spettatori ancora presenti all’interno dell’impianto è il 95% di quelli presenti un minuto prima.
Perché il numero di spettatori diventi
inferiore a 100, devono trascorrere:
Il numero medio di spettatori nell’impianto è:
27/04/2015
Marcello PEDONE. Simulazioni di prove di matematica
10
La funzione N(t) ha tre andamenti diversi negli intervalli (0,60); (60,120) e (120,214) minuti;
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
11
Problema n. 2: IL VASO
L’azienda in cui lavori produce articoli da giardino e sei stato incaricato di rivedere il
disegno di un vaso portafiori realizzato da un tuo collega. Il vaso formato, di altezza h= 18 cm, è
composto da due tronchi di cono aventi la base maggiore in comune e il disegno che ti è stato
fornito (figura 1) ne rappresenta la sezione longitudinale:
Nel riferimento cartesiano in figura 1
l’unità di misura corrisponde a 1 cm.
Il direttore del tuo reparto ti chiede di:
1) Verificare il valore del volume
del vaso progettato dal tuo collega.
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
12
GeoGebra
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
13
Il vaso è formato da due tronchi di cono.
Per determinare il volume del vaso sommiamo il volume dei due tronchi calcolati separatamente.
Si possono usare due procedure ,una con gli integrali e l’altra con le formule di geometria solida)
Prima procedura con l'uso degli integrali
Equazione della retta per due punti:
Integrale per il calcolo del volume
di un solido di rotazione
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
14
Seconda procedura con l'uso della formula del volume del tronco di cono
Formula del volume del tronco di cono
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
15
Se il volume risulta minore di 1,5 litri, bisogna rendere il vaso più alto, fino a fargli
raggiungere il volume di 1,5 litri, lasciando però invariate le misure dei diametri
corrispondenti ai punti A, S e V, rendendo inoltre la forma meno spigolosa. Per chiarire meglio la
sua richiesta, il direttore ti da un suo disegno, modificato rispetto al precedente (figura 2)
La curva passante per i punti S,V e G,
disegnata dal direttore,
può essere approssimata
Con un’iperbole di equazione
y =a/x
2)Determina, approssimando
per eccesso al millimetro,
i valori di h e k del punto G che
consentono di soddisfare
la richiesta di modifica del vaso.
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
16
Innanzitutto occorre determinare l'equazione dell'iperbole equilatera , a tale scopo
consideriamo la condizione di appartenenza del punto S(12,6)
alla curva e sostituiamo le coordinate di S all'equazione y=a/x
Per ottenere un vaso di capacità approssimativamente uguale a 1,5 litri il collo deve
essere allungato e la nuova altezza sarà l'ascissa di G .
Volume finale del nuovo vaso
dove V1 è il volume del tronco di cono già determinato al punto 1
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
17
Impostiamo l'equazione per ricavare h
Qundi h = 25,1 cm è la nuova altezza del vaso approssimata al millimetro e le coordinate di G
sono
Il punto G che soddisfa alla richiesta di modifica ha coordinate G(25.1;2.9)
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
18
Dopo che il primo esemplare del vaso è stato prodotto, il responsabile della produzione fa
Rilevare che l’eccessiva spigolosità del profilo nel punto S ne rende costosa la produzione.
3) Considera la funzione il cui grafico è rappresentato nella figura 2, nel semipiano y≥0
descrivi la natura del punto S giustificando le tue affermazioni;
Abbiamo precedentemente ricavato che la retta passante per A ed S ha equazione
mentre la curva tra i punti S e G è l'iperbole equilatera di equazione
Il contorno del vaso descritto in figura 2 è rappresentato nel semipiano non negativo
delle y dalla funzione definita nell'intervallo [0,25.1]
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
19
Verifichiamo se è derivabile. A tale scopo calcoliamo la derivata prima di f(x) essa è data
da
derivata destra e sinistra nel punto S esistono finite ma diverse , possiamo concludere che il
punto S è un punto angoloso.
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
20
4) Lasciando ancora invariate le misure dei diametri corrispondenti ai punti A ed S,
individua la funzione razionale intera di secondo grado che consente
di congiunge i punti A e S , eliminando il punto angoloso in S; disegna la nuova
sagoma del vaso e individua il punto della curva AS in cui la pendenza
del grafico è rimasta immutata rispetto alla sagoma precedentemente proposta.
La forma generale di una funzione razionale intera di secondo grado è y=ax2+bx+c
Per determinare i parametri a,b,c consideriamo l' appartenenza dei punti A(0,3) ed S(12, 6) e la
richiesta che il punto S non sia un punto angoloso.
Perché quest'ultima condizione sia verificata occorre che la derivata prima della funzione
razionale intera e quella dell'iperbole, calcolate nel punto S, siano uguali , cioè che le due curve
nel punto S siano tangenti alla stessa retta.
Impostiamo il sistema con le tre condizioni e lo risolviamo.
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
21
La funzione razionale intera di secondo grado richiesta ha equazione :
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
22
2) dall'arco di iperbole equilatera compresa tra i punti S e G
Unendo i due archi la funzione ha il seguente grafico
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
23
L'equazione della curva che rappresenta la nuova sagoma del vaso nell'intervallo [0,25.1] è
Il grafico di tale funzione è definito :
1) dall'arco di parabola con la concavità verso il verso negativo delle y, compresa tra
punti A ed S e avente il vertice ( punto di massimo per la curva )
nel punto la cui ascissa che rende nulla la derivata prima
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
24
La curva simmetrica rispetto all'asse delle ascisse si ottiene applicando
le equazioni della simmetria rispetto all'asse x :
La sagoma del vaso è rappresentata dalla parte di piano delimitata dalle due funzioni
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
25
GeoGebra
MAPLE
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
26
Per individuare il punto della curva AS in cui la pendenza del grafico è rimasta immutata
rispetto alla sagoma precedentemente proposta utilizziamo il teorema di Lagrange .
Sappiamo che la pendenza della sagoma della figura 2 è data dal coefficiente angolare della
retta A S
La funzione razionale intera
essendo una funzione polinomiale è
definita, continua e derivabile in R, e quindi soddisfa nell'intervallo [0,12] alle ipotesi del
teorema di Lagrange, pertanto esiste un punto c appartenente all'intervallo ]0,12[ ,
che ne verifica la tesi
cioè esiste un punto c appartenente all'intervallo ]0,12[ in cui f’(x) è uguale
alla pendenza della retta AS
Marcello
PEDONE.
Simulazioni
di prove3)
di
ha lo27/04/2015
stesso coefficiente angolare della
retta
AS
(
vedi
figura
matematica
27
MAPLE
GeoGebra
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
28
Riflessioni
Cabrinews: simulazione del 22 aprile
esame stato
[email protected]
27/04/2015
Marcello PEDONE. Simulazioni di
prove di matematica
29
A me sembra che ci siano significativi miglioramenti notevoli
nella formulazione del primo problema rispetto alla precedente simulazione:
il modello proposto non è banale e non mi sembra artificioso.
Direi che hanno cercato anche di rendere più graduale la difficoltà delle domande.
Inoltre il problema riguarda concetti fondamentali,
richiede competenze di conversione tra i vari registri di rappresentazione.
Mi sembra davvero che abbiano notevolmente modificato (e migliorato) il tiro,
prestando attenzione alle diverse critiche hanno avuto.
Semmai c’è da rammaricarsi che non abbiamo chiesto di giustificare, di argomentare:
nella scheda di valutazione bisognerebbe assegnare
una valutazione anche alle competenze argomentative
e sarebbe meglio che vi fossero richieste esplicite di produrre giustificazioni e argomentazioni.
C’è un punto che, però, mi lascia perplesso:
nella domanda 3 si chiede di determinare la funzione
che rappresenta meglio il deflusso degli spettatori,
suggerendo che ci si possa riferire solo all’uscita dai cancelli al termine della manifestazione.
Però poi si dice che la manifestazione dura un’ora, lasciando quindi intendere
che si chieda più che il deflusso, il flusso nel tempo
(dall’apertura dei cancelli, ma all’ingresso o all’uscita?).
Forse sono io che ho capito male, per una lettura poco attenta del problema,
ma mi sembra che ci siano alcune ambiguità che all’esame
potrebbero creare difficoltà agli studenti.
Però, a parte questo, mi sento di affermare che c’è stato un significativo
Marcello PEDONE. Simulazioni di prove di
miglioramento
27/04/2015 rispetto alla prova passata.
30
matematica
Sul secondo problema, invece, ho le stesse perplessità
che ho avuto per il secondo quesito della precedente prova.
La situazione realistica ha nuovamente aspetti caricaturali.
Meglio allora un problema di geometria pura:
più onesto, più efficace, più adatto a valutare competenze matematiche.
Sui quesiti, mi sembra che le critiche già esternate nella lista siano condivisibili.
Il problema più delicato però è la struttura della prova,
poco adeguata a distinguere tra il livello della sufficienza e quello delle eccellenze.
Fino a che la struttura rimarrà con 10 quesiti e due problemi sarà
difficile individuare una parte che riguardi gli obiettivi irrinunciabili,
a meno di non destinare a questa parte i quesiti, cosa che non hanno certo fatto in questa prova.
Ancora una considerazione: ho guardato l’intervista alla dott.ssa Brancaccio.
http://www.skuola.net/esame-maturita-liceo-scientifico/svolgimento-simulazione-seconda-prova-scientifico.html
A un certo punto ha detto, testualmente, che
“è già dal 2010 che alcuni insegnanti propongono nelle proprie classi situazioni di problem solving”.
Francamente ho avuto una reazione tra la tenerezza e l’indignazione,
pensando ai colleghi che ho avuto il piacere di conoscere e che prestano da almeno
trent’anni attenzione a costruire
ambienti didattici caratterizzati da un intelligente equilibrio tra applicazioni e teoria.
E prima ancora ve ne saranno stati altri, che non ho avuto il piacere di conoscere direttamente.
Insomma, anche prima del progetto PP&S ci sono stati docenti che si sono ispirati
alle idee di Lucio Lombardo Radice, Bruno de Finetti, Emma Castelnuovo, Giovanni Prodi ...
e la lista potrebbe proseguire, in avanti e indietro nel tempo:
Simulazioni
prove
di
la tradizione
italiana della didatticaMarcello
della PEDONE.
matematica
hadiun
certo
valore o no?
27/04/2015
31
matematica
Domingo Paola
Trenta o quaranta anni di ricerche ed esperienze didattiche suggeriscono a molti
di noi un'avvertenza: progettare prove di matematica legate alla realtà non è immediato;
è facile incorrere in calcoli molto complicati
o in enunciati ridicoli o in problemi che non fanno parte della realtà degli studenti,
perciò sono più difficili per loro e meno efficienti per la valutazione,
rispetto a un 'arcaico' problema come
'si studi il grafico della funzione ...' o ' si determini il cono di superficie minima ...'
E' però vero che oggi la rete consente un facile accesso alla vasta e collaudata
produzione di prove del mondo anglosassone (UK, USA, Australia, ...) o franco - canadese,
ma le prove ivi progettate testano contenuti matematici
con un livello di astrazione e formalizzazione
molto più 'leggero' di quello ipotizzato (o sognato?) dagli estensori della simulazione italiana.
Questo potrebbe spiegare perché l'inizio del problema 1
appare condivisibile, mentre il resto è 'ingarbugliato' e
il problema 2 mantiene il carattere grottesco della prima simulazione.
Quanto al questionario sembra un'accozzaglia di quesiti scritti da persone diverse,
con formazione e obiettivi diversi;
fra l'altro vi si trova un vecchio quesito risolubile con un 'trucchetto' da sapere (quesito 8)
o noti quesiti di livello universitario, banali per chi ha studiato gli argomenti (quesiti 2, 4, 7 e 9 ),
che però non compaiono o compaiono in forma meno approfondita in nelle indicazioni nazionali.
Qual è il senso di una prova di questo tipo??
Daniela Valenti
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
32
Se questa simulazione ha davvero il senso che vuol dare allora si tratta di
cambiare completamente il tipo di studio della matematica (ma forse non solo)
durante tutto l'arco degli anni: non più la costruzione di un impianto che cresce su se stesso
e costruisce ambienti di lavoro sempre più grandi in cui le proprietà (dimostrate)
diventano sempre più generali, in cui i casi particolari spariscono,
in cui alla fine si trova il perché di tutto quello che si era appreso
negli anni precedenti in maniera inconsapevole, in cui i diversi registri,
verbale, grafico, simbolico, numerico, si fondono e si sovrappongono ;
ma si tratta di fare della matematica un campo di ricerca,
partendo da un problema, e allora sì che questo deve essere reale,
costruendo via via, insieme a altri insegnanti con relative competenze specifiche,
le conoscenze e competenze necessarie per procedere e alla fine tirare le fila
di quello che è stato fatto, di quello che si è imparato e poi ripartire con un'altra ricerca.
M@tabel nel suo piccolo ci ha provato ma poi è stato abbandonato, perché?
Certo questo è un ottimo modo di procedere ma richiede: una oculata scelta
dei problemi, tempi, spazi, collaborazione fra insegnanti, strumenti disponibili in ogni momento,
grande capacità di gestione della classe, rinuncia a interi ambiti della disciplina.
Se tutto questo è possibile allora ben venga anche questa simulazione altrimenti forse
è meglio rimanere in un terreno più conosciuto, s'intende con le dovute modifiche.
Donata Foà
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
33
Da più parti ho sentito colleghi affermare che la simulazione era facile, oppure difficile, oppure...
La questione, secondo me, non riguarda la "facilità" o la "difficoltà" della prova proposta
(a parte ciò che non è nelle indicazioni nazionali) ma,
c'è il tempo per fare tutto quello che c'è in questa simulazione?
e farlo in modo che gli studenti interiorizzino i concetti e non padroneggino solo le procedure?
Vorrei sottolineare che l'Ispettore Esposito il 13 aprile durante il seminario svoltosi presso
l'Università Sapienza organizzato dal Prof. Bernardi disse, tra l'altro,
riferendosi alle equazioni differenziali, che l'UNICA cosa veramente importante è
che lo studente sappia interpretare la soluzione! Troviamo questo nel questionario proposto?
Vorrei poi concludere con una considerazione :
il lavoro d'aula, le discussioni con gli studenti per risolvere un problema,
il piacere di una sfida, la storia come fatto culturale ma spesso non è"misurabile"
a breve né in termini di competenze né di conoscenze, è una COSA,
mentre l'esame di stato è un'altra. Mi piacerebbe che i due piani non fossero confusi!
Un buon fine settimana a tutti
Ida Spagnuolo
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
34
Non mi era mai capitato di trovarmi in così forte difficoltà nel preparare gli studenti
ad affrontare in modo sereno la prova d'esame.
Sicuramente non ho trascurato di leggere con attenzione, insieme ai miei colleghi,
le indicazioni nazionali e da sempre ho inserito nella mia attività didattica esempi concreti
(nella mia formazione sono "figlia" della Castelnuovo) ma in modo equilibrato,
non trascurando mai l'aspetto formativo della nostra disciplina che va ben oltre
il "gioco di ruolo“ nel quale ad uno studente viene chiesto di mettersi nei panni
del responsabile della Curva Nord di un impianto sportivo.
Forse con questa didattica rivolta esclusivamente a "risolvere problemi" riusciremo
a recuperare posizioni nell'indagine OCSE-Pisa, ma siamo sicuri che questo deve essere
l'unico obiettivo del nostro insegnamento?
Questa volta nessuna critica alle prove, ma amarezza nel constatare quello che sta accadendo.
[email protected]
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
35
- molto più convincenti i problemi;
- i quesiti hanno l'evidente obiettivo di suggerire ai docenti quanti argomenti
dobbiamo ancora svolgere in questi pochi giorni rimasti,
come se le competenze da sviluppare nell'alunno fossero solo conoscenze da travasare.
Nascono le solite domande:
-quale libro di testo che voi conoscete fa una trattazione di questo tipo?
Mi sembra che l'unico sia il Sasso ma non si spenge fino a certi livelli,
quindi dove reperire materiali? il buon progetto MAT@ABEL che fine ha fatto?
- domanda banale: perchè sapere tutto in fine corsa?
Solo i colleghi che hanno aderito al progetto "problem posing and solving"
hanno avuto sentore del cambiamento!
Ricordo che l'adesione al progetto prevedeva l'uso incondizionato di un software
non freeware (MAPLE), mentre il MIUR pubblicizza da ogni parte piattaforme
Linux e pacchetti open Source!!!
Mi sembra che ci sia un errore nella soluzione del 1° quesito:
la funzione, che era invertibile, ha una f. inversa che non è ovunque derivabile
nel suo Insieme di Definizione ,
mi sembra che ci sia un punto di flesso a tangente verticale in x= e^(-8)
Mara Massarucci
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
36
Da un lato un'idea sul modo di
procedere della disciplina basato su una base di concetti e contenuti,
dall'altro la capacità di usare le conoscenze disciplinari nel mondo
in cui vivono.
Bisogna conciliare le diverse anime della/e Matematica/che (il plurale
"à la" Enriques). Illuminante è il concetto di "Modello".
Per la Matematica è la concretizzazione di una teoria.
Per la Fisica è l'astrazione di una serie di fenomeni.
I nuovi "Compiti" d'esame propendono per la seconda definizione;
nei "Quesiti" si recupera un po' della prima definizione (invertibilità ecc.).
Poi c'è l'"Orale" in cui si può lasciar spazio, ad esempio, a qualche dimostrazione.
L'equilibrio non è stato ancora raggiunto, ma
soprattutto, come dicevi, l'obiettivo non corrisponde spesso al percorso didattico.
Furio Petrossi
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
37
Forse voi siete più bravi di me ad insegnare, io sono un po'
disorientato, perché i quesiti assomigliano molto al mio esame di
analisi all'uni, ove peraltro non sono andato molto bene
(soprattutto sia per la convergenza delle serie sia per le equazioni differenziali
(che qui forse sono facili, ma fino a dove si spingono?)
In più nelle indicazioni nazionali (vado a memoria per cui forse
sbaglio) si parla di integrazioni facili, dalle quali io avevo escluso
l'integrazione per parti.
Poi devo dire che questa impostazione, dove si pensa più che far conti, mi piace.
Mi piacerebbe averlo saputo tre anni fa, però...
Sono un po' demotivato, perchè sento che l'istituzione è lontana.
Sicuramente è solo un problema mio, voi certamente (e non lo dico in
modo ironico, lo penso davvero) siete più bravi e avete svolto un programma perfetto. Io no.
Quindi per reagire chiedo: perchè qui non facciamo una raccolta di esercizi che vanno nella
direzione delle simulazioni?
Mi aiutate a ripassare le equazioni differenziali e le convergenze delle serie?
Christian Bonfanti
Le serie non ci sono nelle indicazioni nazionali, neanche gli integrali impropri
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
38
La seconda simulazione
proposta dal MIUR
il 22 aprile 2015
I quesiti
Le soluzioni Pubblicate
27/04/2015
Marcello PEDONE. Simulazioni di
prove di matematica
39
QUESITO 1
Assegnata la funzione
1) verificare che è invertibile;
2) stabilire se la funzione inversa è derivabile in ogni punto del suo dominio di definizione,
giustificando la risposta. (soluzione pubblicata)
Per verificare che la funzione sia invertibile occorre dimostrare che in ℜ è biunivoca.
La funzione y è una funzione esponenziale con la base >1 quindi è definita , continua e derivabile
per ogni x appartenente ad ℜ ed è strettamente crescente in ℜ, e come tutte le funzioni
monotone strettamente crescenti è biunivoca, quindi invertibile . Il suo codominio è ]0,+∞[ .
Oppure per dimostrare che la funzione y è monotona crescente calcoliamo la derivata prima:
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
40
Nella soluzione proposta, si legge:
La correzione è stata effettuata
I realtà essa presenta un punto di non derivabilità nel punto F(e-8,0) e precisamente un punto
di flesso a tangente verticale.
GeoGebra
Dalla figura si vede chiaramente che la funzione inversa non è derivabile
nel punto e-8 perché ha un flesso a tangente verticale.
Marcello PEDONE. Simulazioni di prove di
matematica
41
Si poteva ragionare nel seguente modo: per x=0, la funzione f ha un flesso a tangente
orizzontale (vedi figura) e quindi la funzione inversa nel punto di ascissa f(0) non è derivabile
(Teorema della derivata della funzione inversa).
GeoGebra
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
42
QUESITO 2
Data l'equazione differenziale del primo ordine
determinare la soluzione del problema di Cauchy, tenendo conto della condizione iniziale y(1)= 0
L’equazione è una equazione differenziale a variabili separabili.
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
43
QUESITO 3
Di quale delle seguenti equazioni differenziali è soluzione la funzione
Giustificare la risposta
La risposta corretta e la c)
Le equazioni proposte sono equazioni differenziali del secondo ordine. La funzione y=ln(x-3) è
definita, continua e derivabile per x>3.
Per verificare di quale equazione differenziale è soluzione la funzione y=ln(x-3), per x>3 bisogna
calcolare la derivata prima e la derivata seconda della funzione y=ln(x-3) e sostituirle
nelle equazioni differenziali proposte . L’equazione che risulterà soddisfatta sarà quella richiesta.
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
44
QUESITO 4
Verificare il carattere della serie e, nel caso in cui sia convergente, determinare la
sua somma.
Per verificare che la serie è convergente, utilizzando
la definizione, basta verificare che la successione
delle sue ridotte , per n→ +∞ , è convergente.
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
45
QUESITO 5
Per progettare un sito Web è necessario generare dei codici unici di accesso.
Per fare questo si vogliono utilizzare due lettere maiuscole dell'alfabeto inglese
seguite da una serie di numeri compresi tra 0 e 9.
Tutti i codici di accesso dovranno avere lo stesso numero di cifre
ed è ammessa la ripetizione di lettere e numeri.
Qual è il numero minimo di cifre da impostare in modo da riuscire a generare almeno 5
milioni di codici di accesso diversi? Giustificare la risposta .
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
46
QUESITO 6
La base di un solido, nel piano Oxy, è il cerchio avente come centro l'origine e raggio 3.
Le sezioni del solido perpendicolari all'asse delle x sono quadrati.
Calcolare il volume del solido.
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
47
QUESITO 7 Trovare l'equazione del piano tangente alla superficie sferica avente
come centro l'origine e raggio 2, nel suo punto di coordinate (1,1,z), con z negativa.
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
48
QUESITO 8 Calcolare il seguente integrale indefinito
e rappresentare graficamente la funzione primitiva
passante per il punto
in realtà è un segmento
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
49
QUESITO 9
Calcolare il seguente integrale improprio
Per risolvere l’integrale occorre modificare l’estremo di integrazione e
verificare il comportamento al limite quando l’estremo tende ad infinito.
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
50
QUESITO 10 In una stazione ferroviaria, fra le 8 e le 10 del mattino arrivano in media ogni 20 minu
Determina la probabilità che in 20 minuti :
a) non arrivi nessun treno
b) ne arrivi uno solo
c) al massimo ne arrivino 4
Sappiamo che in media ogni 20 minuti arrivano 2 treni, quindi la media è λ=2. Per la risoluzione
del problema possiamo applicare in tutti e tre casi la distribuzione
di probabilità di Poisson secondo cui la probabilità che l’evento si verifichi è data dalla relazione:
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
51
INDICAZIONI NAZIONALI
LINEE GENERALI E COMPETENZE
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
52
INDICAZIONI NAZIONALI
LINEE GENERALI E COMPETENZE
Al termine del percorso del liceo scientifico lo studente conoscerà i concetti e i metodi elementari
della matematica, sia interni alla disciplina in sé considerata,
sia rilevanti per la descrizione e la previsione di fenomeni, in particolare del mondo fisico.
Egli saprà inquadrare le varie teorie matematiche studiate
nel contesto storico entro cui si sono sviluppate e ne comprenderà il significato concettuale.
Lo studente avrà acquisito una visione storico-critica dei rapporti tra le tematiche principali
del pensiero matematico e il contesto filosofico, scientifico e tecnologico.
In particolare, avrà acquisito il senso e la portata dei tre principali momenti che caratterizzano
la formazionedel pensiero matematico:
la matematica nella civiltà greca, il calcolo infinitesimale che nasce
con la rivoluzione scientifica del Seicento e che porta alla matematizzazione del mondo fisico,
la svolta che prende le mosse dal razionalismo illuministico e che conduce alla formazione della
matematica moderna e a un nuovo processo di matematizzazione che investe nuovi campi
(tecnologia, scienze sociali, economiche, biologiche)
e che ha cambiato il volto della conoscenza scientifica.
Di qui i gruppi di concetti e metodi che saranno obiettivo dello studio
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
53
1) gli elementi della geometria euclidea del piano e dello spazio entro cui prendono forma
i procedimenti caratteristici del pensiero matematico
(definizioni, dimostrazioni, generalizzazioni, assiomatizzazioni);
2) gli elementi del calcolo algebrico, gli elementi della geometria analitica cartesiana,
una buona conoscenza delle funzioni elementari dell’analisi,
le nozioni elementari del calcolo differenziale e integrale;
3) gli strumenti matematici di base per lo studio dei fenomeni fisici,
con particolare riguardo al calcolo vettoriale e alle equazioni differenziali,
in particolare l’equazione di Newton e le sue applicazioni elementari;
4) la conoscenza elementare di alcuni sviluppi della matematica moderna,
in particolare degli elementi del calcolo delle probabilità e dell’analisi statistica;
5) il concetto di modello matematico e un’idea chiara della differenza tra la visione
della matematizzazione caratteristica della fisica classica
(corrispondenza univoca tra matematica e natura) e quello della modellistica
(possibilità di rappresentare la stessa classe di fenomeni mediante differenti approcci);
6) costruzione e analisi di semplici modelli matematici di classi di fenomeni,
anche utilizzando strumenti informatici per la descrizione e il calcolo;
7) una chiara visione delle caratteristiche dell’approccio assiomatico nella sua forma moderna
e delle sue specificità rispetto all’approccio assiomatico della geometria euclidea classica;
8) una conoscenza del principio di induzione matematica e la capacità di saperlo applicare,
avendo inoltre un’idea chiara del significato filosofico di questo principio
(“invarianza delle leggi del pensiero”), della sua diversità con l’induzione fisica
(“invarianza delle leggi dei fenomeni”)
e di come esso costituisca un esempio elementare
Marcello PEDONE. Simulazioni di prove di
27/04/2015
54
del carattere non strettamente deduttivo delmatematica
ragionamento matematico.
Questa articolazione di temi e di approcci costituirà la base per istituire collegamenti e confronti
concettuali e di metodo con altre discipline come
la fisica, le scienze naturali e sociali, la filosofia e la storia.
Al termine del percorso didattico lo studente avrà approfondito i procedimenti caratteristici
del pensiero matematico (definizioni, dimostrazioni, generalizzazioni, formalizzazioni),
conoscerà le metodologie di base per la costruzione di un modello matematico di un insieme
di fenomeni, saprà applicare quanto appreso per la soluzione di problemi,
anche utilizzando strumenti informatici di rappresentazione geometrica e di calcolo.
Tali capacità operative saranno particolarmente accentuate nel percorso del liceo scientifico,
con particolare riguardo per quel che riguarda la conoscenza del calcolo infinitesimale
e dei metodi probabilistici di base.
Gli strumenti informatici oggi disponibili offrono contesti idonei per rappresentare e manipolare
oggetti matematici. L'insegnamento della matematica offre numerose occasioni per acquisire
familiarità con tali strumenti e per comprenderne il valore metodologico.
Il percorso, quando ciò si rivelerà opportuno, favorirà l’uso di questi strumenti,
anche in vista del loro uso per il trattamento dei dati nelle altre discipline scientifiche.
L’uso degli strumenti informatici è una risorsa importante che sarà introdotta in modo critico,
senza creare l’illusione che essa sia un mezzo automatico di risoluzione di problemi e senza
compromettere la necessaria acquisizione di capacità di calcolo mentale.
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
55
L’ampio spettro dei contenuti che saranno affrontati dallo studente richiederà che
l’insegnante sia consapevole della necessità di un buon impiego del tempo disponibile
Ferma restando l’importanza dell’acquisizione delle tecniche,
verranno evitate dispersioni in tecnicismi ripetitivi o casistiche sterili che
non contribuiscono in modo significativo alla comprensione dei problemi.
L'approfondimento degli aspetti tecnici, sebbene maggiore nel liceo scientifico
che in altri licei, non perderà mai di vista l’obiettivo della comprensione in profondità
degli aspetti concettuali della disciplina.
L’indicazione principale è:
pochi concetti e metodi fondamentali, acquisiti in profondità.
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
56
INDICAZIONI NAZIONALI
Quinto anno liceo scientifico
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
57
QUINTO ANNO
Nell’anno finale lo studente approfondirà la comprensione del metodo assiomatico
e la sua utilità concettuale e metodologica anche dal punto di vista della modellizzazione
matematica. Gli esempi verranno tratti dal contesto dell’aritmetica, della geometria euclidea
o della probabilità ma è lasciata alla scelta dell’insegnante la decisione di quale settore
disciplinare privilegiare allo scopo.
Geometria
L'introduzione delle coordinate cartesiane nello spazio
permetterà allo studente di studiare dal punto di vista analitico rette, piani e sfere.
Dati e previsioni
Lo studente apprenderà le caratteristiche di alcune distribuzioni discrete e continue
di probabilità
(come la distribuzione binomiale, la distribuzione normale, la distribuzione di Poisson).
In relazione con le nuove conoscenze acquisite,
anche nell’ambito delle relazioni della matematica con altre discipline,
lo studente approfondirà il concetto di modello matematico e svilupperà la capacità
di costruirne e analizzarne esempi.
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
58
Relazioni e funzioni
Lo studente proseguirà lo studio delle funzioni fondamentali dell’analisi anche attraverso
esempi tratti dalla fisica o da altre discipline.
Acquisirà il concetto di limite di una successione e di una funzione
e apprenderà a calcolare i limiti in casi semplici.
Lo studente acquisirà i principali concetti del calcolo infinitesimale
– in particolare la continuità, la derivabilità e l’integrabilità –
anche in relazione con le problematiche in cui sono nati
(velocità istantanea in meccanica, tangente di una curva, calcolo di aree e volumi).
Non sarà richiesto un particolare addestramento alle tecniche del calcolo,
che si limiterà alla capacità di derivare le funzioni già note,
semplici prodotti, quozienti e composizioni di funzioni, le funzioni razionali
e alla capacità di integrare funzioni polinomiali intere e altre funzioni elementari,
nonché a determinare aree e volumi in casi semplici.
Altro importante tema di studio sarà il concetto di equazione differenziale,
cosa si intenda con le sue soluzioni e le loro principali proprietà,
nonché alcuni esempi importanti e significativi di equazioni differenziali,
con particolare riguardo per l’equazione della dinamica di Newton.
Si tratterà soprattutto di comprendere il ruolo del calcolo infinitesimale in quanto strumento
concettuale fondamentale nella descrizione e nella modellizzazione di fenomeni fisici
o di altra natura. Inoltre, lo studente acquisirà familiarità con l’idea generale di ottimizzazione
e con le sue applicazioni in numerosi ambiti.
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
59
27/04/2015
Marcello PEDONE. Simulazioni di prove di
matematica
60