Dispensa Indoor Air Quality - Università degli Studi di Firenze

Transcript

Dispensa Indoor Air Quality - Università degli Studi di Firenze
“LA QUALITA’ DELL’ARIA NEGLI AMBIENTI INDOOR”
INQUINAMENTO DELL’ARIA INDOOR
Le principali sostanze contaminanti dell’aria indoor, suddividendole in tre gruppi:
ƒ inquinanti di natura fisica: radon, fibre minerali artificiali, asbesto e campi
elettromagnetici non ionizzanti;
ƒ inquinanti di natura biologica: virus e batteri, funghi e muffe, pollini, acari e bacilli;
ƒ inquinanti di natura chimica: suddivisi al loro interno nel gruppo dei contaminanti
organici (V.O.C.: Volatile Organic Compounds) e dei contaminanti inorganici, fra cui
biossido e monossido di carbonio, biossido di zolfo e di azoto, ozono, etc.
INQUINAMENTO DI NATURA FISICA
Radon - Il Radon è un gas che trae origine dal decadimento di radionuclidi Torio232 ed
Uranio238,. Le due forme principali di radon sono:
-
il radon222: il più diffuso, che si origina dall’Uranio238 attraverso il suo discendente
Radio226, presente quest’ultimo nel suolo, nell’acqua ed in alcuni materiali da
costruzione;
-
il radon220: si origina dal Torio232.
Media dose annua effettiva di assunzione di radiazioni ionizzanti della
popolazione
Alimentazione
8%
Tschernobyl
1%
Radiazioni cosmiche
8%
Radiazioni terrestri
10%
Medicina
38%
Vie respiratorie
36%
Il radon, in virtù della sua inerzia chimica può muoversi attraverso il reticolo cristallino dei
solidi in cui si trova (rocce, terreno) e migrare per raggiungere un poro; a questo punto
interviene un processo di trasporto macroscopico sia per diffusione molecolare che per
flusso convettivo ed il radon raggiunge la superficie.
La fonte principale risulta essere il terreno e le rocce sottostanti l’edificio, dai quali il radon
letteralmente migra negli ambienti indoor sia per diffusione che spinto dal differenziale
pressorio che si instaura fra il suolo e l’ambiente di vita. In alcuni casi, comunque sono
state rilevate elevate concentrazioni dovute a particolari materiali da costruzione (contenenti
elevate dosi di Ra226) utilizzati negli ambienti .
L’UNSCEAR ( United Nation Scientific Committee on the Effects of Atomic Radiations) ha
stimato il contributo medio di Rn delle principali sorgenti per una tipica abitazione
3
monofamiliare in cui sia stata rilevata una concentrazione di 50 Bq/m al piano terra: suolo =
60%, materiali da costruzione = 20% e aria esterna = 20%; mentre in edifici multipiano con
3
concentrazioni tipiche di 20 Bq/m si stima che i contributi siano così distribuiti: suolo = ∼
0%, materiali da costruzione = 50% e aria esterna = 50%.
Il radon proveniente dal suolo può infiltrarsi nei locali cantinati o nelle stanza poste al piano
terreno in edifici su vespaio seguendo strade diverse:
-
attraverso le solette in calcestruzzo;
-
attraverso fessurazioni e crepe nelle murature di fondazione;
-
attraversando i punti di ingresso delle condutture di acqua, gas, scarichi, ecc.
Fattori determinanti per l’accumulo di radon nelle abitazioni sono il clima, la tipologia
costruttiva, il valore dei
tassi si ventilazione (adottati nell’ottica di strategie gestionali
energeticamente consapevoli).
Una volta penetrato nell’edificio, il radon-222 decade con emissione di particelle α (alfa),
con un periodo di dimezzamento pari a 3,8 giorni, in prodotti radioattivi con rispettivi periodi
di dimezzamento inferiori a quelli de progenitore. I prodotti del decadimento del radon,
altresì chiamati figli (radon daughters) sono: Polonio218; Piombo214; Bismuto214 e Polonio214;
essi hanno emivite inferiori a 30 minuti e sono chimicamente attivi: è pertanto possibile che
attaccandosi alle particelle di polvere formino un aerosol radioattivo.
La radiotossicità del radon è inferiore a quella dei radionuclidi gassosi originatisi dal suo
decadimento, i quali a causa del loro breve periodo radioattivo tendono a fissarsi alle
mucose dell’apparato respiratorio (all’altezza dell’epitelio bronchiale) bombardandolo di
particelle a. Tali
particelle, caratterizzate da un’alta efficacia biologica, in particolare
emesse da Polonio218 e dal Polonio214 impartiscono al tessuti polmonare la dose più
significativa dal punto di vista radiologico.
238
Uranio
Catena di decadimento del Catena del decadimento radioattivo del
232
Torio. Sotto il simbolo di ogni isotopo è indicato il suo tempo di dimezzamento.
e del
Fibre Minerali Artificiali - Le fibre minerali artificiali spesso definite come man-made
mineral fibres (MMMF) sono silicati amorfi classificabili in funzione del materiale di partenza:
lana di roccia, lana di vetro o filati di vetro. Esse sono generalmente additivate con un
legante ed un olio per la riduzione di polveri e per migliorarne la manipolazione. Una
caratteristica delle fibre di vetro consiste nell’impossibilità di separarsi longitudinalmente
dando origine a fibrille di diametro inferiore che possono divenire inalabili. Di conseguenza, i
diametri delle fibre a cui possono essere esposti i lavoratori ed in generale che entra in
contatto con manufatti di MMMF, dipende solo dalla distribuzione dimensionale dei diametri
alla produzione. Sono buoni isolanti termici ed acustici e come tali sono spesso utilizzati sia
nell’edificio, sia nell’impianto di climatizzazione. Questa seconda applicazione, in particolare,
è quella che ha creato i maggiori problemi in quanto materassini fibrosi installati fino a
qualche tempo fa all’interno delle condotte per migliorarne le prestazioni hanno perduto la
loro coesione iniziale e si è verificato il distacco delle fibre disperse in ambiente.
In particolare si segnalano le seguenti tipologie di prodotti fibrosi:
-
feltro: costituito da fibre trattate con resine termoindurenti, può essere nudo o incollato
su supporti (es. carta catramata, polipropilene metallizzato, etc);
-
feltro trapuntato: costituito da fibre apprettate con olio minerale e fissate per
trapuntatura a vari tipi di supporto (es. rete metallica);
-
pannello: costituito da fibre trattate con resine termoindurenti, nudo o incollato su uno o
due lati a supporti del tipo di quelli utilizzati per il feltro; la rigidezza del pannello dipende
dalla densità apparente del manufatto e dalla percentuale di resina adottata.
Asbesto - Con il termine asbesto
si designa una serie di varietà fibrose di silicati
caratterizzati della proprietà di separarsi in fibre estremamente sottili. Le fibre sono
caratterizzate da una estrema flessibilità e sono estremamente resistenti agli agenti fisici e
chimici. I minerali asbestiformi di interesse tecnico sono: crisotilo (asbesto bianco), un
silicato di Mg del gruppo dei serpentini, la crocidolite (asbesto blu), e l’amosite appartenenti
entrambi al gruppo degli anfiboli.
Principali caratteristiche dell’amianto:
-
bassa conducibilità termica
-
elevata resistenza agli agenti chimici
-
elevata resistenza delle fibre alla trazione
-
buona flessibilità (migliore per il crisotilo)
-
marcata tendenza a fratturarsi lungo piani longitudinali
-
aerodinamicità delle fibre con bassa velocità di sedimentazione
-
elevato rapporto superficie/volume delle fibre
Il grande numero di fonti di inquinamento dell’amianto ne rende estremamente complesso il
controllo, che deve comunque essere intrapreso data la pericolosità del materiale. L’amianto
è difatti un comprovato cancerogeno, la cui concentrazione nell’aria ambiente varia in
funzione della tipologia di ambiente.
Radiazioni non ionizzanti - Il termine radiazioni non ionizzanti1 indica tutte le forme di
radiazione elettromagnetica il cui primario meccanismo di azione con la materia non è
quello della ionizzazione. In generale fanno parte delle radiazioni non ionizzanti:
-
campi elettromagnetici a radiofrequenze e microonde;
-
radiazione infrarossa;
-
radiazione visibile;
-
radiazione ultravioletta;
-
ultrasuoni.
Ai fini del controllo dell’inquinamento di ambienti indoor vengono considerate i campi
elettromagnetici a radiofrequenze e microonde.
Con il termine “radiofrequenze” si
intendono le onde elettromagnetiche di frequenza compresa fra 100 kHz e 300 MHz ,
mentre con il termine “microonde” si comprende il campo di frequenze superiore da 300
MHz a 300 GHz.
Svariate sono le sorgenti di campi elettromagnetici con cui si ha a che fare quasi
quotidianamente in ambiente di vita e di lavoro:
1
Le radiazioni non ionizzanti sono spesso indicate con l’acronimo del termine corrispondente anglosassone NIR : Non
Ioniziong Radiation
macchine per il riscaldamento industriale: per quanto riguarda il riscaldamento a microonde
di uso domestico gli apparecchi lavorano generalmente alla frequenza di 2450 MHz con
potenze che variano da 500 W e 2,5 kW. I campi emessi da questi apparati sono dovuti a
cattivo funzionamento o deterioramento del sistema di schermaggio delle aperture. Una
2
norma accettata internazionalmente pone a 10W/m il massimi valore di densità di potenza
emessa da un forno nuovo, alla distanza di 5 cm dalla sua superficie esterna;
apparati per telecomunicazioni: lo spettro di frequenza occupata dagli apparati a diffusione
va da 500 kHZ fino a 1 GHZ con potenze comprese fra alcuni kW e centinaia di kW. I campi
elettromagnetici emessi da questi apparati possono creare problemi di sicurezza solo agli
operatori che lavorano a stretto contatto con l’antenna;
applicazioni biomedicali: sono essenzialmente di tipo terapeutico. Le applicazioni più diffuse
sono la marconiterapia e la radarterapia.
CONTAMINANTI DI NATURA BIOLOGICA
Poichè come è stato sottolineato la vita moderna si svolge principalmente in ambienti chiusi,
accanto a parametri di natura microclimatica assumono rilevanza non trascurabile i
contaminanti di natura microbiologica. I contaminanti biologici individuati negli ambienti
indoor si possono catalogare in cinque gruppi principali, come risulta dalla Tabella 1.6.
Le particelle organiche aerodisperse definite bioaerosol possono essere classificate in
gruppi in base alla loro fonte principale:
-
sistema costruttivo, arredo e impianti;
-
esterno;
-
abitanti (uomo/animali).
Per quanto concerne nel dettaglio la contaminazione fungina degli ambienti indoor risulta
interessante confrontare le concentrazioni in UFC/m3 (unità formanti colonie per metrocubo
di aria ambiente) di alcune specie fungine sia nell’aria indoor che in quella outdoor.
PRINCIPALI INQUINANTI DI NATURA BIOLOGICA
INQUINANTI
BIOLOGICI
PRINCIPALI CARATTERISTICHE
VIRUS E
BATTERI
I batteri, come i virus, possono esercitare un’azione patogena sull’uomo. I
batteri che si annidano negli impianti di condizionamento possono liberare
(*)
endotossine solubili in acqua che si disperdono all’interno dell’edificio e la
cui inalazione può provocare febbre, dolori muscolari, mal di testa, sudori.
FUNGHI E
MUFFE
POLLINI
ACARI
BACILLI
Funghi e muffe producono spore che danno loro la possibilità di moltiplicarsi
su substrati piuttosto eterogenei (muri umidi, materiale organico, ecc.) fino a
depositarsi all’interno di condizionatori d’aria ed umidificatori. Possono
produrre micotossine con seri effetti sulla salute, benchè sia necessario un
forte sviluppo fungino per raggiungere una concentrazione tale da renderne
pericolosa la presenza.
I granuli pollinici (5<d<100m), che possono provenire sia da fonti indoor che
esterne, si depositano su vestiti o sul pelo di animali ricadendo sul pavimento
e quindi su altre superfici. Potendosi quindi disporre ubiquitariamente in
ambiente, producono fastidiose stati di disagio in particolare in soggetti
colpiti da reazioni allergiche.
Gli acari(**), imputabili di malattie sia sull’uomo che su animali domestici
(acariasi), hanno il loro habitat in materassi, lenzuola, tappeti sporchi e mobili
imbottiti molto deteriorati dall’uso. Essi producono allergeni che vengono
dispersi nell’aria con la polvere
I b. termofili (come la Legionella Pneumophila), che vivono a temperature
comprese fra 60 e 70°C, sono agenti patogeni microscopici che entrano
nell’edificio attraverso il sistema impiantistico di acqua potabile e proliferano
in umidificatori, scaldabagni, torri di raffreddamento, ecc.
note:
(*) Le endotossine sono sostanze velenose provenienti dal disfacimento dei microbi morti
-1
(**) Gli acari sono artropodi della classe aracnidi con dimensioni che vanno da 10 mm ad 1
cm
Particolare rilevanza riveste una categoria di batteri di cui fa parte la Legionella
Pneumophila, batterio ubiquitario nelle acque naturali, dalla quali non viene generalmente
eliminata dai trattamenti routinari di disinfezione. Raggiunge l’edificio attraverso la rete di
acqua potabile, e può provocare disturbi ed infezioni (famosa la Malattia del Legionario del
‘76 a Filadelfia) se raggiunge e prolifera nelle sezioni d umidificazione dell’impianto HVAC,
da cui viene distribuita negli ambienti serviti. La sua temperatura di crescita ottimale in
laboratorio è pari a 36°C e prolifera in un intervallo di temperatura compreso fra 20°C e
45°C, non sopravvive a temperature superiori a 60°C.
INQUINANTI DI NATURA CHIMICA
Gli inquinanti inorganici cui è dedicato questo paragrafo sono: anidride carbonica,
monossido di carbonio, biossido di azoto, anidride solforosa e ozono. Per ciascun
inquinante la tabella che segue indica: natura fisico-chimica, le principali fonti, valori di
concentrazione rintracciati in letteratura, il rapporto di concentrazione Indoor/Outdoor e i
principali effetti sulla salute.
L’anidride carbonica, in particolare è un buon indicatore di bioeffluenti umani.
Composti Organici Volatili - I composti organici volatili (VOC : Volatile Organic
Compounds) sono presenti in ambiente indoor prevalentemente in fase di vapore e
costituiscono un’ampia classe di sostanze di varia reattività e con caratteristiche chimicofisiche diverse. Le loro principali sorgenti sono gli apparecchi a gas, vernici, colle, adesivi,
solventi, materiali per la pulizia della casa, prodotti antiparassitari, nochè molti materiali da
costruzione ed arredo utilizzati in abitazioni, uffici, mezzi di trasporto.
La concentrazione di un composto organico volatile in ambiente dipende da numerosi fattori,
fra cui di importanza fondamentale risulta lo stato fisico delle fonti che li emettono: solidi e
liquidi a fronte di un tasso di emissione più lento di un composto in fase gassosa
possiedono una maggiore persistenza di emissione.
Numerosi sono i fattori che influenzano l’emissione di VOC :
-
contenuto di sostanza vaporizzabile che costituisce la sorgente;
-
distribuzione di detta sostanza fra superficie ed interno della sorgente;
-
tipo di finitura superficiale;
-
età della sorgente;
-
fattori microclimatici: temperatura, umidità relativa, numero di ricambi d’aria
COMPOSTI VOLATILI ORGANICI PIÙ COMUNI
CLASSI DI
COMPOSTI
IDROCARBURI
ALIFATICI
IDROCARBURI
ALOGENATI
IDROCARBURI
AROMATICI
ALCOLI
ALDEIDI
PRINCIPALI
SOSTANZE
propano
butano
esano
limonene
cloroformio
metilico
cloruro
di
metilene
pentaclorofenolo
benzene
toluene
xilene
etanolo
metanolo
formaldeide
acetaldeide
PRINCIPALE FONTE INDOOR
combustibili, detersivi, propellenti ad
refrigeranti, basi di profumi, aromatizzanti
propellenti
sgrassatori
ad
aerosol,
pesticidi,
aerosol,
refrigeranti,
vernici, pitture, colle, smalti, lacche, detersivi
detersivi per finestre, vernici, diluenti, adesivi,
cosmetici
funghicidi, isolanti, germicidi, resine, disinfettanti,
aromatizzanti,
La formaldeide, una delle sostanze maggiormente diffuse, è un composto organico in fase
di vapore altamente solubile in acqua con la quale si diluisce sia su legno sia su altre
superfici igroscopiche da cui volatilizza anche dopo lunghi periodi di apparente inattività. La
formaldeide è largamente utilizzata per la fabbricazione di resine adesive, le cosiddette
resine urea-formaldeide, che presentano un duplice impiego:
−
come collante per la produzione di compensato e pannelli di truciolato;
−
sotto forma di schiuma con funzioni di coibente termico, creando un eccellente stato
isolante e con una buona resistenza al fuoco;
−
nella produzione di una vasta serie di articoli per uso professionale e domestico.
Per quanto concerne i fattori che influenzano l’emissione di formaldeide si ricordano i
seguenti:
-
qualità della resina impiegata : tale parametro influisce sia dal punto di vista del tasso di
rilascio una volta assorbita, sia perchè il meccanismo di degrado del polimero può venire
innescato e favorito dalla presenza di impurezze;
-
umidità relativa dell’ambiente : da indagini condotte da ricercatori Olandesi è emerso
come campioni di lana di vetro (o di roccia) irrigidite con resine a base di formaldeide in
ambienti con elevati tassi di UR emettevano quantità di aldeidi in misura maggiore di altri
in ambienti con UR minore;
-
installazione di elementi : è ragionevole pensare che misure tendenti a minimizzare la
formazione di condensa in strutture pronte ad accogliere elementi a base di formaldeide
riduca certamente il tasso di emissione della stessa una volta installata;
-
temperatura ambiente : l’emissione di formaldeide varia quasi con legge iperbolica con
il variare della temperatura ambiente;
-
età del prodotto : le indagini statunitensi condotte prevalentemente su mobil homes, ma
il cui principio è sicuramente applicabile anche ad altri prodotti, hanno dimostrato che a
fronte di una elevata emissione iniziale causata anche dal non perfetto essiccamento del
prodotto, l’emissione diminuisce fino a stabilizzarsi per certi tipi di prodotti od ad esaurirsi
per altri.
Il pentaclorofenolo, indicato spesso con PCP, è uno dei composti più usati nella
preservazione del legno. Esso presenta un lungo periodo di permanenza nel substrato
ligneo, mostrando al contrario segni di degrado una volta esposto alla luce solare; inoltre le
sue formulazioni commerciali contengono tracce di diossina, a sua volta estremamente
tossica. La tabella 1.15 presenta una sintesi delle caratteristiche di questo composto.
Infine, il fumo di tabacco ambientale, indicato con la sigla ETS (Environmental Tobacco
Smoke) è una complessa miscela di inquinanti la cui fonte primaria è il fumo da sigaretta.
Fra gli altri composti individuati si segnalano per pericolosità e concentrazioni rilevate in
ambiente : monossido di carbonio, nicotina, ossidi nitrosi, benzo-a-pirene, acroleina.
CONSIDERAZIONI
CIRCA
GLI
EFFETTI
SULLA
SALUTE
DELL’INQUINAMENTO INDOOR
L'impatto sull'uomo degli inquinanti indoor può essere causa di una vasta gamma di effetti
indesiderati che vanno dal disagio, avvertito a livello sensoriale, fino a gravi affezioni dello
stato di salute. Al fine di caratterizzare il rapporto causa-effetto che si instaura fra
esposizione ad una categoria di inquinanti (od un singolo inquinante) ed effetti sanitari sono
state analizzate quelle categorie ritenute di interesse prioritario.
Gli effetti sanitari di seguito analizzati in dettaglio sono stati così classificati:
1 - effetti respiratori: dato che l'apparato respiratorio rappresenta la principale via di
ingresso dei contaminanti in fase di gas e/o vapore risulta fondamentale indagare i possibili
effetti dannosi a suo carico. Tali effetti si possono classificare in acuti e cronici. I principali
effetti acuti sono rintracciabili nell'asma e nelle malattie respiratorie di tipo infettivo;
2 - effetti genotossici: sono definiti genotossici quegli agenti in grado di provocare
alterazioni
alla struttura dell'acido nucleico (DNA) responsabile della caratterizzazione
genetica delle cellule. Le mutazioni degli acidi nucleici se permanenti e compatibili con la
vita e la riproduzione cellulare, possono provocare (nel caso siano colpite le cellule
somatiche) l'insorgenza di tumori o alterazioni genetiche della progenie (nel caso siano
colpite cellule germinali). Alcuni inquinanti degli ambienti indoor sono provati cancerogeni
per l'uomo, e dal momento che la principale via di ingresso risulta essere quella respiratoria,
essi espletano un effetto genotossico prevalentemente sui polmoni;
3 - effetti irritativi su cute e mucose: tra le affezioni cutanee da esposizione ambientale
rivestono un ruolo importante le alterazioni cutanee o delle mucose derivanti da effetti
irritativi. Le manifestazioni di tali irritazioni sono associate a modificazioni biochimiche e
patologiche tissutali e devono essere distinte dai cosiddetti effetti sensoriali, che sono
invece il risultato della stimolazione fisiologica dei ricettori sensoriali specifici;
Le indagini in tale campo sono oltremodo interessanti e non devono essere tralasciate
poichè, com'è noto, l'irritazione costituisce assieme agli effetti di natura sensoriale, che
verranno di seguito analizzati, uno dei sintomi piú importanti rilevati nella Sick Building
Syndrome (SBS);
4 - effetti sensoriali: gli effetti sensoriali possono essere definiti come sensazioni soggettive
conseguenti a stimoli di carattere ambientale che cadono all'interno del normale ambito di
operatività dei nostri sensi, e conseguenti ad esposizioni che non provocano effetti di tipo
permanente sui sensi stessi. A sollecitazioni ambientali rispondono non soltanto vista, udito,
tatto ed olfatto ma anche ricettori meno specifici situati nella pelle e nelle mucose di occhi e
bocca, grazie ai quali l'uomo è in grado di percepire i diversi segnali, che provengono
dall'ambiente indoor in cui si trova, e di darne una valutazione integrata con un giudizio
finale di cattiva o buona qualità dell'aria e di conseguenza di stato di comfort o di disagio.
L'Organizzazione Mondiale della Sanità (OMS) ha stimato che gli effetti sensoriali primari e
secondari di cui è stato trattato sono rilevabili in almeno il 30% dei soggetti che risiedono in
edifici di nuova costruzione, in particolare tali effetti si acutizzano e si moltiplicano se i
soggetti risiedono in ambienti sigillati e dotati di ventilazione/climatizzazione. Poichè l'odore
e l'irritazione sensoriale sono percezioni squisitamente soggettive, l'unico strumento di
misura risulta essere l'uomo; in alternativa sono utilizzati alcuni indicatori come strumenti di
stima degli effetti di disagio correlati alla qualità dell'aria indoor, quali composti organici
volatili totali (TVOCs) ed anidride carbonica (C02 ).
Un nuovo approccio
nella valutazione globale della qualità dell'aria è stato di recente
introdotto da P.O. Fanger, che ha sviluppato l'idea di utilizzare a pieno l'uomo come metro di
misura, essendo esso naturalmente dotato di uno strumento come l'olfatto in grado di
distinguere se l'aria è fresca o soffocante, accettabile od inaccettabile. Mediante due nuove
unità di misura, olf e decipol si quantificano così sia la capacità inquinante di una sorgente
che l'inquinamento dell'aria percepito. Un olf (dal latino olfactus) è il tasso di sostanze
inquinanti dell'aria (bioeffluenti) emesso da una persona normale, dove per normale si
intende un adulto in posizione sedentaria (in ufficio o simile) in condizioni di benessere
termico e con uno standard igienico equivalente a 0,7 bagni/giorno. Un decipol corrisponde
alla qualità percepita in un ambiente con una fonte concentrata di 1 olf e con una
ventilazione pari a 1 l/s di aria pulita;
5 - effetti sul sistema nervoso: gli effetti di tipo neurotossico esercitati da numerose
sostanze presenti nell'aria indoor sono particolarmente gravi per il fatto che il tessuto
nervoso possiede una limitata capacità di rigenerarsi
e possono quindi causare alterazioni
strutturali permanenti;
6 - Effetti biologici dei campi ELF: negli ultimi decenni però il panorama della ricerca sui
campi ELF appare radicalmente cambiato, registrando un notevole impulso sia per ciò che
riguarda il numero degli studi che per quanto attiene alla loro varietà ed attendibilità. Per ciò
che riguarda gli effetti sull’organismo, un campo elettrico può provocare:
-
percezione della presenza del campo mediante la stimolazione di peli e capelli;
-
formazione di tensioni e correnti variamente distribuite all’interno del corpo;
Il campo magnetico, penetra liberamente nel corpo dando luogo a correnti elettriche
variamente distribuite per effetto di variazioni di flusso di induzione magnetica attraverso
l’organismo stesso. Le evidenze riportate in letteratura comunque suggeriscono la
possibilità d effetti biologici di diverso tipo, fra cui vale la pena sottolineare i risultati di
alcune linee di ricerca di recente sviluppo:
-
effetti genetici;
-
effetti su fertilità, crescita e sviluppo;
-
sistema cardiovascolare;
-
sistema ematologico;
-
effetti sul sistema nervoso;
7 – Effetti dei campi a radiofrequenze e microonde: in generale la popolazione può risultare
esposta a tali intervalli di frequenze, o perchè vive in zone in prossimità di impianti radar o di
telecomunicazioni, o a causa della presenza di apparati per usi domestici (tipici esempi
sono i forni a microonde). Numerosi lavori riportano gli effetti negativi riscontrabili a danno
dell’apparato riproduttivo provocati da esposizioni a microonde di elevata potenza, effetti
che d’altronde possono essere senza dubbio collegati con l’innalzamento della temperatura
dell’organo investito. Per quanto riguarda gli effetti sul sistema cardiovascolare, le principali
disfunzioni citate in letteratura, che riportano risultati di studi epidemiologici su soggetti
professionalmente esposti, risultano essere: bradicardia, diminuzione della pressione
arteriosa nonché ritardata conduzione ventricolare. In ogni caso tali alterazioni non
risultavano limitare la capacità lavorativa dei soggetti esposti;
8 - Sindrome da Edificio Malato: la sindrome da edificio malato, o Sick Building Syndrome
(SBS) è identificabile in una patologia priva di eziologia univocamente determinata, ed è un
indice di riduzione del comfort e dello stato di salute degli occupanti di ambienti
generalmente climatizzati (anche se è stata più raramente osservata anche in edifici ventilati
naturalmente). Un edifico od una parte di esso è considerato malato quando in coloro che vi
soggiornano insorgono patologie che possono essere messe in relazione con l'inalazione di
aria (contaminata) in esso contenuta. La sintomatologia più frequente riferita comprende
irritazioni alle mucose oculari e delle prime vie aeree, irritazioni della cute, tosse secca,
cefalea, senso di costrizione toracica, nausea e malessere generale. L'Organizzazione
Mondiale della Sanità definisce la SBS come una reazione al microclima che colpisce una
considerevole percentuale di occupanti e che spesso non può venir correlata con una
causa evidente quale una eccessiva esposizione ad un singolo agente inquinante od un
difetto specifico nel sistema di ventilazione meccanica. E' difatti opinione comune che la
sindrome sia invece causata da una interazione di fattori che coinvolgono diversi
meccanismi di reazione; non è stato quasi mai identificato un unico fattore cui si possano
imputare le patologie riscontrate. Per questo motivo le patologie sono principalmente di tipo
epidemiologico e basate sulla distribuzione di questionari standardizzati, e sempre in via di
affinamento, distribuiti ai soggetti esposti ed in grado di rilevare, su base statistica, quali
siano gli aspetti sintomatologici piú frequenti. Tali sintomi sono poi messi in relazione alle
fonti piú probabili di contaminazione cercando così di correlarli alle caratteristiche strutturali,
di finitura ed impiantistiche più salienti del sistema edificio-impianto. Il Report n.4
dell’European Concerted Action Indoor Air Quality & its Impact on Man “Sick Building
Syndrome- A practical Guide” identifica quattro gruppi di fattori di rischio associabili alla
sindrome.
FATTORI DI RISCHIO E PARAMETRI DI CONTROLLO LEGATI ALLA S.B.S
FATTORI FISICI:
temperatura dell’aria: compresa fra 20°C e 26°C; attorno ai 24°C è stata osservata
una diminuzione della capacità di concentrazione e di lavoro. La velocità ed intensità
di emissione di molte sostanze volatili è funzione della temperatura
umidità relativa: valori superiori al 70% associati a temperature dell’aria elevate
(<25°C) possono favorire stati di estremo discomfort e favoriscono l’inquinamento di
natura microbiologica. Bassi valori di U.R. (<30%) provocano secchezza delle mucose
oculari e delle prime vie aeree. La velocità ed intensità di emissione di molte sostanze
volatili è funzione anche della umidità relativa.
efficacia della ventilazione: minimi ratei di vent. devono essere garantiti per
percepire l’aria come “pulita e fresca”; la presenza di contaminanti e di bioeffluenti
deve poter essere diluita con aria pulita. Importanti l’efficacia del ricambio e l’efficienza
del sistema filtrante.
illuminazione artificiale: eccessivi valori di illuminamento possono favorire mal di
testa ed irritazioni oculari provocando il cosiddetto stress visivo.
rumore: elevati livelli di rumore ambientale (dB) provocano precoce stanchezza, e
sono fortemente interrelati con la temperatura e l’inquinamento al fine di determinare
stati di discomfort globale.
ioni: si segnala la pericolosità di eccessiva presenza di ioni negativi producenti
eccessivi livelli di ozono, un potente irritante.
Presenza di fibre: la presenza di fibre minerali artificiali (raro l’asbesto) provoca
irritazioni oculari ed alla pelle (fino all’asbestosi); particolare attenzione va riposta
nella manutenzione di controsoffittature coibentate con pannelli in materiale fibroso.
FATTORI CHIMICI: formaldeide; ETS; VOC; CO2 ed altri contaminanti di natura
inorganica; biocidi; odori.
FATTORI BIOLOGICI: in generale gli inquinanti di natura microbiologica: in
particolare quelli che proliferano nel sistema di ventilazione, gli acari e le muffe dovute
ad una eccessiva umidità relativa.
INDAGINE NAZIONALE SULLA RADIOATTIVITÀ NATURALE NELLE
ABITAZIONI
La natura geologica dell’Italia è tale da porre in essere elevati livelli di radon indoor, difatti,
da studi effettuati negli anni ottanta sono emersi punti caldi situati sul territorio in cui
l’elevata concentrazione di radon all’interno degli ambienti di vita era da imputarsi
congiuntamente alla presenza di radon nel terreno sottostante, all’uso di particolari materiali
da costruzione, ed infine alla presenza di falde acquifere e di pozzi artesiani ricchissimi di
radon. L’Agenzia Nazionale per la Protezione dell’Ambiente (ANPA) e l’Istituto Superiore di
Sanità (ISS) hanno promosso nel 1988 unitamente agli Assessorati Regionali alla Sanità
una campagna di misurazioni del radon a livello nazionale finalizzata alla valutazione del
livello medio di radon nazionale e della conseguente esposizione della popolazione. Il
campione rappresentativo scelto di 5.000 abitazioni distribuito su 200 comuni ha fornito un
3
valore medio di radon pari a 77 Bq/m , che risulta essere un livello medio-alto se comparato
3
al livello medio mondiale stimato dall’UNSCEAR di 40 Bq/m (United Nations Scientific
Commitee on the Effects of Atomic Radiations). La misura del livello medio di radon in Italia
dovrebbe essere alla base delle future politiche di gestione del territorio che a livello
centrale dovrebbero essere intraprese a fini protezionistici ed abbassare quindi il livello di
esposizione medio della popolazione indicando con chiarezza livelli di riferimento che
avessero la forma di norme cogenti. La figura che segue, in cui sono riportati i risultati della
campagna, evidenzia come una considerevole percentuale di abitazioni presenti livelli di
3
3
radon superiori a 200 400 Bq/m e 400 Bq/m , valori suggeriti dalla Commissione delle
Comunità Europee rispettivamente per le vecchie e per le nuove abitazioni. Tali percentuali
che si aggirano intorno al 5% e all’1% rapportate al patrimonio edilizio italiano
corrispondono rispettivamente a circa 1 milione e 200.000 abitazioni.
RISULTATI DELLE MISURE DEL RADON
IL CONTROLLO DELLA QUALITA’ AMBIENTALE: PRINCIPALI
STRATEGIE DI BONIFICA AMBIENTALE
Nello studio dei problemi di qualità dell’aria interna, che implica un approccio di tipo globale,
determinante risulta essere l’analisi delle relazioni che intercorrono fra l’ambiente indoor,
l’ambiente esterno ed i sottosistemi che li definiscono.
All’interno della programmazione dell’intervento di bonifica diventa quindi importantissimo il
momento valutativo-decisionale, nel quale si individua e si analizza anche in termini di
costo-efficacia la tecnica di controllo scelta. Le strategie di bonifica si possono suddividere
in due grandi categorie:
-
tecniche che intervengono sulla fonte inquinante;
-
tecniche che intervengono sull’aria ambiente.
Fra le prime si ricordano: la rimozione della fonte, il suo confinamento, l’esalazione
localizzata, il trattamento della fonte (incapsulamento), la modifica d’uso; mentre fra le
seconde: la ventilazione degli ambienti ed il loro condizionamento nonché l’adozione di
appropriate tecniche di filtrazione dell’aria.
Si ricorre alla rimozione quando la nocività della fonte è tale da provocare seri disturbi agli
occupanti; si segnala il caso di prodotti che emettono forti quantità di composti organici
volatili (prodotti per pulizia e manutenzione dell’edificio), dell’asbesto quando le condizioni
del materiale non siano tali da consigliarne il confinamento o l’incapsulamento, ed infine il
fumo ambientale. Inoltre questa tecnica dovrebbe essere considerata prioritariamente nel
caso di sostanze di comprovata o sospetta cancerogenità, quali formalmaldeide, radon, etc.
Il confinamento della fonte si applica quando le caratteristiche costruttive dell’edificio e/o
dell’ambiente consentano di realizzare spazi distributivamente separati da quelli di vita,
riproponendo la ormai comprovata filosofia progettuale della divisione fra spazi principali e
di servizio, utilizzata anche da famosi progettisti del nostro secolo. Anche a costruzione
ultimata, tuttavia si può dover intervenire per separare quelle fonti che possono emettere
sostanze dannose negli ambienti di vita e/o lavoro: locali con apparecchi di combustione,
fotocopiatrici, locali in cui si svolgono lavori di hobbistica, locali ed aree per fumatori,
materiali isolanti contenenti sostanze irritanti e/dannose, quali ad esempio asbesto e fibre
minerali, etc.
L’esalazione e l’aspirazione forzata dell’inquinante vengono applicate generalmente ai
prodotti della combustione, a particolari sostanze volatili presenti in ambiente di lavoro per le
quali si ricorre spesso all’uso di cappa chimica (laboratori di analisi di strutture ospedaliere),
oppure a sostanze gassose anestetiche quali protossido d’azoto e gas alogenati.
L’esalazione ed il confinamento della fonte si possono applicare anche alle emissioni di
radon dal terreno sigillando la soletta e ventilando lo spazio così creatosi al fine di prevenire
l’ingresso del gas nell’edificio.
Per ciò che concerne l’incapsulamento della fonte questo generalmente consiste nella
verniciatura del manufatto o della superficie emittente con prodotti che ne rendano la
superficie impermeabile; si può applicare sia a manufatti che emettono VOC sia a strutture
su cui è stato spruzzato asbesto (previo controllo dello stato di coesione del materiale),
nonché a materiali fibrosi per i quali sia pericoloso il passaggio dell’aria potendo provocare il
rilascio delle fibre.
In generale per l’intero edificio, e per gli impianti tecnici in particolare, è fondamentale
l’adozione di appropriate tecniche manutentive, che limitando l’accumulo di sostanze
inquinanti prevengono l’adozione di tecniche di bonifica spesso difficili da attuare ed
alquanto costose.
Il controllo della contaminazione dell’aria ambiente per diluizione a mezzo della ventilazione,
di recente ha visto lo svilupparsi di nuovi approcci metodologici per la determinazione del
rateo orario in funzione del carico inquinante dell’edificio; parallelamente alla definizione
della quantità di aria da immettere in un locale funzione del carico inquinante desunto da
rilievi sperimentali, si è affiancato, non senza incontrare difficoltà, il metodo di valutazione di
tipo percettivo, che utilizza nuove unità di misura, olf e decipol per la determinazione
rispettivamente del carico inquinante e della qualità dell’aria richiesta.
Complementare alla ventilazione risulta la tecnica della filtrazione dell’aria, per la quale oggi
si assiste ad una applicazione in forma estrema (filtrazione assoluta) in particolare in
ambienti ospedalieri sotto la richiesta di realizzare aree di cura sempre più pure, assimilabili
alle clean room ed ultra clean room concepibili fini a poco tempo fa solo per strutture
farmaceutiche e similari.
Da quanto visto, emerge come la scelta della strategia di bonifica sia condizionata, oltre
che dal fattore puramente economico, dal livello di inquinamento rilevato in ambiente, dalla
tipologia dell’ambiente stesso e dalle implicazioni gestionali che la tecnica prescelta
comporta. Il tema della manutenzione che può a tutti gli effetti essere considerata una
strategia di mitigazione e di controllo dell’inquinamento indoor, è in particolare attualmente
in evoluzione in particolare per quanto concerne la sua applicazione in forma programmata
ai componenti dell’impianto di climatizzazione/ventilazione, quali le condotte aerauliche.
La tabella che segue propone una analisi costo-efficacia, in forma qualitativa, delle principali
tecniche di controllo dell’inquinamento indoor.
ANALISI COSTO-EFFICACIA DELLE PRINCIPALI STRATEGIA DI BONIFICA
AMBIENTALE
STRATEGIA DI
BONIFICA
DESCRIZIONE
EFFICACIA
Sia applica quando
elevata
la nocività della
fonte è intollerabile,
e quando le altre
tecniche
non
offrano
riduzioni
sufficienti
Si realizza creando da media a
Confinamento
(1)
spazi specifici di
elevata
sevizio per diverse
attività
e
sia
realizzando
una
barriera fisica fra
fonte e ambiente di
vita
(2)
realizza
media
Incapsulamento Si
racchiudendo
la
fonte in un involucro
impermeabile alle
emissioni
Realizza
un da media a
Filtrazione
(3)
sufficiente
grado
di
elevata
dell’aria
purezza dell’aria in
funzione
della
destinazione
ambientale
note:
(1) se prevista in fase progettuale
(2) in funzione delle caratteristiche del prodotto
Rimozione
COSTO
INTERVENTO
COSTO
MANUTENZIONE
elevato
trascurabile
da medio a d
elevato
basso
da medio a d
elevato
elevato
da medio a d
elevato
medio
(3) in funzione del tipo di inquinante
ANALISI
IN
DETTAGLIO
DI
ALCUNE
FRA
LE
PRINCIPALI
STRATEGIE DI BONIFICA AMBIENTALE
CONTROLLO DEL RISCHIO DA AMIANTO - La sensibilità creatasi a livello
comunitario sul problema dell’amianto si è concretizzata in quattro direttive
concernenti rispettivamente la protezione dei lavoratori , restrizioni all’immissione sul
mercato ed all’uso di prodotti contenenti amianto nonché la protezione
dell’ambiente. In data 19.09.83 il Consiglio delle Comunità Europee ha emanato
contemporaneamente due direttive su questo problema: Direttiva CEE 83/477 “ sulla
protezione dei lavoratori contro i rischi connessi con un’esposizione all’amianto
durante il lavoro” e Direttiva 83/478 recante la quinta modifica della Direttiva 76/769
riguardante restrizioni alla immissione sul mercato e all’uso di talune sostanze e
preparati pericolosi.
Uno dei capisaldi della direttiva Dir. 83/477 è il concetto di livello di azione. Per ogni attività
che presenti rischio di esposizione a polveri di amianto è necessario valutare se questa è al
di sopra o al di sotto di questo livello prefissato; nel primo caso valgono sono alcune
prescrizioni generali, nel secondo caso interviene sia l’obbligo di notifica , da parte del
datore di lavoro, alle autorità competenti dell’attività in oggetto, sia l’obbligo di verifica
trimestrale dell’esposizione del lavoratore. Un ulteriore elemento importante della Direttiva
citata è la prescrizione del divieto d’uso di amianto applicato a spruzzo e l’obbligo da parte
degli Stati Membri di tenere un registro dei casi accertati di asbestosi e mesotelioma.
Fondamentale risulta inoltre l’istituzione di un piano di lavoro per garantire la sicurezza e la
salute dei lavoratori in caso di lavori di demolizione, ricostruzione o di rimozione di materiali
contenenti amianto.
Contemporaneamente alla direttiva sui lavoratori è stata emanata la Direttiva CEE 83/487
riguardante restrizioni all’uso della crocidolite ed etichettatura di prodotti contenenti amianto.
La Direttiva CEE 85/610 ha inoltre stabilito restrizioni all’immissione sul mercato ed all’uso di
vari prodotti contenenti qualsiasi tipo di amianto, quali: giocattoli, materiali e preparati
destinati ad essere applicati a spruzzo, prodotti finiti sotto forma di polvere (venduti al
dettaglio), articoli per fumatori (pipe per tabacco, bocchini per sigari e per sigarette),
dispositivi di isolamento destinati ad essere incorporati negli apparecchi di riscaldamento
che utilizzano gas liquefatto, pitture e vernici.
Nel 1988 è stato emanato il D.P.R. 215 di recepimento seppure parziale (si limita infatti alla
sola crocidolite) delle predette direttive (83/478 , 85/610); il decreto recepisce anche tutta la
normativa CEE sulla etichettatura dei prodotti contenenti amianto.
L’ultima direttiva sull’amianto è la 87/217 concernente la prevenzione dell’inquinamento
dell’ambiente causato dall’amianto , e riguarda le attività che comportano la lavorazione
annua di almeno 100 kg di amianto grezzo. Con questa direttiva si pone una limitazione alla
3
concentrazione di amianto emesso nell’atmosfera pari a 0,1 mg/m di amianto.
Un altro punto fondamentale di attività della Comunità risulta essere la regolamentazione
dello smaltimento dei rifiuti contenenti amianto; integrando la 78/319/CEE quest’ultima
direttiva citata pone le basi per una cooperazione fra gli Stati Membri affinché sia evitata la
dispersione di fibre, e di perdite liquide che possano contenere fibre, nell’atmosfera durante
il loro trasporto verso le discariche autorizzate, affinché inoltre siano adeguatamente trattati
i prodotti da smaltire.
Alla luce di quanto esposto un recepimento completo ed omogeneo ridurrà fortemente la
circolazione di prodotti contenenti amianto (ad eccezione della crocidolite il cui uso è già a
tutt’oggi vietato) che saranno comunque dotati di etichettatura. Per quanto riguarda la
nuova edificazione non si dovrebbero perciò porre i problemi derivanti dalla presenza di
manufatti contenenti amianto nel caso in cui si dovessero pianificare interventi di
manutenzione o di demolizione.
PRODOTTI CONTENENTI ASBESTO NEGLI EDIFICI
FRIABILI
NON FRIABILI
PRODOTTI
MATERIALI USATI PER SUPERFICI
fibrosi soffici ; granulari cementizi (intonaci acustici)
AVVOLGIMENT MATERIALI EDILIZI
MATERIALI
TESSILI
I ISOLANTI
IN GENERE
PER
coperte tele
isolamenti di tubi pannelli a parete, a
SUPERFICI
, grembiuli
e caldaie
soffitto, a pavimento
conglomerati
; tubi di cemento
Come emerge dalla tabella i materiali contenenti amianto utilizzati in edilizia possono essere
più o meno friabili , i rivestimenti per superfici sono quelli che più frequentemente si
presentano in forma friabile. La presenza di materiali contenenti amianto in un edificio non
comporta di per sé un pericolo per la salute degli occupanti ; se il materiale è in buone
condizionie non viene manomesso è estremamente improbabile che si verifichi un rilascio di
fibre. Nel caso che il materiale venga danneggiato esiste invece un pericolo apprezzabile di
rilascio , pericolo che può essere acutizzato da eventuali vibrazioni dell’edificio , movimenti
di persone o macchine , correnti d’aria , fattori questi che possono causare il distacco delle
fibre legate debolmente al resto del materiale. Questo fenomeno si può verificare anche per
materiali che appaiano in buone condizioni ad una prima ispezione visiva , ma che
costituiscono un potenziale rischio se altamente friabili e quindi caratterizzati da una debole
forza di coesione fra le fibre.
Esistono tre meccanismi fondamentali che si possono applicare al rilascio e conseguente
dispersione di fibre di amianto , sebbene tali principi possano essere in parte applicati
anche a fibre di natura artificiale (MMMF):
-
FALLOUT : distacco dal materiale delle fibre legate più debolmente ; si verifica nelle
normali condizioni di attività. Si tratta di un fenomeno di entità relativamente scarsa ma
costante dovuto alle sollecitazioni cui viene sottoposto il materiale sia per movimenti
dell’aria che per vibrazioni delle strutture. L’entità del rilascio dipende essenzialmente da
due fattori : integrità del materiale re coesione interna ed adesione al substrato ; ambedue
questi fattori possono alterarsi per infiltrazioni d’acqua, per cattiva qualità dell’installazione
e per naturali fenomeni di invecchiamento.
-
IMPATTO : contatto diretto con il materiale che causa dispersione di fibre. Tali contatti
possono essere volontari (quando il materiale è direttamente interessato dagli interventi di
manutenzione o viene danneggiato da atti vandalici) oppure accidentali (nel caso di
manutenzione di attrezzature poste nelle vicinanze del rivestimento). L’entità del rilascio di
fibre che si verifica durante l’impatto dipende sia dalla gravità del danneggiamento , sia
dalle condizioni del materiale stesso (grado di friabilità e forza di coesione ed adesione).
Generalmente l’impatto genera un rilascio di fibre di elevata entità , seppure occasionale e
di breve durata; di estrema importanza è pertanto la frequenza con cui si verificano tali
eventi , funzione quest’ultima del tipo di attività dell’edificio e del grado di accessibilità del
materiale.
-
DISPERSIONE SECONDARIA :
risollevamento in aria di fibre , rilasciate in
conseguenza di fallout e di impatti , causato da attività di pulizia , dal movimento delle
persone e dalla circolazione dell’aria. Le fibre di amianto sospese , per le ottime
caratteristiche aerodinamiche che le contraddistinguono permangono in aria per lungo
tempo e possono determinare anche concentrazioni molto elevate generalmente sempre
proporzionali al livello di attività che si svolge negli ambienti.
Al fine di stabilire la presenza o meno di materiali contenenti amianto in un edificio è
indispensabile organizzare una ispezione accurata dello stesso, raccogliendo tutta la
documentazione disponibile.
Fondamentalmente le tecniche di intervento sono di tre tipi: rimozione, confinamento ed
incapsulamento. Tali tecniche devono essere di volta in volta adattate all’oggetto
dell’intervento: nella pratica generalmente si interviene su tre tipologie di manufatti: le
coperture in cemento amianto, i manufatti in amianto e l’amianto spruzzato.
La rimozione è un intervento di tipo definitivo ed ottimale, si concretizza nell’asportazione
totale dell’amianto dalle superfici su cui lo stesso è stato posizionato (ad. es. copertura in
eternit) o spruzzato.
L’incapsulamento è una forma di intervento efficace a condizione che l’amianto spruzzato
non si presenti deteriorato e che le superfici trattate non siano sottoposte ad azioni
traumatiche (urti, scrostamenti, etc.).
Si concretizza nell’applicazione sulle aree
contaminate da amianto di un prodotto penetrante e ricoprente che inglobi la struttura delle
fibre impedendone la dispersione.
Il confinamento, infine, si attua interponendo una barriera fra la fonte (in generale manufatto
o superficie su cui è stato spruzzato amianto) e l’ambiente; è necessario prevedere una
fase di incapsulamento precedente al confinamento, e una manutenzione programmata
dell’intervento.
Nel caso di coperture in cemento amianto, considerate sorgenti a rischio, pur non
raggiungendo livelli di dispersione di fibre particolarmente elevati, si può procedere si alla
rimozione che all’incapsulamento.
STRATEGIE DI BONIFICA DEL RADON INDOOR - Una strategia globale di
intervento per la bonifica del radon si compone di 6 fasi susseguenti:
-
metodologie di diagnosi del radon indoor;
-
selezione di una strategia di mitigazione;
-
progetto di una strategia di mitigazione;
-
applicazione di una strategia di mitigazione;
-
valutazione dell’efficacia della strategia adottata;
-
eventuali azioni di feed back.
La quantità di gas che entra nella casa dal terreno, dipende da numerosi fattori, quali:
-
contenuto di radio nel suolo e nelle rocce sottostanti (e quindi il livello di radon in essi
contenuto in Bq/kg);
-
numero e dimensione delle aperture fra casa e suolo;
-
differenziale presso rio fra abitazione e suolo ( Pa);
-
rateo di ventilazione nella casa (h );
-
approvvigionamento o meno di acqua potabile da pozzi circostanti (sorgente
-1
secondaria).
Le strategie di bonifica del radon provenienti da fonti naturali possono essere classificate in
due raggruppamenti:
-
metodi che prevengano l’ingresso di radon nell’abitazione;
-
metodi che rimuovano il radon e i suoi prodotti del decadimento una volta entrati
nell’abitazione.
La selezione ed il progetto di una efficace strategia anche in termini di costo-beneficio può
essere operata solo prendendo coscienza dei numerosi fattori che possono influenzare tale
scelta; fra questi i più importanti sono la concentrazione iniziale di radon e le caratteristiche
tecnologiche della costruzione sulla quale si deve esplicare l’azione di bonifica.
In
particolare tale azione di bonifica deriva dall’applicazione di uno o più dei seguenti
metodologia:
a) rimozione della sorgente di radon;
b) eliminare le forze che conducono il gas all’interno, ad es. invertendo il differenziale
pressorio che si è instaurato;
c) eliminare le vie di accesso sfruttate dal gas.
Una volta siano stati individuati elevati livelli di radon indoor si devono necessariamente
individuare le potenziali vie di ingresso del gas; è questa una fase piuttosto delicata perché,
com’è noto,
sono numerosissimi i passaggi che il gas contenuto nel terreno riesce a
sfruttare per penetrare nell’abitazione anche se questa è di recente costruzione ed ha un
ottimo livello realizzato. Le vie potenziali di ingresso del radon includono:
-
aperture nei muri di fondazione;
-
aperture nella soletta di fondazione in calcestruzzo;
-
( in abitazioni con vano cantinato) aperture collocate fra il sottofondo e le zone abitate;
-
( in abitazioni con vano cantinato) perdite nei condotti di ritorno d’aria calda quando la
centrale sia collocata nel vano cantinato;
-
( in abitazioni su soletta in calcestruzzo ) aperture nella soletta nell’intorno di punti di
penetrazione quali tubazioni in genere che necessariamente la attraversino.
Una volta siano stati individuati elevati livelli di radon tale strumento si configura come una
lista di elementi da verificare per individuare gli effettivi punti di ingresso del gas al fine di
poter intervenire efficacemente con una strategia di bonifica mirata.
La struttura dell’edificio gioca un ruolo fondamentale sul tipo e numero delle vie di ingresso
del radon. Al fine di individuare delle categorie di analisi si individuano tre tipologie di
attacco a terra:
-
edificio con vano interrato (cantinato);
-
edificio con vano più basso a livello del terreno;
-
edificio con vano seminterrato (quando la porzione è interrata, su uni o più lati della
casa, di una quota variabile fra 0,30 m ed 1 m).
A parità di altri fattori (contenuto di radio nel terreno, permeabilità del suolo, rateo di
ventilazione all’interno) è proprio la tipologia di attacco a terra l’elemento che influisce
maggiormente sulla concentrazione di radon indoor, cosicché si può ipotizzare che edifici
con un maggior numero di vie di ingresso presentino anche livelli più elevati di radon.
POSSIBILI VIE DI INGRESSO DI RADON IN UN EDIFICO
TIPO
VIE DI INGRESSO
ASSOCIATE
AI
MURI
DI
FONDAZIONE
VIE DI INGRESSO
ASSOCIATE ALLA
SOLETTA
IN
CALCESTRUZZO
VIE DI INGRESSO
ASSOCIATE
A
APPLICABILITÀ
SPECIFICHE
Ogni volta che i muri di - aperture nei muri di fondazione
fondazione costituiscono una
attorno a penetrazioni di forniture di
porzione
della
superficie
servizi (acqua, elettricità, metano,
murale nelle aree abitate,
fognature) od altre aperture nel
incluse:
muro (difetti nei blocchi cavi);
- piano interrato per più di 1 - punti in cui la parete risulta
m;
adiacente al suolo o in cui affiorano
- soletta cls interrata da
porzioni di roccia;
0,30 a 1m;
con muri in blocchi cavi:
- costruzione su soletta con - cavità non sigillate sulla sommità
muri fondali in blocchi cavi
del corso dei blocchi ( parte alta
ed in cui tale muratura si
della parete) oppure introno a vani
estenda ai piani abitati;
finestra e porta;
- porosità sulla superficie dei
blocchi;
- fessurazioni attraverso il blocco o
lungo i giunti di malta;
- con calcestruzzo gettato in opera
fessurazioni
di
assestamento,
oppure dovute alla pressione od
all’imperfezione nella gettata;
Ovunque
il
pavimento - ogni apertura nella soletta in cls a
diretto contatto con il terreno dovuta
dell’edificio consista in una
sia a difetti nell’armatura in legno
soletta gettata a diretto
per la gettata, sia ad operazioni
contatto
con
il
terreno,
sulla soletta in fase costruttiva e mai
includendo abitazioni con:
riparate;
- vano cantinato;
- pompe;
- soletta interrata;
di
drenaggio
che
- soletta a livello del terreno; - canali
- spazio
interrato
attraversano la soletta;
pavimentato con aperture - aperture nella soletta attorno a
penetrazioni di forniture di servizi
verso le aree abitate.
(acqua,
elettricità,
metano,
fognature);
- giunti di dilatazione
- giunti di assestamento della
soletta;
- giunto parete/soletta;
- altre aperture nella soletta: per
passaggio di depositi di acqua;
condotti del riscaldamento che
attraversano
la
soletta;
collegamento con pozzetti; etc.
edifici con vani cantinati che - aperture, giunture nel sottofondo
non
sono
direttamente
fra il vano cantinato e gli ambienti di
VANI CANTINATI collegati con spazi abitati
NON COLLEGATI
CON AREE DI
VITA
vita : penetrazioni di forniture di
servizi (acqua, elettricità, metano,
fognature, etc.),
- con impianto di riscaldamento nel
vano cantinato, fessure attorno alle
tubazioni che possono fungere da
collegamento con i vani abitati.
Un edificio con vano cantinato (totalmente interrato) offre sicuramente una superficie di
contatto con il terreno più ampia rispetto ad
altre tipologie e presenta quindi,
molto
probabilmente, maggiori rischi di ingresso del radon.
Da una siffatta analisi di tipo squisitamente qualitativo emergono due tipologie abitative
totalmente contrapposte per ciò che concerne il rischio del radon e conseguentemente il
rischio sanitario:
• abitazioni con vano cantinato ⇒ tendono ad offrire maggiori rischi per l’ingresso di radon;
• abitazioni con sottofondo provvisto griglie di aerazione aperte ⇒ creando uno spazio con
differenziale pressorio nullo dovrebbero offrire i minori rischi di ingresso di radon.
Una specifica a quanto sopraesposto consiste nel porre in evidenza il tipo di muratura
fondale di cui genericamente si è trattato nella tabella 9.5. In funzione difatti del tipo di
materiale e del metodo di posa in opera dello stesso, si possono ottenete risultati diversi
anche adottando la tessa tipologia costruttiva. Se le pareti sono costituite di calcestruzzo
gettato il gas dal terreno riesce a fluire all’interno attraversando la parete, per effetto del
differenziale pressorio (suolo ∼ parete), soltanto dove questa sia totalmente interrata.
Al contrario con una parete in blocchi cavi il radon ha molte più opportunità di entrate e di
diffondersi dapprima all’interno della struttura verticale stessa e quindi negli ambienti interni,
siano essi cantinati o ambienti di vita. Le aperture nei blocchi, infatti, formano una rete
interconnessa attraverso l’intera parete, tanto che quando il gas sia penetrato ad un livello
interrato esso riesce, seppure esistano barriere fra i piani di tipo orizzontale, a giungere
anche ai piani più alti se il corso più elevato non viene adeguatamente sigillato. La sigillatura
di questo punto risulta perciò fondamentale poichè se non viene perfettamente realizzata
non è in grado di frapporsi come barriera alla risalita del gas che sfrutta la conformazione
dei blocchi come un camino. In modo analogo anche se la muratura di fondazione si trova
abbondantemente al di sopra del livello del terreno, il gas che entra a livello del basamento
(sotto il livello del terreno) può migrare verso le porzioni fuori terra della parete ed elevarsi
fino ad una altezza di 3 m al di sopra del livello del terreno.
In alcuni casi murature di fondazione a blocchi cavi non sigillati alla cima possono
trasportare radon (in edifici privi di vano cantinato: con soletta sul terreno o con vespaio
aerato) anche se i blocchi non si estendono fino alle zone abitate. Difatti in funzione di come
sono configurati rivestimenti murali, il gas può migrare dalle aperture fino all’abitazione
infiltrandosi negli interstizi lasciati fra rivestimenti e tramezzature di tamponatura.
Un’altra via di ingresso non trascurabile che spesso si presenta in combinazione con le
muratura a blocchi cavi, sono strutture a blocco che contengono canne fumarie e camini
della casa. Tali strutture sono generalmente collocate all’interno della muratura perimetrale,
ma possono anche trovare posto all’interno di pareti portanti non perimetrali od anche in
strutture autonome dalla muratura in elevazione.
Queste strutture rivestono una importanza non trascurabile se penetrano nella soletta e
poggiano sul proprio basamento, soluzione tecnica frequente, poiché si possono instaurare
dei veri e propri circuiti di gas dalle fessurazioni della soletta fini alle parti alte dell’edificio.
Pozzi e raccordi di scarico sono esempi di questo tipo di vie di accesso. Alcuni pozzi sono
anche collegati con un anello di condutture perimetrali a porzioni del piano terreno
dell’edificio;
tali condotte possono trovare collocazione all’esterno della struttura
basamentale od anche al suo interno (sempre al di sotto della soletta). Possono essere
definiti circuiti drenanti poiché il loro scopo consiste nel drenare l’acqua che si trova in
prossimità delle fondazioni, acqua che viene convogliata poi nel pozzo da cui è aspirata da
una pompa e condotta in altro serbatoio lontano dall’abitazione oppure direttamente alla
fognatura della casa. Questo sistema di drenaggio può anche aspirare radon dal suolo che
attraverso il pozzo può facilmente raggiungere l’abitazione, cosicché il radon penetra
l’edificio non solo attraverso quelle parti del terreno a diretto contatto del pozzo, ma anche
dal terreno circostante grazie ad un circuito di collegamento alla struttura. Come
conseguenza di quanto detto si rileva che i pozzi sono di frequente la maggiore fonte di
radon quando questi non siano perfettamente sigillati.
Più in generale, ogniqualvolta la soletta basamentale è perforata da tubazioni di varia natura
il gas può portarsi all’interno risalendo attraverso le tubature stesse a meno che queste non
siano provviste di meccanismi di bloccaggio della risalita del gas, quali ad esempio valvole
intercettatrici di flusso.
L’individuazione delle vie di ingresso dal gas risulta perciò spesso difficoltosa da
intraprendere, tuttavia essa costituisce una fase fondamentale della diagnostica finalizzata
all’individuazione di efficaci azioni di bonifica. La progettazione di una strategia di bonifica
difatti non ha alcun senso se non sono stati preventivamente individuati e specificati in
dislocazione ed ampiezza gli ingressi del radon.
PRINCIPALI STRATEGIE DI BONIFICA DEL RADON INDOOR
STRATEGIA
STIMA EFFICACIA
INSTALLAZIONE E CONDUZIONE
Ventilazione tubi drenaggio: Dal 90% al 99% se il Inserire tubo in PVC in circuito attorno
si usa il sistema di tubazioni circuito di drenaggio all’edificio, collegato ad un ventilatore.
per mantenere una leggera è completo
pressione nella zona di
terreno intorno all’edificio,
prevenendo l’ingresso del
gas
Se i tubi sono convogliati in un
pozzetto collegarli con esso e chiudere
il pozzetto.
Costo installazione: può variare molto
se i tubi drenano verso un punto
lontano dall’edificio oppure sono
convogliati in un pozzetto
Costo
conduzione:
elettricità
ventilatore
Inserire tubi in PVC al di sotto della
soletta o orizzontalmente intorno al
muro di fondazione sotto la soletta.
Inserire un ventilatore. L’installazione
può avere un costo variabile (abitaz.
da 2 a 5 milioni) in funzione della
complessità del sistema da installare e
della tipologia edilizia (grado di
finitura). Con permeabilità sotto-soletta
basse i costi possono aumentare. I
costi
di
conduzione
devono
comprendere la quota per l’elettricità,
e quella per il raffreddamento
dell’edificio.
Installare una sorta di camicia a prova
di radon sul solaio/terreno, con
tubazioni fra essa ed il terreno. Si può
anche applicare alle pareti. Collegare
l’ara confinata ricavata con un
ventilatore collegato ad essa.
Il costo è Altamente variabile.
Ventilazione
spazio
sottosoletta: uso di un
ventilatore per creare un
campo di basse pressioni
sotto la soletta
tramite
suzione con tubi inseriti nel
terreno/sottofondo sotto la
soletta.
Dall’80% al 99% con
alte
permeabilità
della
zona
di
intervento.
Confinamento
e/o
Ventilazione Operare un
confinamento dell’ara di
accesso del Rn, costruendo
una barriera che racchiuda
uno spazio da ventilare
(camera
ventilata)
meccanicamente.
Ventilazione passiva del
suolo Uso di sistemi simili a
quelli per la ventilazione
attiva
appoggiandosi
a
fenomeni di origine naturale
(depressurizzaz.
della
copertura in funzione dei
venti
dominanti,
effetto
camino). Si evitano costi di
installazione, conduzione e
mantenimento
del
ventilatore.
Molto
variabile,
sistema
poco
sperimentato,
che
tuttavia si presta
anche
a
ridurre
l’umidità del vano
cantinato.
I dati circa le
prestazioni
del
sistema
sono
attualmente
non
sufficienti a definire
range di efficacia.
Una rete di tubazioni perforate inserita
nella zona sottostante la soletta è
collegata ad un sistema che
garantisca un effetto camino passivo,
che attraversa la casa dal basso fino
al tetto. Dove esiste la rete sottosoletta è moderato e già collegato ad
un pozzetto di raccolta. Se si deve
intervenire sulla soletta per inserire
nuove tubazioni il costo diviene molto
elevato
Ventilazione Meccanica
con/senza recupero di calore
Incrementare
la
movimentazione
dell’aria
esterna
nell’edificio,
operando una diluizione del
Rn indoor utilizzando uno o
più ventilatori (VMC) ed
inserendo un sistema di
recupero del calore
Fino al 90% in
funzione del ricambi
d’aria
instauratosi
nell’edificio (potenza
del ventilatore)
Installazione di ventilatori e condotte
che immettano e distribuiscano in
continuo aria fresca nell’edificio,
oppure ventilatori a finestra nei livelli
più bassi dell’edificio Il costo di
installazione può rilevarsi modesto in
funzione del ventilatore scelto, ma i
costi gestionali in termini energetici
possono essere elevati cumulando il
costo per il riscaldamento a quello per
Ventilazione
Naturale Non qualificabile a
Incrementare
la priori.
Massima
movimentazione
dell’aria l’influenza
degli
esterna nell’edificio
abitanti
Pressurizzazione dell’edificio
Mantenere
le
parti
dell’edificio a contatto con il
suolo ad una pressione
maggiore
rispetto
a
quest’ultimo,
prevenendo
l’ingresso del Rn.
Sigillatura vie ingresso
gas
Sono insufficienti i
dati disponibili sulla
sperimentazione del
metodo a lungo
termina. A breve
termine si possono
raggiungere
riduzioni
fino
al
90%.
del Fino ad un massimo
del 90%, in funzione
dell’importanza delle
vie
di
ingresso,
natura delle vie che
restano libere, ed
efficacia
della
sigillatura.
Pulitura dell’aria Rimozione Fino al 90% della
particelle cui sono attaccati i progenie con un
figli del radon facendo pulitore che lavori in
passare
l’aria
interna continuo. Dal 50% al
attraverso un opportuno 70% in funzione
pulitore d’aria.
della capacità del
ventilatore. Si può
provocare
un
incremento
della
frazione
non
attaccata.
Forte
dipendenza
dal
rateo di ventilazione
della casa.
l’utilizzo del ventilatore/i.
Apertura finestre, porte e griglie di
ventilazione su tutti i lati dell’edificio, in
particolare ai piani più bassi, e con
modalità
da
non
incidere
negativamente sul comfort e sui
consumi energetici. Nella stagione
fredda, in concomitanza con livelli più
elevati
di
Rn,
ventilare
solo
intercapedini e cantine isolando le
tubazioni.
Nessun
costo
di
installazione (al max. costo delle
griglie di ventilazione). Conduzione
influenzata dagli abitanti. Nessun
costo operativo nella stagione mite;
nella stagione fredda i costi per
riscaldamento possono aumenta da un
fattore 1,1 ad un fattore 3 o più.
Incremento dei costi del sistema
HVAC in inverno
Isolare
l’involucro
che
delimita
l’interrato/vespaio, le parti che lo
dividono dagli altri piani e dell’esterno.
Spingere l’aria dai piani superiori
nell’interrato.
Costi variabili in funzione del livello di
tenuta da ottenere. I costi di
conduzione includono: elettricità per il
ventilatore,
riscaldamento
incrementato.
Sigillatura delle maggiori aperture nel
pavimento e nei muri con malta, calce
ed altri sigillanti. Aperture più ampie si
sigillano
con
membrane.
Estremamente variabile. Da modesto
se il lavoro è del tipo do-it-yourself,
può lievitare se si devono installare
membrane.
Nel sistema centrale di ventilazione è
posto un precipitatore elettrostatico od
un filtro ad lata efficienza in modo da
trattare
tutta
l’aria
ricircolata
dell’edificio. Possono anche essere
usati piccoli apparecchi da porre in
zone/stanze
dell’edificio.
Costo
d’installazione di un pulitore d’aria nel
sistema di ventilazione. Il costo relativo
ad unità singole dipende dalla
presenza o meno di condotte da
installare e dalla facilità del montaggio.
I costi di conduzione includono:
elettricità per il ventilatore, e per
l’eventuale precipitatore elettrostatico,
riscaldamento incrementato.
Rimozione
dall’acqua Dal 90 fino al 99%
Rimuovere il gas discioltosi con l’impiego di
nell’acqua di pozzo prima carboni attivi.
che questa venga usata
nell’edificio ed il gas sia
rilasciato.
Installare unità a carbone attivo nella
rete di adduzione dell’acqua dal pozzo,
dopo il regolatore di pressione e
provvisti si schermo per raggi gamma.
Rinnovare il letto di carbone quando
necessario (anni). Il carbone esausto è
un rifiuto radioattivo e come tale deve
essere smaltito. Oppure installare
sistemi di aerazione nella rete di
adduzione acqua, dopo il regolatore di
pressione, al fine di fare esalare il
radon prima che giunga all’edificio.
Quest’ultima tecnica può richiede un
compressore ed una pompa per
ripressurizzare
l’acqua
dopo
il
trattamento. I costi di installazione
includono: intervento di idraulica per
installare le unità al carbone, loro
schermatura ai raggi gamma. I costi di
conduzione per le unità sono nominali
(manutenzione:
controllo
e
reintegrazione del letto a carbone). I
costi di installazione per il sistema di
aerazione della rete di adduzione
include: installazione del sistema
(funzione del tipo). Il costi di
conduzione
comprendono
quelli
elettrici per il compressore e la pompa.
Pretrattamento per eliminare impurità
(ferro e manganese dall’acqua).
ALLEGATO 1 LEGGI E REGOLAMENTI VIGENTI IN MATERIA DI RADON INDOOR
Il problema delle sorgenti di radioattività indoor è stato preso in considerazione nella direttiva
Comunitaria 89/106/CEE relativa ai prodotti da costruzione e nel Documento interpretativo
del requisito essenziale n. 3. L'argomento è stato trattato, nel contesto degli altri inquinanti
convenzionali, come un problema di sanità pubblica. Con la Raccomandazione CEE n.
90/143, "Protezione del pubblico contro l'esposizione al radon", sono stati stabiliti i valori di
riferimento per gli edifici esistenti e per quelli di nuova costruzione. A livello nazionale alcuni
paesi europei, ad esempio la Svezia ed il Regno Unito, hanno già attivato un sistema
normativo in questo campo. Il problema dell’esposizione della popolazione alle radiazioni
naturali, in particolare al radon, è un problema ancora aperto, in fase di definizione in ambito
comunitario, in attesa di una direttiva di indirizzo e di armonizzazione della normativa di tutti i
paesi dell'Unità Europea. Il quadro delineato dalla direttiva 89/106/CEE sui prodotti da
costruzione offre una base normativa che consente di porre in prospettiva la prevenzione
dell'esposizione della popolazione alle sorgenti di radioattività, nel contesto delle varie fonti
di inquinamento indoor. Nell'allegato I della Direttiva vengono riportati i Requisiti essenziali
che i prodotti da costruzione devono soddisfare affinché possano essere ritenuti "idonei alla
realizzazione di opere pronte all'uso, nell’integrità e nelle relative parti, tenendo conto
dell'aspetto economico". Il Requisito 3, "Igiene, salute e ambiente", ha dirette implicazioni
sulla qualità dell'aria interna, in quanto considera lo sviluppo di gas tossici, la presenza
nell'aria o gas pericolosi, l'emissione di radiazioni pericolose, ecc., quali fattori che possono
"compromettere l'igiene o la salute degli occupanti o dei vicini". In merito alla qualità dell'aria
interna, il Documento interpretativo del requisito essenziale n. 3, precisa che l'opera di
costruzione deve offrire un ambiente interno salubre per gli occupanti e utenti dell'edificio
tenendo conto di varie categorie di inquinanti tra cui "radon e sostanze radioattive che
emanano radiazioni gamma". Anche nelle specificazioni tecniche del suddetto documento
vengono prese in considerazione, quali sostanze inquinanti originate dai prodotti da
costruzione, le emissioni radioattive. Nel citato documento si precisa, tra l'altro, che
"nell'elaborare metodi di controllo della qualità dell'aria, ad esempio i sistemi di ventilazione,
occorre tenere conto anche degli inquinanti generati da tutte le fonti". L'aria interna può
essere resa malsana da inquinanti generati "dai materiali da costruzione" e "dal sottosuolo
dell'edificio". Si fa rilevare che il gas presente nel sottosuolo costituisce la più importante
sorgente di radon negli edifici, nei siti ad elevato fondo naturale. Il sistema normativo posto
in essere dalla Direttiva, rende necessaria la definizione di procedure e protocolli di misura
per la certificazione dell'edificio (categoria A. opere di costruzione), dei materiali e manufatti
(categoria B. prodotti da costruzione).
Per quanto riguarda la radioattività in Italia la sperimentazione si trova in fase molto
avanzata, per quanto riguarda le tecniche di misura e per la modellistica del "sistema sito edificio".
In conclusione il sistema normativo, con il DPR n. 246 del 21 aprile 1993, "Regolamento di
attuazione della Direttiva CEE 89/106 relativa ai prodotti da costruzione", fornisce la
strumentazione giuridica di base per dare corso alle attività di prova dei materiali. Il quadro
normativo è ancora in evoluzione almeno per quanto riguarda le procedure di certificazione,
in attesa della definitiva approvazione del disegno di legge "Norme sul sistema di
certificazione" già approvato dalla Commissione del Ministero dell'Industria il 10 Maggio
1995.
Il Senato, con il Disegno di legge 2410, di cui si riporta il testo presentato, ha approntato un
valido strumento per la tutela dalla contaminazione da Radon.
Art. 1.
1.
La presente legge ha lo scopo di tutelare la popolazione contro l'esposizione ai rischi
di inquinamento da radon.
Art. 2.
1. Nell'ambito delle attività di prevenzione, con provvedimenti da emanare entro sei mesi
dalla data di entrata in vigore della presente legge, ciascuna regione:
a)
predispone il completamento o la elaborazione delle carte tematiche delle
emanazioni di radon dal sottosuolo;
b)
emana norme tecniche concernenti l'introduzione di sistemi adeguati al fine di
ridurre qualsiasi esposizione a concentrazioni di radon in ambienti chiusi. A tale
scopo, ciascuna regione fornisce una opportuna informazione alla popolazione.
2. Ai fini del comma 1, lettera a) , i punti delle carte tematiche sono individuati in modo tale
da consentire la verifica della situazione nelle differenti condizioni di litologia, di
copertura, di struttura tettonica, di idrologia e di tipografia.
Art. 3.
1.
2.
3.
4.
1.
1.
Nell'ambito di ciascuna regione, i comuni provvedono alla rilevazione delle
misure di emanazione del radon dal suolo.
In applicazione della Raccomandazione 90/143/EURATOM della
Commissione, del 21 febbraio 1990, per quanto riguarda gli edifici già esistenti, ciascun
comune:
a)
stabilisce un livello di riferimento per l'adozione degli interventi
correttivi;
b)
accerta che il livello di riferimento sia pari ad una dose effettiva
equivalente di 20 mSv annui, la quale può essere considerata equivalente ad una
concentrazione media annua di gas radon di 400 Bq/m3;
c)
stabilisce che l'urgenza degli interventi correttivi sia proporzionale
alla misura in cui tale limite di riferimento viene superato;
d)
provvede, laddove siano ritenuti necessari gli interventi correttivi di
cui alla lettera a) , alla informazione della popolazione interessata sui livelli di radon
ai quali é esposta e sui provvedimenti adottabili per ridurre tali livelli.
In applicazione della raccomandazione di cui al comma 2, per quanto riguarda gli edifici
da costruire, ciascun comune:
a) stabilisce un livello di progettazione a cui far riferimento e adotta disposizioni, norme
e codici di tecniche costruttive per i casi in cui tale livello rischi di essere superato;
c)
stabilisce che il livello di progettazione sia pari a una dose effettiva equivalente di
10 mSv annui, la quale può essere considerata equivalente a una concentrazione
media annua di gas radon di 200 Bq/m3;
d)
provvede affinché le informazioni relative ai probabili livelli di esposizione al
radon e alle misure preventive da adottare siano fornite, in quanto pertinenti, a
coloro che partecipano alla costruzione di nuovi edifici.
Nella determinazione degli interventi correttivi o preventivi, i principi di ottimizzazione
devono essere stabiliti in armonia con le seguenti norme comunitarie:
a)
direttiva 80/836/EURATOM del Consiglio, del 15 luglio 1980, di
modifica delle direttive che stabiliscono le norme di sicurezza di base per la tutela
della salute delle persone e dei lavoratori contro i pericoli provocati da radiazioni
ionizzanti;
b)
direttiva 84/467/EURATOM del Consiglio, del 3 settembre 1984, di
modifica della direttiva 80/836/EURATOM.
Art. 4.
Nell'ambito di ciascun comune, ogni anno, le aziende Unità sanitarie locali dovranno
procedere alla misurazione delle concentrazioni del radon presente in ambienti chiusi e
aperti, nonché in situ per ogni fonte d'acqua potabile pubblica, sia alla fonte che nei
punti selezionati di consumo della stessa.
Art. 5.
Al fine di garantire la salubrità e la igienicità dei posti di lavoro, le aziende Unità sanitarie
locali dispongono, ogni tre anni, adeguate attività di controllo volte alla rilevazione delle
concentrazioni di radon:
a) negli edifici pubblici, quali in particolare scuole, palestre, centri ricreativi, ospedali,
uffici e biblioteche;
b) nelle cave a cielo aperto di tufo, pozzolana, lava e peperino, valutando le differenti
condizioni in base al materiale estratto;
c) nei locali e negli ambienti sotterranei;
d) negli stabilimenti di lavorazione dei materiali litici, valutando l'effetto della
triturazione, della polverizzazione dei differenti materiali;
e) negli stabilimenti termali, di acque minerali e gas naturali, valutando l'effetto di
degassamento del radon dai materiali prima e durante il loro utilizzo ovvero la loro
lavorazione in ambienti chiusi;
f)
nelle piccole industrie;
g) nei centri geotermici.
QUADRO RIEPILOGATIVO CIRCA LA LEGISLAZIONE VIGENTE
NORMA
OGGETTO
Raccomandazione della Commissione
EURATOM 143/90 del 21 Febbraio
1990
Concernente la tutela della popolazione contro l’esposizione
radon in ambienti chiusi (Gazz. Uff. CEE 27 Marzo 1990, L 80)
D.Lgs 17 Marzo 1995, n. 230
Attuazione delle direttive Euratom nn. 80/836, 84/467, 84
89/619, 90/641, 92/3 in materia di radiazioni ionizzanti.
Direttiva
96/29
EURATOM
Consiglio del 13 maggio 1996
Senato – Disegno di Legge 2410
del
Stabilisce le norme fondamentali di sicurezza relative alla protez
sanitaria della popolazione e dei lavoratori contro i pericoli der
dalle radiazioni ionizzanti (Gaz. Uff. CEE del 29 Giugno 1996, L
Tutela della popolazione
inquinamento da radon.
contro
l’esposizione
ai
rischi
Decreto Legislativo 26 maggio 2000, n. Attuazione della direttiva 96/29/EURATOM in materia di prote
sanitaria della popolazione e dei lavoratori contro i rischi der
241
dalle radiazioni ionizzanti.
ALCUNI VALORI LIMITE VIGENTI
Per quello che riguarda i valori limite presenti all'interno della legislazione
vigente, attualmente costituita da sole raccomandazioni per quello che
riguarda il Radon, occorre distinguere tra ambienti di vita domestici e
ambienti di lavoro.
AMBIENTI DI CIVILE ABITAZIONE
Il riferimento a livello europeo è la Raccomandazione EURATOM n. 143/90 della
Commissione del 21 Febbraio 1990 sulla tutela della popolazione contro l'esposizione al
radon in ambienti chiusi. All'interno della presente viene raccomandato quanto segue;
1) Edifici esistenti:
− Che sia stabilito un livello di riferimento per l'adozione dei provvedimenti correttivi:
qualora esso venga superato si adotteranno provvedimenti semplici ma efficaci volti a
ridurre il livello di radon;
− Che il livello di riferimento sia pari ad una dose effettiva equivalente di 20 mSv, la quale,
ai fini pratici, può essere considerata equivalente ad una concentrazione media annua di
3
gas radon di 400 Bq/m .
− Che l'urgenza dei provvedimenti correttivi sia proporzionale alla misura in cui tale limite
di riferimento viene superato;
− Che, laddove siano ritenuti necessari provvedimenti correttivi, la popolazione interessata
sia informata sui livelli di radon a cui esposta e sui provvedimenti adottabili per ridurre
tali livelli.
2) Edifici da costruire:
− Che sia applicato un livello di progettazione cui le competenti autorità possano far
riferimento nell'adottare disposizioni, norme e codici di tecniche costruttive per i casi in
cui il livello di progettazione rischi di venire superato;
− Che il livello di progettazione sia pari a una dose effettiva equivalente di 10 mSv, la
quale, ai fini pratici, può essere considerata equivalente a una concentrazione media
3
annua di gas radon di 200 Bq/m .
− Che le informazioni relative a probabili livelli di esposizione al radon e alle misure
preventive da adottare siano fomite, in quanto pertinenti1 a coloro che partecipano alla
costruzione di nuovi edifici.
In Italia tale raccomandazione è in via di recepimento all'interno del Disegno di Legge 2410
(v. allegato II), già presentato al Senato; all'interno ditale testo, viene inoltre stabilito che
nella determinazione degli interventi correttivi o preventivi, i principi di ottimizzazione devono
essere stabiliti in armonia con le seguenti norme comunitarie:
− Direttiva 801836 EURATOM, del consiglio del 15 Luglio 1980, di modifica delle direttive
che stabiliscono le norme di sicurezza di base per la tutela della salute delle persone e
dei lavoratori contro i pericoli provocati da radiazioni ionizzanti;
− Direttiva 84/467 EURATOM, del consiglio del 3 Settembre 1984, di modifica della
direttiva 80/836 EURATOM. (Ricordiamo inoltre che tali direttive, in materia di protezione
all'esposizione a radiazioni ionizzanti, sono già recepite in Italia all'interno del D.Lgs del
17 Marzo 1995 n.230).
Attualmente la maggior parte dei paesi industrializzati ha emesso delle raccomandazioni per
spingere la popolazione ad attuare azioni di risanamento degli edifici quando la
concentrazione di radon supera determinati livelli ritenuti un rischio inaccettabile per la
salute; a tal proposito è però utile ricordare che in realtà non sì può stabilire una
concentrazione cosiddetta “sicura” al di sotto della quale la probabilità di contrarre il tumore
ai polmoni possa considerarsi nulla. Nella seguente tabella sono riportati i livelli di
riferimento adottati in diverse nazioni; il livello di riferimento per future costruzioni, non
potendo prevedere quale sarà la concentrazione di radon futura in un edificio in costruzione,
è principalmente un parametro progettuale o parametro di qualità al quale ci si deve
attenere onde evitare rischi futuri, in ragione anche del fatto che costruire un edificio con
criteri anti - radon è sicuramente più semplice ed economico che attuare azioni di bonifica
successive.
UN
IO
NE
EU
R
OP
EA
W
H
O
AU
ST
RI
A
AU
ST
RA
LI
A
BE
LG
IO
CA
NA
DA
FI
NL
AN
DI
A
LIMITI RACCOMANDATI
(Concentrazione media annua)
ABITAZIONI
ABITAZIONI
ESISTENTI
FUTURE
3
3
200 Bq/m
400 Bq/m
200 – 600 Bq/m
400 Bq/m
400 Bq/m
3
3
3
200 Bq/m
200 Bq/m
3
400 Bq/m
3
800 Bq/m
3
200 Bq/m
3
3
LIMITI
IMPOSTI
GE
R
M
AN
IA
IR
LA
ND
A
LU
SS
E
M
BU
R
G
O
OL
AN
DA
SV
EZ
IA
SL
OV
EN
IA
SV
IZ
ZE
RA
RE
G
N
O
UN
IT
O
ST
AT
I
UN
ITI
250 Bq/m
3
200 Bq/m
3
150 Bq/m
3
1000
20 Bq/m3
200
Bq/
3
m
3
400 Bq/m
400
Bq/
3
m
150 Bq/m
3
400 Bq/m
3
200 Bq/m
3
1000
COME
ALL’ESTERNO
AMBIENTI DI LAVORO
Per quanto riguarda gli ambienti di lavoro, in campo internazionale, le varie
organizzazioni che si occupano della esposizione al radon dei lavoratori,
propongono una fascia di valori di riferimento entro la quale si suggerisce
che gli stati scelgano il proprio o i propri livelli di riferimento oltre i quali
adottare provvedimenti di bonifica degli ambienti. Tali fasce di livelli sono
riportate nella seguente tabella
VALORI
INDICATI
COMUNITÀ EUROPEA
500 – 1000
3
Bq/m
COMMISSIONE
INTERNAZIONALE PER
LA PROTEZIONE
RADIOLOGICA (ICRP)
500 – 1500
3
Bq/m
AGENZIA
INTERNAZIONALE PER
L’ENERGIA ATOMICA
(IAEA)
500 – 1500
3
Bq/m
BIBLIOGRAFIA
- Baglioni A., et al. Costruzioni e salute, Franco Angeli Ed., Milano, 1990
- Fanger P.O., Gli olf nascosti negli edifici insalubri. Condizionamento dell'aria,
Riscaldamento, Refrigerazione, n.11/89, pp. 14861490
- Piardi S., et. al., Costruire edifici sani. Guida alla scelta dei prodotti, Maggioli Editore,
Rimini 1996
- De Santoli L., et.al., Normativa europea sulla ventilazione degli edifici, Condizionamento
dell'aria, Riscaldamento, Refrigerazione, n.12/95, pp. 1256-1269
- Fanger P.O., La nuova formula del benessere per la qualità dell'aria interna,
Condizionamento dell'aria, Riscaldamento, Refrigerazione, n.2/91, pp. 225-229
- UNI-CTI UNI 10339, Impianti aeraulici ai fini del benessere. Generalità, classificazione e
requisiti. Regole per la richiesta d'offerta, l'offerta, l'ordine e la fornitura, UNI, Gennaio
1995