SEEP 2010 - 4th International Conference on Sustainable Energy

Transcript

SEEP 2010 - 4th International Conference on Sustainable Energy
4th International Conference on
Sustainable Energy & Environmental Protection
Energie sostenibili e Protezione dell’ambiente
June 29/July 02, 2010
Politecnico di Bari
BARI – ITALY
Proceedings of the International Workshop on
“Sustainable Energy & Environmental Protection (SEEP):
Opportunities for Developing the Regional Economy in Europe”
Bari - June 30, 2010
Atti del Workshop
“Energie sostenibili e Protezione dell’ambiente:
opportunità per lo sviluppo delle economie regionali europee”
Bari - 30 Giugno 2010
Edited by
MICHELE DASSISTI
PATROCINIO del PRESIDENTE della
GIUNTA REGIONALE CONCESSO con
DECRETO N° 322 del 23/03/2010
Regione Puglia
“INNOVATION IN TRADITION”
(Innovare attraverso la tradizione)
1
EDITED BY
Michele Dassisti
© DIMeG Politecnico di Bari – SEEP2010
ISBN: 978-88-905185-0-8
Proceedings of the International Workshop on
“Sustainable Energy & Environmental Protection (SEEP):
Opportunities for Developing the Regional Economy in Europe”
Bari - 30 June, 2010
(Atti del Convegno Internazionale su “Energie sostenibili e Protezione dell’ambiente:
opportunità per lo sviluppo delle economie regionali europee”
Bari - 30 Giugno 2010)
First Published in 2011 by Politecnico di Bari - BB Press
Politecnico di Bari - Biblioteca Brucoli Press
Via Orabona, 4 - 70125 Bari ITALY
http://www.biblio.poliba.it/
The authors have asserted their moral rights
All rights reserved. No part of this book may be reproduced or utilised in any form or by any means
electronic or mechanical including photography, filming, recording, video recording, photocopying, or by
information storage and retrieval system and shall not, by any way of trade or otherwise, be lent, resold or
otherwise circulated in any form of binding or cover other than that in which it is published without prior
permission in writing from the publisher.
Cover design by Web studio Lab, Internet Solutions
www.webstudiolab.it – [email protected]
Printed in Italy
2
INNOVATION IN TRADITION
(Innovare attraverso la tradizione)
<< As the century draws to a close,
environmental concerns have become of paramount importance.
The survival of humanity and of the planet are at stake.
Concern about the environment is no longer one of many ''single issues";
it is the context of everything else of our lives, our business, our politics >>
<< Alla fine del secolo,
L’interesse per l’ambiente è diventato di enorme importanza.
Sono in gioco la sopravvivenza dell’umanità e del pianeta.
L’attenzione per l’ambiente non è solo una delle questioni più importanti;
è il centro delle nostre vite, dei nostri interessi, della nostra politica >>
Fritiof Capra e Gunter Pauli
3
4
INDIRIZZI DI SALUTO ISTITUZIONALI
On. Giorgia Meloni
5
6
TABLE OF CONTENTS
TITOLO
AUTORE
PAG
Michele Dassisti
8
Piero Abbina
10
Giovanni Cipolla
12
The Challenge of Merging Energy Needs and Environmental Quality
on Regional and Global Scales
Nicola Pirrone
37
Developing Next Generation Products and Processes using
Innovative Sustainable Manufacturing Principles
I. S. Jawahir
38
Trigeneration – A Way to Improve Food Industry Sustainability
S.A. Tassou, IN. Suamir
83
Innovation in Tradition: a new motto for Sustainability
Michele Dassisti
111
La sostenibilità energetica: questione di scala
Domenico Laforgia
113
Lo stabilimento ILVA di Taranto
Gli investimenti per migliorare la compatibilità ambientale
Adolfo Buffo
129
Energy Efficiency and Environmental Sustainable Policies
in Local Municipalities
Pasquale Capezzuto
131
Green Economy e Sviluppo Sostenibile nel fare impresa
Giovanni Ronco
143
Why we must value the "commons"
Giovanni Zurlini
149
Adriana Longo
Domenico Pagazzo
150
151
Sisto De Matthaeis
153
PREFAZIONE / FOREWORD
Discorso introduttivo al Workshop
INSTITUTIONAL WELCOME
"TIKKUN OLAN"
WORKSHOP KEYNOTE
"Driving to a low CO2 Future"
SEEP 2010 CONFERENCE KEYNOTE
INTERVENTI PROGRAMMATI
SUPPORTING SPONSORS
Sentiresostenibile
Aiutaci a salvare il mare
PRIZE (Premi)
Preface from Organizer
155
156
158
161
GENERAL MOTORS
BOSCH
INTERFLON
SITEC
7
PREFAZIONE - FOREWORDS
Discorso introduttivo al Workshop sulle “Energie sostenibili e Protezione
dell’ambiente: opportunità per lo sviluppo delle economie regionali europee”
<<Dopo un secolo di dominazione del pensiero scientifico di tipo deterministico, che ha visto la
natura come oggetto inanimato da conquistare e il benessere sociale solo come sinonimo di
crescita continua e smisurata di consumi, al limite infinita, un nuovo sentire sta pervadendo le
nostre menti e spero i nostri cuori: una visione, per così dire, consapevole dei limiti,
contrapposta al “confidenza nell’infinito” di ieri. La crisi che stiamo attraversando sta solo
dando concretezza alle strategie operative, non ne è generatrice. Questa nuova sensibilità, del
sostenibile, del compatibile con i limiti naturali, porterà in tempi ragionevoli per la nostra specie
verso nuovi stati di equilibrio di lunga durata? Abbiamo oggi la opportunità di modificare il
nostro modo di essere e di agire in modo saggio, in reazione al troppo rapido cambiamento del
nostro ambiente: il concetto di sostenibilità, nella sua versione inglese “Sustain-ability”, è
antico, ha radici nel verbo sostenere, che significa ‘mantenere in uno stato continuativamente,
mantenere un dato o proprio livello di standard; preservare uno stato di cose’. In una parola il
concetto che sempre più si sta affermando oggi è il desiderio, o la necessità, di trovare i modi
per avere la capacità di ritrovare uno status quo di benessere personale e di vita sociale
raggiunti, a fronte di violente mutazioni di scenario che si stanno presentando, anche come
frutto delle teorie economiche basate sulla massimizzazione del profitto di pochi, e giustificate
dal pensiero scientifico deterministico che appartiene oramai ai secoli passati. L’importanza
del dibattito sulla sostenibilità per le nostre vite e quelle delle generazioni a venire è il motivo
che mi ha spinto ad organizzare una conferenza internazionale sui temi delle Energie
Sostenibili e la Protezione dell’Ambiente. Sfida partita dalla Università di Dublino solo tre anni
fa e che oggi, per la prima volta, esce dall’Irlanda per arrivare a Bari, la porta a levante
dell’Europa.
La vera questione che si deve affrontare è cosa significa sostenibilità dello stato delle cose, in
un mondo dove vi sono troppe – per dirlo in termini presi dalla fisica – “differenze di potenziale
sociale”, troppe disparità (causa) che poi si manifestano nelle tensioni sociali (effetto) a cui
purtroppo assistiamo tutti i giorni nel mondo. La scienza deve cambiare attitudine e ragionare
anche in termini di impatto etico e morale, interessarsi degli effetti sui sistemi sociali
allontanandosi dalla vista antica di disciplina asettica e oggettiva.
La conferenza, pur non pretendendo di risolvere questioni così importanti, è tesa a stimolare il
dibattito culturale internazionale proponendo due momenti distinti: un dibattito allargato in
lingua italiana nella mattina del 30 giugno, con attori locali alla presenza degli ospiti
internazionali che cercheranno di portare un contributo al tema di come la ricerca sulla
sostenibilità possa influenzare il benessere sociale ed economico delle regioni europee, e la
nostra Puglia in particolare. Questo un dibattito che ha affrontato non temi economici, ma temi
tecnici, parlando di concetti concreti e non della loro valenza monetaria. Questo è un punto
critico su cui insisto e che giustifica l’affermazione di prima sulla crisi: siamo troppo abituati a
dare valore alle cose attraverso l’espressione monetaria: è questo un errore, che va corretto
8
per poter parlare di bisogni reali, di funzioni degli oggetti prodotti, di necessità, di servizi resi
cioè delle cose che ci servono e non della loro misura economica.
Il “pensiero finanziario”, se così semplicisticamente lo possiamo definire, è pericoloso e
subdolo, perché fa perdere il contatto con la realtà delle cose: spero gli ospiti della conferenza
invitati vogliano seguirmi in questo ragionamento.
Un secondo momento, di carattere più squisitamente tecnico, consisterà nel dibattito
scientifico sui temi della conferenza che qui brevemente riassumo: produzione di energia sia
da riciclo di attività o sostanze, produzione di energia da fonti rinnovabili (eolico, solare),
risparmio energetico e politiche di gestione della energia, sostenibilità della produzione
manifatturiera, misurazione dell’impatto e della impronta ecologica, metodi organizzativi e
conoscitivi per la sostenibilità, il ciclo di riuso delle materie prime.
Temi per i quali i numerosi lavori presentati da studiosi di tutto il mondo (sono presenti molti
paesi africani, ma anche India e Giappone) propongono soluzioni e studi interessanti,
recuperando anche processi e tecniche tradizionali per proporre soluzioni nuove e di immediato
interesse applicativo in moltissimi settori. Particolarmente interessanti quegli studi che
interpretano il motto della conferenza, “Innovazione nella tradizione”, un motto che credo
possa essere la risposta a tanti nostri dubbi e quesiti per il futuro che ci aspetta. Una risposta
saggia, che coniuga passato e futuro in modo, appunto, sostenibile.
La scienza, nata dalla curiosità dell’uomo di esplorare il suo mondo, forse la sua rivincita nei
confronti della natura un tempo ostile, deve ritrovare una strada nuova, non porsi più solo al
servizio del consumismo ma del benessere delle popolazioni per la sostenibilità del vivere.
Progetto ambizioso per una conferenza: ma il dibattito sarà su come fornire energia in modo
compatibile, perché energia è vita ed anche su come produrre con minimo impatto. La
questione di fondo, sul perché produrre, forse non sarà oggetto di dibattito scientifico -non è
questa la sede – anche se nei temi della conferenza il concetto sociale ed etico alla fine è
entrato, ragionando di conoscenza, di formazione e di supporto alle decisioni, di percezione
della sostenibilità: in fondo è dell’uomo che si parla ragionando di scienza, del suo ambiente e
dell’energia che usa per la sua vita ed i suoi scopi. >>
Spero vivamente che possa diventare un appuntamento costante per tutta la Regione, visto
anche il livello di attenzione istituzionale raggiunto: Ministero dell’Ambiente e Ministero della
Gioventù, Regione Puglia, Provincia Bari, Foggia e Lecce, Comune di Bari e Lecce, Camera di
Commercio, Associazioni degli Industriali delle provincie Pugliesi, Il Technion di Israele (a
testimoniare come la scienza possa rappresentare un logo di dialogo multiculturale) per non
elencare il numerosissimo elenco di sponsor che hanno voluto supportare economicamente lo
sforzo organizzativo e che trovate citati nel programma delle giornate.
Nell’aprire la tavola rotonda desidero rinnovare il mio ringraziamento per tutti i convenuti locali
ed internazionali, numerosi e da varie parti del globo, la cui presenza ed attenzione sono segno
di speranza per il futuro, un futuro fatto di dialogo tra culture e di pace, sostenibile appunto.>>
Michele Dassisti
9
INSTITUTIONAL WELCOME
"TIKKUN OLAN"
Dott. Piero Abbina
Presidente AIAT – Associazione Italiana Amici Technion
Israel, as a tiny country with few natural resources, is particularly dependent on the one
resource with which it abounds: brainpower. For 85 years, the Technion has played a major role
in harnessing this energy, having awarded 87,599 degrees as of 2008/09. The ingenuity of
Technion alumni has made Israel home to the greatest concentration of high-tech start-up
companies outside the United States. Technion graduates comprise the majority of Israelieducated scientists and engineers, and account for over 70% of the founders and managers of
high-tech industries in the country. Eighty percent of Israeli NASDAQ companies are led by
Technion graduates. High-tech industry now accounts for more than 54% of Israel's industrial
exports, and over 26% of the country's total exports. One hundred thirty-five out of every
10,000 workers in Israel are scientists and engineers, while the rate in the USA is only 85 out
of every 10,000 workers. Nine out of every 1,000 Israeli workers are engaged in R&D, nearly
double the rate in the USA and Japan. Seventy-four percent of managers in Israel's electronic
industries hold Technion degrees.
Technion graduates have turned dreams into reality in creating the State of Israel, designing
and building an infrastructure that has enabled the absorption of immigrants from all over the
world and helping to make possible the regeneration of the Jewish people. This transformation
from a poor country with a rapidly growing population to a booming export economy was
accomplished through engineers using knowledge, creativity, and ingenuity to build solutions
despite shortages of materials and a hostile environment. Yet, while performing this
astonishing feat of building itself into a thriving nation, Israel has always looked outward and
extended a helping hand to needy people beyond its borders. Israeli ingenuity has helped
struggling nations adopt technology that provides clean water, food, energy, and
communications, and Technion graduates have played a key role in moving knowhow to where
it is most needed. The challenges Israel faced and is still facing make it uniquely able to help
others find ways to build from "nothing." Necessity forced Israeli engineers to excel at teaching
themselves to find solutions; a sense of moral obligation drives them to transfer their
knowledge and approach to others in need.
This sense of social responsibility is expressed in the Hebrew phrase "tikkun olam," which
refers to the Jewish obligation of perfecting, preparing, or repairing the world. It is this principle
that led to the establishment of the Technion chapter of Engineers without Borders (EWB) in
2008. EWB is an international association dedicated to initiating and fostering sustainable
engineering projects in developing and disadvantaged communities all over the world. EWB
projects make a real difference in improving the lives of people in the developing world, and
they build collaborative relationships with the communities receiving the assistance and with
other EWB branches. Technion students volunteer their time, but they reap huge educational
10
benefits from their hands-on work designing and implementing engineering solutions, in their
exposure to foreign cultures, and in their discovery that individuals have real power to improve
the world. Helping solve other people's problems helps Technion engineers remain among the
best in the world.
About the Technion
The Technion attracts the best and brightest students, and provides a combination of rigorous
training and inspiration that produces the innovative thinking that powers the start-ups and
high-tech industries that drive Israel's economy as well as provide for its security and defense
needs. The Technion is one of only a small handful of science and technology universities in the
world with its own medical school. This is significant because medicine is becoming increasingly
dependent on powerful instruments for diagnosis and treatment, making biotechnology a
leading 21st century field.
The awarding of the 2004 Nobel Prize in Chemistry to two Technion professors, Distinguished
Profs. Avram Hershko and Aaron Ciechanover from the Rappaport Faculty of Medicine, is a
definitive demonstration of the collective strength of the Technion's 18 faculties. This
achievement is multi-faceted; primarily, it is an honor to the recipients. It is also a tribute to the
teamwork, vision, persistence, and innovation that characterize the Technion. Success is
continually demonstrated by the countless honors awarded, nationally and internationally, to
professors and lecturers across the campus. The Technion takes pride in being consistently
represented by its accomplished faculty among the top universities in the world at international
conferences, on the pages of the most prestigious professional journals, at ceremonies
honoring exceptional achievement and more.
The wide range of groundbreaking research carried out at the Technion has worldwide impact:
making deserts bloom, feeding the hungry, providing solutions to energy and water scarcity,
curing devastating diseases, and developing technologies that affect virtually all human
endeavors, and making scientific discoveries whose future applications have not yet been
imagined.
The Technion draws students, post-graduates, and visiting faculty from around the world. The
importance, prestige, and outstanding student population of the Technion have grown
significantly through the years. As an excellent teaching and research institution, the Technion
constantly hosts international gatherings and welcomes leading scientists, businesspeople, and
public leaders from Israel and from around the globe. To enter the gates of the Technion is to
enter the training ground of the next generation's innovators and entrepreneurs. Continued
progress depends on training the next generation of engineers and scientists to continue
imagining, designing, and building for Israel's needs and for the betterment of the world.
Piero Abbina
11
WORKSHOP KEYNOTE
"Driving to a low CO2 Future"
Prof. Ing. Giovanni Cipolla
CTO & Engineering Director - GM Diesel Hybrid Center, Torino
4th International Conference on
"Sustainable Energy & Environmental Protection (SEEP)”
Workshop on: “Opportunities for developing the regional economy in Europe“
30th June 2010, Bari, - Italy
Driving to a low CO2 Future
Giovanni
Giovanni Cipolla
Cipolla
CTO
CTO &
& Engineering
Engineering Director
Director
GM
GM Diesel
Diesel Hybrid
Hybrid CenterCenter- Torino,
Torino,
Italy
Italy
Driving to a low CO2 Future
(Giovanni Cipolla
Cipolla – GM
GM Diesel
Diesel Hibrid Center)
ABSTRACT
The EC
EC 20/20/20
20/20/20 commitment is
is just the
the first
first step
step towards
towards aa
significant
significant reduction
reduction in
in CO2
CO2 anthropogenic
anthropogenic emissions
emissions into
into
atmosphere, next goal
goal being the
the 80%
80% reduction in
in greenhouse
greenhouse gas
emissions from
from 1990
1990 levels by 2050.
2050.
Driven
Driven by global population growth and expected economic
expansion, big
big pressure is put on the automotive community in
order
order to
to drive the transportation means towards to utilization
utilization of
of
alternative
alternative energy sources
sources and the
the development of
of new
new propulsion
propulsion
systems.
The keynote
keynote will highlight the technology
technology challenges for
for automotive
automotive
engineers
engineers and the
the foreseen evolution
evolution scenario for
for aa future
future
sustainable mobility
mobility system.
system.
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
WORKSHOP KEYNOTE
The Challenge of Merging Energy Needs and Environmental Quality
on Regional and Global Scales
Nicola Pirrone
Director
CNR - Institute of Atmospheric Pollution Research, Rome, Italy
URL: http://www.iia.cnr.it EMAIL: [email protected]
The fast industrial development and increasing energy demand along with increasing population in
large urban areas worldwide (about 60% of the total) has driven increasing trends in atmospheric
emissions of major hazardous air pollutants on regional and global scales since late 1990s. The
atmospheric pollution is still considered (WHO) one of the major environmental risk for public
health. The emissions of primary pollutants (i.e., SO2, NOx, CO, BTX, heavy metals, PM10) to the
atmosphere from anthropogenic sources are primarily related to energy production, manufacturing
of goods, waste disposal and transportation systems. During the last decade energy consumption
has increased by 2-3% worldwide, with highest rate (up to 12% per year) in fast developing
countries (i.e., China, India). Fossil fuels power plants provides nearly 80% of the total energy
production worldwide (34.4% petrol, 24.4 coal, 21.3% natural gas), the remaining 20% of the total
is from biomass burning (9.5%), nuclear energy (6.5%) and renewable energy (4%).
Having the above in mind, the evaluation of the impact on human health and ecosystems related
to the exposure to major atmospheric pollutants should take into account all chemical and physical
processes that lead to the formation of secondary pollutants; the latter being characterized by a
different atmospheric reactivity and atmospheric residence time. These processes may affect their
atmospheric transport and deposition patterns as well as the exchange mechanisms between the
atmosphere and terrestrial and aquatic ecosystems, their temporal and spatial scale as well as
their effects on climate change through a complex combination of positive and negative forcing.
Recent studies have also shown that climate change may affect air quality in urban areas,
therefore the definition of trade-offs is one of the future challenge for scientists and policy makers.
Recent developments in Europe and worldwide have been addressed to build global observation
systems aiming to provide real-time observations of atmospheric pollutants concentration and
fluxes to be used for the validation of atmospheric numerical models and emission inventories for
policy development at regional and global scales. A growing interest in policy development in
Europe and worldwide has taken place during the past 20 years in the framework of European and
international programs and conventions (i.e., CLRTAP, CAFE, UNEP, IGBP) aiming to reduce, among
others, the emissions of pollutants to the atmosphere and their impact on human health and
ecosystems. The specific goals of these programs is to evaluate the relative contribution of natural
vs. anthropogenic sources for priority pollutants (i.e., O3, aerosol, POPs, Hg), the mechanisms that
affect their transport and deposition patterns on regional and global scales, and source-receptor
relationships for major socio-economic scenarios considered in the policy development.
37
SEEP 2010 CONFERENCE KEYNOTE
Developing Next Generation Products and Processes using Innovative
Sustainable Manufacturing Principles
I. S. Jawahir
Professor of Mechanical Engineering
James F. Hardymon Chair in Manufacturing Systems, and
Director of Institute for Sustainable Manufacturing (ISM)
www.ism.uky.edu
Collaborating Researchers:
Professor O.W. Dillon Jr. - Professor F. Badurdeen - Professor K.E. Rouchand - Dr. A.D. Jayal
Graduate Students:
P. Marksberry - P. Wanigaratne - A. Deshpande - S. Chen
F. Pusavec - S. Yang - P. Zhengwen - T. Lu - A. Gupta
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
SEEP 2010 CONFERENCE KEYNOTE
Trigeneration – A Way to Improve Food Industry Sustainability
S.A. Tassou, IN. Suamir
Brunel University
Uxbridge, Middlesex UB8 3PH
EMAIL: [email protected]
ABSTRACT: In industrialised countries the food industry constitutes one of the largest industrial
manufacturing groups with significant environmental impacts. For Western Europe as a whole it
is estimated that food is responsible for between 20% and 30% of Greenhouse Gas Emissions.
Sources of greenhouse gas emissions of the food industry include CO2 emissions from energy
used in the manufacturing processes and for the environmental control of buildings, emissions
of refrigerants from food refrigeration equipment and organic waste. A technology that offers
the potential to make significant reductions in GHG emissions and sustainability is
trigeneration. This paper reviews and discusses the main technologies employed in
trigeneration systems, and outlines research, development and challenges in their application
to the food industry. Particular attention is given to applications in the food retail industry and
the integration of trigeneration with CO2 refrigeration systems to minimize greenhouse gas
emissions from both the reduction of fossil fuel use and refrigerant leakage.
KEYWORDS: GHG EMISSIONS, FOOD INDUSTRY, TRIGENERATION, SUPERMARKETS, ENERGY
SAVING
83
1. Introduction
The food industry, food manufacturing, storage and retail, has a need for heating and electrical
power as well as refrigeration. Invariably, plant is installed which consists of heating systems
employing low pressure hot water, high pressure hot water or steam, vapour compression
refrigeration systems and an electrical power supply derived from the National Grid. The overall
utilisation efficiency of these processes is low, around 50%-55%, because of seasonal
variations in demand and the relatively low electricity generation efficiency in power stations
and distribution losses in the grid. One way of increasing the energy utilisation efficiency of food
processing and retail facilities is through local combined heat and power generation (CHP) or as
otherwise known co-generation. The fuel energy utilization efficiency of CHP can be as high as
80%, almost 30% higher than the separate production of electricity and heat, but to achieve
high efficiencies CHP systems have to operate at maximum load for the for the vast majority of
time and make maximum utilization of the generated electrical power and heat. If sufficient
demand for the generated electricity and thermal energy is not available on site, consideration
can be made to export electricity back to the grid and thermal energy to neighbouring facilities.
This approach, however, introduces complexities and reduces the economic attractiveness of
CHP as the purchase price of electricity generated locally by the electricity supply company in
the majority of cases is significantly less than the sale price of electricity. Where it is not
feasible to export electricity or heat a variety of strategies can be used to optimise the sizing
and control of the CHP system to maximise efficiency. These strategies which can be heat
demand or electrical demand lead will depend on many factors, one of the most important
being the purchase and sell (spread) of electricity price.
Another way of ensuring that high energy conversion efficiencies of CHP systems are
maintained throughout the year is to use some of the excess heat available in periods of low
heat demand to drive sorption refrigeration systems and provide cooling or refrigeration. The
integration of CHP and sorption refrigeration or other technologies to provide simultaneously
electrical power, heating and cooling or refrigeration is known as CCHP, CHRP or trigeration.
The term polygeneration is also sometimes used when local plant is used to produce different
forms of energy.
Trigeneration systems have been in operation for many years but only in a small number of
food manufacturing industries. Recent increases in fuel prices, concerns about the
environmental impacts of the food industry and developments in technology have increased
interest in the application of trigeneration to the food industry.
This paper reviews the main technologies employed in trigeneration systems. The paper also
outlines research, development and application challenges and explores the influence of the
performance characteristics of trigeneration systems on energy performance and
environmental impacts.
84
2. Environmental Impacts and Carbon Footprint
The environmental impact and cost of each food product is a function of the type of the raw
materials used, the manufacturing processes employed for its production, the design of the
packaging used, its distribution and retail and final consumption (Figure 1).
Raw
materials
Manufacture
Distribution
/ retail
Consum
er use
Disposal/
recycling
Figure 1. Life Cycle Stages of food products
In order to improve the sustainability of food and other products, it is necessary to use
techniques and tools to assess the environmental impacts associated with the different stages
of the product’s life cycle, identify the ‘hot spots’ and develop processes and systems that
make the greatest contribution to the reduction of environmental impact at an acceptable cost.
Over the last twenty years a number of approaches and tools have been developed for the
assessment, management and monitoring of environmental impacts and sustainable
development. Many of these tools are complimentary and a number use a form of Life Cycle
Assessment (LCA) to provide a quantitative estimate of the environmental impacts of a product
or process [1]. Life Cycle Assessment which is also sometimes known as Life Cycle Analysis or
Ecobalance is the quantification of the environmental impacts that arise from the complex
interactions between a product and the environment over its whole life cycle-from cradle to
grave.
Application of LCA can be quite complex due to its multidisciplinary nature which involves
assessment of the impacts of the technical systems involved in the production and transport
processes, the impacts of resulting emissions, the potential impact of alternative choices of
materials and processes and wider social and environmental issues. The use of LCA can be
simplified by the selection of specific methods and impact categories to be considered in the
analysis. PAS2050, a publicly available specification for the assessment of the GHG emissions
of goods and services provides a simplified approach to life cycle assessment by focusing
solely on GHG emissions rather than wider environmental, social and economic issues [2]. The
Guide to PAS2050 provides guidance on the use of the methodology and examples on its
application to specific goods and services [3].
The PAS2050 uses the carbon footprint as a measure of the greenhouse gases (GHGs)
associated with a process or a product. The carbon footprint converts emissions of individual
GHGs into a single carbon dioxide equivalent (CO2e) value using the global warming potential
(GWP) of the individual gases over a 100 year period [4]. In a farming and food context, carbon
foot print normally represents the total emissions of carbon dioxide (CO2), methane (CH4) and
85
nitrous oxide (N2O). It is expressed in kg or tonnes of carbon dioxide equivalent (CO2e) per kg or
tonne of output and can be calculated for any system or product. For industrial processes as
well as food processing and retail, carbon footprinting tends to focus on energy use since most
emissions are CO2 from energy production. This is normally an auditing process where results
are fairly precise with minimal variation.
Figure 2 shows the percentage impact of the life cycle stages of a cottage pie ready meal
determined using PAS2050 [5].
Figure 2. Impact of the life cycle stages on the carbon footprint of a cottage pie ready meal
It can be seen that for the case of the pie ready meal most of the impacts arise from the raw
material of which mince meat is a significant contributing factor. Manufacturing and
distribution and retail of the pie, however (Figure 3), also make a significant contribution of the
order of 24%, 12% each, with the use phase and disposal accounting for the remainder.
Emissions of
refrigerants from food
refrigeration
equipment (HFCs)
CO2 emissions from energy used
in the manufacturing processes,
transport and for the
environmental control of
factories/distribution centres/retail
food stores
Air
Pollutants
Distribution centre
Raw
Materials
Energy
supply
FOOD FACTORY SERVICES
Steam
Air
Cooling
Heating
Refrigeration
products
Retail Outlets
Waste
Organic Waste
Waste water
Emissions of gases such as
methane from organic waste
(landfill sites)
Figure 3. Emissions from the manufacture and retail phase of the product life cycle
86
The energy used in food manufacturing as a whole in the UK which should not be much
different from other developed economies, is shown in Figure 4 [6]. It can be seen that
approximately 60 to 70% of the energy is used by fuel fired boilers and direct heating systems
for process and space heating and the remainder is electrical energy used by electric motors,
electric heating, refrigeration equipment and air compressors.
Figure 4. Energy used in food manufacturing in the UK
In food retail more than 70% of the energy is in the form of electricity for refrigeration
equipment, heating and ventilation Equipment and lighting and the remainder thermal energy
for space heating and in certain cases for in-store baking. Invariably, electricity is provided by
central power stations and electricity supply grids whereas thermal energy is produced locally
by gas boilers and distributed to the building by low pressure hot water.
The percentage contribution to GHG emissions of the distribution and retail phase of a cottage
beef pie ready meal is shown in Figure 5 [7].
Figure 5. Percentage contributions to total GHG emissions of beef cottage pie
87
The analysis assumed that the refrigerant employed in the refrigeration systems of retail food
stores is R404A and the annual leakage rate is 15% of refrigerant charge. It can be seen that
most of the emissions (45%) arise from the refrigerant leakage due to the high global warming
potential of R404A and from the energy consumption of the refrigerated display cabinets
(41%).
The GHG emissions from the distribution and retail phase of chilled and frozen food products
can be reduced significantly from the use of natural refrigerants such as CO2 or hydrocarbons
and local power generation using low emission fuels such as natural gas or biofuels.
A number of studies and projects have been performed on the application of trigeneration in
the food industry. Bassols et.al [8] presented several examples of this. In these applications, a
range of prime movers were employed in conjunction with ammonia-water refrigeration
systems.
Maidment et.al. [9] considered the feasibility of application of CHP in a supermarket. The
investigators found the system to be viable, with a projected payback period of approximately 4
years. Because of the low heat demand for space heating in the summer months, however, it
was found that considerable amounts of heat would be rejected to the atmosphere. To improve
the utilisation the authors also considered the feasibility of using the waste heat to drive an
absorption chiller to provide refrigeration at -10 oC for secondary refrigeration chilled food
display cabinets. It was concluded that such a system is feasible and would lead to a payback
period of 5 years.
A project funded by the European Union, ‘OPTIPOLYGEN’ considered the application of
polygeneration to the food industry. The aim of the project was to investigate the application of
polygeneration and to develop tools, data and guidelines to promote its application [10]. The
results of the project indicated that with suitable policy measures, in the EUR-15 countries that
were considered in the study, the potential for electricity generation from CHP in the food
industry was 40 TWhe, from tri-generation applications 15 TWhe, and 16 TWhe from the use of
biomass or biogas electricity generation. According to the study, 70%- 80% of the energy needs
of the food industry could be satisfied by polygeneration but at present only 25% of this
potential is exploited. The study also identified a number of technology gaps that need to be
addressed in order to accelerate the application of polygeneration technologies in the food
industry. These include:






Improvement of the electricity generation efficiency of CHP systems,
Improvement of efficiency of absorption refrigeration systems.
Increase of electricity to heat ratio of commercially available CHP systems.
Development of off the shelf (packaged) systems to simplify integration and reduce capital
cost.
Reduction in capacity and footprint of commercially available biogas plants.
Development and application of fuel independent technologies such as Stirling engines.
88
Work at Brunel University in recent years has investigated the practical application of trigeneration systems in the retail food industry to provide electrical power for the supermarket
and refrigeration to the refrigerated display cabinets. The work which is funded by Defra and is
supported by food retail and refrigeration companies has lead to:

the development of tools for the evaluation of the economic and environmental
performance of Combined Heat, Power and Refrigeration schemes [11,12]

The establishment of test facilities in the University for the testing of systems and
evaluation of components with electricity generation capacities up to 100 KWe,

The establishment of the performance characteristics of microturbine based tri-generation
systems for medium temperature retail food refrigeration applications and optimum
integration of components.
A current project funded by Defra is investigating the integration of tri-generation and CO2
refrigeration systems for retail and other food engineering applications.
3. Trigeneration Technologies
A trigeneration system is normally an integration of two major technologies: the CHP system
and a thermally driven refrigeration technology. CHP systems, many of which are available in
packaged form, consist of a prime mover which drives a generator to produce electrical power
and a heat recovery system that recovers heat from the exhaust gases and the engine cooling
water in the case of internal combustion engine based prime movers. A schematic diagram of a
trigeneration system is shown in Figure 6.
The following CHP technologies are currently in widespread use.
 Steam turbines
 Gas turbines
 Combined Cycle systems (gas and steam turbines)
 Internal combustion engines (Diesel and Otto).
These technologies are readily available, and fairly mature, and reliable.
Three other technologies have recently appeared on the market.
 Microturbines
 Fuel cells
 Stirling engines.
The following CHP technologies are currently in widespread use.
 Steam turbines
 Gas turbines
 Combined Cycle systems (gas and steam turbines)
89
 Internal combustion engines (Diesel and Otto).
Waste heat
Sorption
refrigeration
system
Heat
recovery
Refrigeration
Prime mover
Electricity
Condenser
Figure 6. Schematic of a trigeneration system
Table 1 details the main characteristics of these technologies, all of which can use either
gaseous or liquid fuels.
The following sections provide more information on the three newer technologies.
3.1 Microturbines
Microturbines are a new type of combustion turbine suitable for use in distributed energy
generation applications. A schematic of a microturbine power generation system is shown in
Figure 7 and the major components of a commercial unit are illustrated in Figure 8 .
Microturbine power generation units comprise a gas compressor, a combustion chamber, an air
compressor, a turbine and an alternator. Compressed air is mixed with fuel and burned in the
combustion chamber. The hot gases produced are expanded in a turbine which drives an
alternator. Recuperated units recover heat from the turbine exhaust which is used to preheat
the air entering the compressor. This improves the electrical generation of the unit but reduces
the temperature of the exhaust gases and the amount of recoverable heat.
90
Microturbines offer advantages of compactness, higher exhaust gas temperatures and lower
maintenance requirements than internal combustion engines. Their electrical generation
efficiency, however, is lower than those of internal combustion engines.
Table 1. Characteristics of CHP systems
Technology
Size
MWe
Electrical
Efficiency
(%)
Overall
Efficiency
(%)
Average
Capital Cost
(£/kWe)
Average
Maintenance
Cost
(£/kWh)
Steam Turbine
>50
7-20
60-80
450-900
0.0013
Gas Turbine
0.5 - 25
25-42
65-87
200-450
0.002-0.005
Combined
Cycle
>10
35-55
73-90
200-450
0.002-0.005
Diesel and
Otto Engines
0.005 - 4.0
25-42
70-85
150-700
0.003-0.01
Microturbines
0.025 – 0.30
15-31
60-85
400-800
0.002-0.005
Fuel Cells
0.001 - 10
30-60
75-90
450-3800
<0.005
Stirling
Engines
0.003- 0.1
40
65-85
2000
?
91
Stack
Recuperator
Compressor
Alternator
Fuel Gas
Compressor
Turbine
Combustion
Chamber
Figure 7. Schematic diagram of a microturbine
Figure 8. Bowman TG80RCG microturbine CHP system
92
3.2 Fuel Cells
A fuel cell is an electrochemical energy device that converts hydrogen (fuel) and oxygen (air)
into electricity and heat. The hydrogen can be obtained from a variety of sources but the most
common is through reforming of natural gas or other gaseous or liquid fuels.
Figure 9. Principle of operation of fuel cell [13]
A fuel cell (Figure 9), consists of two electrodes, an anode and a cathode, separated by an
electrolyte. Power is produced when ions (charged particles) formed at one end of the
electrodes with the aid of catalysts pass through the electrolyte. The current produced can be
used for electricity. The electrolyte plays a key role as it must permit only the appropriate ions
to pass between the anode and cathode. Passage of free electrons or other substances
through the electrolyte, would disrupt the chemical reaction.
Fuel cells are categorized by the kind of electrolyte they use and include:
 Solid Oxide Fuel Cells (SOFC)
 Polymer Electrolyte Fuel Cell (PEFC)
 Proton Exchange Membrane Fuel Cell (PEMFC)
 Phosphoric Acid Fuel Cells (PAFC)
 Alkaline Fuel Cells (AFC)
93
Table 2. Characteristics of fuel cells
Electrolyte
Operating
Temperature
(oC)
Electrical
Efficiency
(%)
Typical
Electrical
Power
(kW)
Fuel Type
Possible
Applications
AFC
60-90
40-60
20 kW
Pure hydrogen
Spacecraft,
Submarines
PAFC
100-220
35-40
>50 kW
Pure hydrogen
Buses, trucks,
large stationary
applications
MCFC
550-700
45-60
>1.0 MW
Most
hydrogen
based fuels
Power Stations
PEFC/
PEMFC
80
30-35
<250 kW
Pure hydrogen
Passenger cars
and mobile
applications
SOFC
450-1000
45-65
>200 kW
Most
hydrogen
based fuels
Small to large
stationary
applications
Apart from high electrical generation efficiencies, fuel cells offer advantages of low noise and
greenhouse gas emissions and high reliability. Disadvantages include their relatively high
cost, and short life span, typically 10 years. PAFCs are the most widely deployed fuel cells and
more than 250 units of 200 kWe capacity have been installed worldwide since the early
1990s.
The characteristics of these fuel cells are summarised in Table 2. Fuel cells have a typical
electrical efficiency of between 30 and 60 % and an overall efficiency, if using the heat in a CHP
arrangement of 70-90 %.
3.3 Stirling Engines
The Stirling Engine (Figure 10),is an emergent technology in the realm of CHP systems, despite
the fact it has been invented in the 19th century. Combustion takes place outside the engine
and the heat generated is used to heat the operating gas in the cylinder of the engine (Figure
11).
94
Figure 10. 35 kW Stirling engine [14]
Figure 11. Schematic of a Stirling based CHP system [15]
The advantage of Stirling CHP systems over internal combustion based systems is that they can
be powered by biomass, solar, and fossil fuels. This flexibility and the high efficiency of the
engine offer significant potential for further development in the future.
95
3.4 Thermally Driven Refrigeration Technologies
The most common thermally driven refrigeration systems are based on the sorption technology
where the mechanical compressor of the common vapour compression cycle is replaced by a
‘thermal compressor’ and a sorbent. The sorbent can be either solid in the case of adsorption
systems or liquid for absorption systems. When the sorbent is heated, it desorbs the refrigerant
vapour at the condenser pressure. The vapour is then liquefied in the condenser, flows through an
expansion valve and enters the evaporator. When the sorbent is cooled, it reabsorbs vapour and
thus maintains low pressure in the evaporator. The liquefied refrigerant in the evaporator absorbs
heat from the refrigerated space and vaporises, producing the cooling effect.
3.4.1 Absorption Refrigeration Systems
The most common sorption technology is absorption refrigeration. Absorption refrigeration
systems are characterised by the refrigerant fluid pair they use. The most common pairs are
Lithium Bromide (refrigerant)-Water (absorbent) and Ammonia (refrigerant)-Water (absorbent).
LiBr-H2O water systems can only be used for cooling temperatures above 0 oC. The technology
is well established and packaged systems are readily available from a number of
manufacturers in the USA, Japan, India and China which include Carrier, York, Sanyo, Hitachi,
Yazaki, Thermax, Broad and many others.
Ammonia-water systems can provide refrigeration at temperatures down to -60 oC. Commercial
systems are available from only a very small number of manufacturers which include Colibri bv
and Transparent Energy Systems. Robur supplies packaged systems able to provide 12 kW of
refrigeration at brine flow temperatures down to – 12 oC [16]. A schematic diagram of a single
stage ammonia-water system is shown in Figure 12.
Generator
Figure 12. Schematic of Ammonia-Water
absorption refrigeration system [17]
Heat input
Heat
Exchanger
Evaporator
Absorber
96
The condenser, expansion valve and evaporator operate in exactly the same way as for the
vapour compression system. In place of the compressor, however, theabsorption system uses a
number of other components: a generator, an absorber a solution pump and a regenerating
heat exchanger. A liquid solution weak in ammonia in the absorber absorbs ammonia vapour
exiting the evaporator. The process is exothermic and so cooling is required to carry away the
heat of absorption. The solution which becomes rich in ammonia is then pumped through a
heat exchanger to the generator.
Heat supplied to the generator evaporates the ammonia from the solution. The solution which
becomes weak in ammonia returns to the absorber through the regenerating heat exchanger
where it preheats the solution supplied to the generator. The ammonia after passing through a
rectifier where any water present in the refrigerant is removed travels to the condenser where it
condenses by rejecting heat to a cooling medium. The ammonia liquid from the condenser
flows through the expansion device before entering the evaporator where it evaporates and
produces refrigeration.
Figure 13. Transparent Energy Systems PVT Ltd absorption refrigeration system [18]
Figure 13 shows an ammonia-water system employed in a trigeneration application in a dairy
factory. The system provides 280 kW of refrigeration at a brine flow temperature of – 5.0 oC.
Figure 14 shows typical performance characteristics of ammonia-water absorption refrigeration
systems. The refrigeration capacity and COP of the system is a function of the evaporating
temperature, the temperature of heat input to the generator and the temperature of the
condenser cooling medium. The COP of these systems will be 0.5-0.6 at evaporating
temperature of -10 oC and 0.25-0.4 at evaporating temperature of -50 oC.
97
3.4.2 Adsoprtion Refrigeration Systems
Adsorption refrigeration unlike absorption and vapour compression systems, is an inherently
cyclical process and multiple adsorbent beds are necessary to provide approximately
continuous capacity. A schematic diagram of a simple adsorption system is shown in Figure 15.
Adsorption systems inherently require large heat transfer surfaces to transfer heat to and from
the adsorbent materials which automatically increases their size and cost.
COP
Figure 14. Performance characteristics of ammonia-water absorption refrigeration system [18]
Figure 15. Schematic diagram of adsorption chiller [17]
98
High efficiency systems require that heat of adsorption be recovered to provide part of the heat
needed to regenerate the adsorbent. These regenerative cycles consequently need multiples of
two-bed heat exchangers and complex heat transfer loops and controls to recover and use
waste heat as the heat exchangers cycle between adsorbing and desorbing refrigerant.
Adsoprtion systems for air conditioning applications are already commercially available from a
small number of manufacturers . "MYCOM", Mayekawa Mfg. Co., Ltd. are producing Silicagel/water adsorption chiller (ADREF-models) with ranges between 35 and 350 kW for use in the
air-conditioning industry. NISHIYODO KUCHOUKI CO. LTD, produce Silica-Gel/Water adsorption
chillers (ADCM models) with capacities between 70 kW and 1300 kW capable of being driven
by low grade heat 50 – 90 °C and able to give COPs of around 0.65 (Figure 16).
Figure 16. Nishiyodo adsorption chiller [19]
Research and development is also underway to produce systems for refrigeration applications
and prototypes for temperatures down to – 25 °C are currently in operation.
4.
Research and Development on Trigeneration Systems at Brunel University
The Centre for Energy and Built Environment Research (CEBER) at Brunel University has been
involved in research on the development of trigeneration systems for food engineering
applications since 2001. Research projects that have been funded by Defra and a number of
companies in the retail food and refrigeration industries have resulted in the development of
experimental test facilities and tools for the evaluation of the economic and environmental
performance of trigeneration systems.
99
4.1 Experimental Test Facilities
The trigeneration test facility incorporates three main modules; CHP module, absorption
refrigeration system module, and a refrigeration load module. A schematic diagram of the
facility is shown in Figure 17.
Figure 17. Schematic diagram of test facility
4.1.1 CHP Module
The CHP module is based on a 80 kWe recuperated microturbine generation package with inbuilt boiler heat exchanger (exhaust heat recovery heat exchanger). The microturbine consists
of a single stage radial compressor, single radial turbine within an annular combustor and a
permanent magnet rotor (Alternator) all on the same rotor shaft. Other systems in the engine
bay include the fuel management system and the lubrication/cooling (oil) system.
100
290
30
o
Electrical efficiency (%)
270
22
Exhaust gas temperature ( C)
280
26
260
18
250
14
240
230
10
220
Electrical efficiency
6
Exhaust gas temperature
210
2
200
0
10
20
30
40
50
60
Electrical power output (kW e)
70
80
90
Figure 18. Variation of electrical efficiency and exhaust gas temperature with
electrical power output
Heat recovery from the exhaust gases is performed in a flue-gas/water heat exchanger. The
heat exchanger consists of stainless steel coils imbedded in parallel flue gas streams to reduce
pressure drop and the back pressure on the turbine.
The fuel system comprises an external gas boost compressor which compresses the gas
supplied to the combustor to 5.0 bar, and an internal fuel system that provides fine control of
the gas fed to the burners.
Figure 18 shows the variation of the electrical generation efficiency and exhaust temperature of
the microturbine CHP with power output. Maximum efficiency and exhaust gas temperature is
obtained when the turbine delivers the maximum electrical power output of 80 kW.
101
4.1.2 Absorption Refrigeration Module
The refrigeration capacity of the test facility is depended on the type of thermally driven
refrigeration system used. For ammonia-water refrigeration systems providing refrigeration at 10 oC, the unit is able to provide up to 50 kW of refrigeration.
The absorption refrigeration system currently employed, is a packaged gas fired chiller of
specified refrigeration capacity of 12 kW at ambient temperature of 35 oC and chilled fluid
(brine) inlet and outlet temperatures of 0 oC and –5 oC respectively.
The gas fired unit was modified to operate with heat recovered from the exhaust gases of the
microturbine. A number of different designs were investigated: a) using the exhaust gases
directly on the generator and b) using a heat transfer fluid to transfer heat from the heat
recovery heat exchanger (boiler) of the microturbine to the generator. The latter arrangement,
was found to be more effective and the arrangement is shown in Figure 17.
Figure 19. Performance of absorption refrigeration system driven by heat
transfer fluid from gas turbine
Figure 19 illustrates the performance of the absorption refrigeration system with the heat transfer
fluid for a range of glycol delivery temperatures. It can be seen that the COP of the unit varies
from around 0.58 to 0.67 as the brine flow temperature is increases from -10.0 oC to -2.0 oC.
102
If the heat transfer fluid pump power is taken into consideration, the system COP drops by
approximately 0.08 over the whole range of brine flow.
Figure 20. Model of integrated CO2 refrigeration and trigeneration with ammonia-water
absorption chiller
4.1.3 Integration of trigeneration and CO2 refrigeration systems in supermarket applications
The energy savings potential of tri-generation systems in supermarket applications can be
increased through the use of CO2 as a secondary refrigerant to replace conventional secondary
fluids such as propylene glycol, potassium formate and others.
The viscosity of liquid CO2 is approximately 100 times less than the viscosity of common
secondary fluids and thus the power that will be required to circulate CO2 from the trigeneration system to the display cabinets will be very small and insignificant compared to the
power required for conventional secondary refrigerants. Other advantages of this system
include:
• Smaller pipe sizes and lower piping and insulation costs.re uniformity in the cabinet.
103
•
•
The use of only a single working fluid to satisfy both the frozen food and chilled food
refrigeration requirements in a retail food store.
The use of only a single working fluid to satisfy both the frozen food and chilled food
refrigeration requirements in a retail food store.
Figure 20 shows a schematic diagram of an integrated trigeneration and CO2 refrigeration
system for supermarket applications. The CO2 refrigeration system is of a cascade system with
cooling generated by the absorption system used to condense the CO2 refrigerant at a
temperature of around -10 oC.
5. Energy analysis and comparison with conventional systems
Figure 21 shows the energy flow diagram for the proposed supermarket energy system. The
supermarket considered in the study has a sales area of 2800 m2. Annual electricity
consumption of the supermarket was 3495 MWh with peak and average demand of 662 kWe
and 399 kWe respectively while gas consumption was 988 MWh with peak demand during the
winter of 385 kWth. Average demand of thermal energy was 113 kWth. There was also a
significant variation between daytime and night time electrical and gas energy demand.
Figure 22 shows the variation of the MT (medium temperature) and LT (low temperature)
refrigeration system electrical energy demand and the thermal energy demand for the
supermarket during a whole year. The total electrical energy demand for refrigeration was 2830
MWh of which 20% was for LT refrigeration. Peak refrigeration demand of the supermarket was
536 kW of which 447 kW for MT and 89 kW for LT refrigeration. Annual heating demand of the
supermarket was 791 MWh, with peak heating demand of 308 kW. Figure 22 shows the
variation of the MT and LT refrigeration system electrical energy demand and the thermal
energy demand for the supermarket during a whole year.
104
Figure 21. Energy flow diagram for conventional and proposed system in a supermarket
Refrigeration and heating
demand (kW)
MT Refrigeration
Heating
LT Refrigeration
500
400
300
200
100
0
0
30
60
90
120
150
180
210
240
270
Time (days)
Figure 22. Daily average energy demand of the supermarket
105
300
330
360
Simulation results of the conventional refrigeration system show the COP of the MT
refrigeration system to vary between 1.42 in the summer and 3.08 in winter with average
annual COP of 2.79. The COP of the LT refrigeration system varies from 0.25 in the summer to
1.29 in winter with average annual COP of 1.04. The overall average seasonal COP of the
conventional refrigeration system was found to be 2.02.
Figure 23 shows daily average efficiencies of the conventional supermarket energy system. It
can be seen the overall efficiency in winter fluctuates between 60% and 70% and then drops to
about 52% in the summer due to higher outdoor temperatures giving an overall seasonal
efficiency of 61%.
Refrigeration and heating efficiency also vary throughout the year. Annual average efficiency of
refrigeration is 48% and heating 13% respectively. Primary fuel required by conventional
system is 11580 MWh per year of which 10592 MWh is electricity and 988 MWh gas.
Overall
Refrigeration
Heating
80
70
Efficiency (%)
60
50
40
30
20
10
0
0
30
60
90
120
150
180
210
240
270
300
330
360
Time (days)
Figure 23. Daily average efficiencies of conventional supermarket energy system
Daily average efficiency of the integerated trigeneration-CO2 refrigeration system is shown in
Figure 24. It can be seen that the overall efficiency of the system can reach 75% in the winter
and drops to 51% in the summer giving an overall seasonal efficiency of 64.6%. The efficiency
of refrigeration fluctuates in the range 24% to 38% with annual average of 29.4%. The average
electrical efficiency is 27.5%. The Figure also shows that the efficiency of heating is relatively
low particularly in the summer with a seasonal average of only 7.7%.
106
Overall
Refrigeration
Electrical
Heating
80
70
Efficiency (%)
60
50
40
30
20
10
0
0
30
60
90
120
150
180
210
240
270
300
330
360
Time (days)
Figure 24. Efficiency of the integrated trigenration-CO2 refrigeration system
Table 2. Results of fuel saving analysis of the proposed supermarket energy systems
Fuel utilization
Trigeneration fuel (MWh)
Auxiliary boiler fuel (MWh)
Imported electricity (MWh)
Fuel required for imported
electricity (MWh)
Total fuel required (MWh)
Fuel savings ( MWh/year)
Fuel energy saving ratio (FESR) (%)
Proposed
System
8511
378
313
948
9838
1742
15.1
Table 1 summarises the energy performance of the proposed system compared to the
conventional system of power heating and refrigeration in the supermarket. It can be seen that
the proposed system can provide significant energy savings over the conventional system and a
fuel energy saving ratio of 15.1%.
Table 2 shows a comparison between the CO2 emissions of the conventional energy system
and the proposed integrated trigeneration and CO2 refrigeration system in the supermarket.
The results were determined for two annual refrigerant leakage rates of 15% and 30%
107
respectively. It can be seen that for a leakage rate of 15% of refrigerant charge per annum the
proposed system will lead to 1453 tonnes of CO2 emissions per year which equates to 43.5% of
annual emissions. For a refrigerant leakage rate of 30% the GHG emissions savings are even
higher at 56%.
Table 3. CO2 emissions of conventional and proposed energy system
for case study supermarket
Annual leakage 15%
of charge
CO2 emissions
Indirect CO2 emissions
Conventional
System
Proposed
System
Annual leakage 30%
of charge
Conventional Proposed
System
System
Units
2094
1807
2094
1807
tCO2/year
Refrigerant leakage
1097
68
2194
136
tCO2/year
Refrigerant recovery losses
146
9
146
Total annual emissions
3337
1884
4434
Direct CO2 emissions:
Net emission savings
CO2 emissions reduction
9
tCO2/year
1952
tCO2/year
1453
2482
tCO2/year
43.5
56.0
%
6. Conclusions
From the review presented and research on the subject by the authors it can be concluded that:

Trigeneration is a very efficient way of generating simultaneously electrical power, heating
and refrigeration. It can produce substantial energy and greenhouse gas emission savings
over separate production of electricity, heat and refrigeration.

A number of different fuels, such as biofuels, and reliable technologies can be used in
trigeneration applications.

The initial investment costs in trigeneration systems can be relatively high, but payback
periods of between 3 and 5 years can be achieved under certain operating conditions.
108

The payback period of trigeneration installations is a strong function of the difference
between the fuel price and the purchase price for electricity. A ratio of gas to electricity
prices of less than 0.3 is required to obtain reasonable payback periods.

GHG emission from energy consumption and refrigerant leakage of chilled and frozen food
products are responsible for over 90% of the carbon footprint of the distribution and retail
phase of their life cycle. This carbon footprint can be reduced significantly by the use of
natural refrigerants and trigeneration.

An innovative integrated trigeneration and CO2 refrigeration system provides enhanced
opportunities for application of trigeneration systems in the retail food sector and reducing
GHG emissions.

Models developed and used to investigate the energy efficiency of conventional HFC based
refrigeration systems and integrated trigeneration and CO2 refrigeration systems have
shown that the latter system can offer fuel energy savings of the order of 15% and carbon
emission reductions of over 44% compared to conventional systems.

Further refinement of system design is expected to increase fuel energy savings to ver
30% compared to conventional systems and increase significantly the sustainability of the
food industry.
Acknowledgements
The authors acknowledge the financial support received from the Food Technology Unit of
DEFRA (Department of Environment Food and Rural Affairs) for research reported in this paper
and the contribution of a large number of industrial collaborators: Tesco Stores Ltd, A&N
Shilliday & Company Ltd, ACDP (Integrated Building Services) Ltd, Apex Air Conditioning Ltd, Bock
Kältemaschinen GmbH, Bond Industries Ltd, Bowman Power group, Cambridge Refrigeration
Technology, Cogenco, CSA Consulting Engineers Ltd, Danfoss, Doug Marriott Associates, George
Baker & Co (Leeds) Ltd and Somerfield Property Co Ltd.
References
1. Robert, K-H., Schmidt-Bleek, B., Aloisi de Larderel, J., Basile, G., Jansen, J. L., Kuehr, R.,
Price Thomas, P., Suzuki, M., Hawken, P.,Wackernagel, M. Strategic sustainable
development — selection, design and synergies of applied tools, Journal of Cleaner
Production 10 (2002) 197–214.
2. BSI Group, PAS 2050:2008, Specification for the assessment of the life cycle greenhouse
gas emissions of goods and services, 43 pgs, downloadable from:
http://www.bsigroup.com/en/sectorsandservices/Forms/PAS-2050-Form-page/Thank-you/
last accessed 17/03/2010.
109
3. BSI Group, Guide to PAS2050, How to assess the carbon footprint of goods and services,
58 pgs, downloadable from:http://www.bsigroup.com/en/sectorsandservices/Forms/PAS2050-Form-page/Thank-you/ last accessed 17/03/2010.
4. Lillywhite, R., Collier, R. (2009), Why carbon footprinting (and carbon labelling) only tells half
the story, Aspects of Applied Biology 95, 2009, http://www.aab.org.uk/
5. Defra (2008). PAS2050 Case Study. Applying PAS2050 to a complex product: Cottage pie
ready meal, www.defra.gov.uk.
6. FDF (2008). Carbon management, best practice in food and drink manufacturing,
www.fdf.org.uk.
7. Defra, 2008. Environmental Impact of food: Life Cycle Greenhouse Gas Assessments,
http://www.defra.gov.uk/foodfarm/food/environment/gas.htm.
8. Bassols, J., Kuckelkorn, B., Langreck, J., Schneider, R., Veelken, H. (2002). Trigeneration in
the food industry, Applied Thermal Engineering, Volume 22, Issue 6, Pages 595-602.
9. Maidment, G. G., Zhao, X., S. B. Riffa S. B., Prosser, G. (1999). Application of combined
heat-and-power and absorption cooling in a supermarket, Applied Energy Volume 63, Issue
3, July 1999, Pages 169-190.
10. OPTIPOLYGEN
(2007).
Optimum
Integration
of
Polygeneration
systems,
www.optipolygen.org/
11. Tassou, S. A., I Chaer, I., Sugiartha, N., Ge, Y-T., Marriott, D (2007) Application of trigeneration systems to the food retail industry, Energy Conversion and Management, Volume
48, Issue 11, Pages 2988-2995
12. Sugiartha, N., Tassou S. A., Chaer, I., Marriott, D., Trigeneration in food retail: An energetic,
economic and environmental evaluation for a supermarket application Applied Thermal
Engineering 29 (2009) 2624–2632.
13. Fuel cell Today (2007), http:// www. fuelcelltoday.com/media/pdf/
14. Stirling Danmark (2007) http://www.stirling.dk/
15. OPET (2004) Micro and small scale CHP from Biomass, http://akseli.tekes.fi/
16. Robur (2010). http://www.robur.it/
17.Tassou, S. A., Lewis, J. S., Ge, Y. T., Hadawey, A., Lewis, J., Chaer, I., Review of Emerging
Refrigeration Technologies for Food Refrigeration Applications, Applied Thermal Engineering
30 (2010) 263–276.
18. TES PVT Ltd (2010) http://www.tesplaarp.com/.
19. HIJC INC (2006) USA,http://www. adsorptionchiller.bigstep.com/
110
SEEP 2010 CONFERENCE KEYNOTE
Innovation in Tradition©:
a new motto for Sustainability
M.Dassisti (1)
(1) Politecnico
di Bari, D.I.M.e.G, Viale Japigia 182 - 70126 BARI
URL: hychange-lab.poliba.it - EMAIL: m.dassisti @poliba.it
Sustain-ability assumed only recently a different meaning of the old verb “to sustain” deriving
from Middle English ‘To keep in being; to continue in a certain state; to keep or maintain at the
proper level or standard; to preserve the status of’ [1]. The swiftness of changes in our lives
induced by scientific discoveries or, to better say, by the deterministic infinite conception of the
cosmos induced by Western scientific thought [2] is hopefully responsible for the new
consciousness finiteness of our world, the surrounding environment which permeates our lives.
The word sustain-ability is made of two separate words to stress the true meaning of it: ability
to sustain. But the true point is in the debate of sustainability is to sustain but which state, to
what extent to maintain the present status of human impact on the Earth and the living
standards, that are so different on the globe to create dangerous differences of what we can
call “potential social-energies”, borrowing from the physical concept, to explode in social
disorders and injustice we are witnessing.
Even more science needs to change attitude and to adsorb ethics and moral questions,
avoiding that theoretically marvellous but pragmatically dangerous “inertial view” science,
belonging to a the deterministic conception of science of the last century.
Science -- born from the curiosity of humankind, a sort of unexplained revenge or need of
identity but far from the old natural equilibrium of a mankind as a part of the Whole Universe—
induced a vision of our word, that is to say a <<…cosmology that is mechanicistic, deterministic,
atomistic and reductionalist..>> [2].
Now we are facing with the effect of these three last centuries dominated by such a though of
infinity, that finally justified the distortion of consumerism; sustainability struggle is a form of
rebellion or a renaissance of our sleeping consciousness from the scientific side, that has
different forms in other aspect of social life: the revival of regionalism in politic, that fear of
diversity which is nothing but the fear from the loss of our vital reference points, those
standards made of traditions, on unchanging environments, of seasonal cyclicity that we all are
perceiving, in different forms and reasons.
111
In this scenario, how can a conference add something news? How can we contribute to this
overwhelming arguments?
Just one motto may synthesize my personal contribution to this fundamental question tied to
our survival: innovation in tradition! Meaning to rediscover those wisdoms of our ancestors but
without loosing the outcomes of science and welfare reached so far, to rejoin past and future
congruently. Without denying all the discoveries and knowledge accumulated – it would be also
impossible, indeed - simply to contextualize into our world the sense of finiteness [3], not
simply changing the face of a never-ending consumerism.
This lead us to a double reasoning which should be stressed against the old infinite paradigm
of the Industrial Growth Society: the means energy should be produced but also limited in
consumption to maintain an equilibrium, as well as manufacturing (i.e. transformation of
matter) should be made in a sustainable way (compatible with actual resources, preserving
reservoir for life to minimize impact on environment) but also should responding to true needs
and, more important, sustainable also for the whole humankind.
The final question still remain unchanged, as recalled in the motto Innovation in tradition, to
recognize our truly needs and to come again to that wisdom quoted in [2] from T. S. Elliot
<<Where is the wisdom we have lost in knowledge, where is the knowledge we have lost in
information>>: I would say also for our time <<where is the information, we have lost in frenetic
communications”. The true resource of man is time, and we must go back in the middle ages,
when life in monastery was signed by two phases: the “time of the market” and the “time of
God”. Actual period seems mostly overwhelmed by “time of market”, and its frenzy of infinite
wealth, and almost disappeared the other phase: rediscovering it would be a reconciliation with
our environment and the finiteness of our lives.
References
[1] Tainter Joseph A., 2006, Social complexity and sustainability, Ecological complexity, 3, 91 –
103.
[2] Hathaway M ., Boff L., 2009, The Tao of Liberation, Orbis Book, New York, ISBN 978-157075-841-6.
[3] Vitek B., Jackson W., 2008, The Virtues of Ignorance, The University Press of Kentucky,
ISBN 978-0-8131-9258-1.
112
INTERVENTI PROGRAMMATI
La sostenibilità energetica: questione di scala
(Invited speech)
Domenico Laforgia
Magnifico Rettore - Università degli Studi del Salento
Direttore “Centro di Ricerca su Energia ed Ambiente”
113
EOLICO
114
SVILUPPO DELLE TURBINE EOLICHE
IL FUTURO: OFF-SHORE
115
Middelgrunden, DK
(2000)
20x2 MW (89 GWh/yr), 3.5
km from coast, 3-6 m depth
Horns Rev, DK (2002)
80 x 2 = 160 MW, 14 km from shore, 6-12 m depth
116
IMPIANTO EOLICO OFF-SHORE SU PIATTAFORMA SOMMERSA
GALLEGGIANTE A SPINTA BLOCCATA, PER LA PRODUZIONE DI ENERGIA
ELETTRICA, MARICOLTURA ED IDROGENO
L'impianto è stato studiato per produrre energia elettrica, per la generazione di Idrogeno
direttamente da acqua di mare e per fornire elettricità ad impianti di acquacultura.
117
IL FUTURO: IMPIANTI OFF-SHORE IN ACQUE PROFONDE
Horns Rev wind park (DK) 25 km dalla costa
118
ENERGIA
SOLARE FOTOVOLTAICO
META
Metodo Eolico per la Tutela dell’Ambiente
119
Gli inseguitori più diffusi sono quelli a un grado di libertà detti anche azimuth.
L'incremento di produzione elettrica risultate è ~ 17%.
Gli inseguitori a tilt sono anch'essi ad un grado di libertà, ma nel senso
verticale. L'incremento di produzione risultante è ~ 6%.
CELLE FOTOVOLTAICHE INNOVATIVE
CELLE FOTOVOLTAICHE
MULTIGIUNZIONE
Differenti materiali semiconduttori disposti a
strati, uno sull'altro, e che permettono alle
differenti porzioni di spettro solare di essere
convertite in elettricità a differenti
profondità, aumentando con ciò l'efficienza
totale di conversione della luce incidente
Materiali Utilizzati: arsenuro di gallio (GaAs), il
rame indio diselenide (CuInSe2), il tellururo di
cadmio(CdTe), fosfuro di indio-gallio (GaInP2),
l'alluminio-gallio-arseniuro (AlGaAs), gallioarseniuro (GaAs).
120
CELLE FOTOVOLTAICHE INNOVATIVE
CELLE ORGANICHE
Utilizzano come elemento attivo non più un semiconduttore inorganico
come il silicio, bensì una serie di materiali organici (polimeri o piccole
molecole).
Solare PV: Trends
Source: Sinke, ECN, 2001
• Focus su building-integrated PV (Tetti, facciate)
• Silicio ancora dominante, thin films inizio fase
commerciale
• Energy payback time: 5 a 8 anni; sono necessari
sforzi tecnologici per ridurlo a 2-3 anni
121
VEICOLO SOLARE ELETTRICO VEUS08
Uno Sguardo al Futuro dell’Energia Solare:
Le Nano-Rectenne
Nikola Tesla (1856-1943)
La Storia:
Nel 1899 a Wardenclyffe Tesla accese
delle lampade a 25 miglia di distanza
con rete wireless;
Nel 1964 William C. Brown dimostrò che
una rectenna poteva convertire
microonde in elettricità;
122
Schema Funzionale di una Rectenna
ENERGIA
SOLARE TERMICO
123
Lo Stato dell’Arte
Elevati costi di impianto
Gestione sistemi di accumulo
10 MWe a Barstow, California
(Fonte: Ren. Ener. World, 2000)
Impatto ambientale
Principali Innovazioni Tecnologiche
•
•
•
•
Nuovi fluidi vettori termici
Nuovo sistemi concentratori/collettori
Ottimizzazione Cicli termodinamici per lo sfruttamento del
solare termico ad alta temperatura
Nuovi approcci ai sistemi di stoccaggio termico/chimico
– Analisi e ottimizzazione di materiali solidi per lo
stoccaggio termico per il superamento dei transitori
– Studio del comportamento termo-fluido-dinamico dei
sistemi di stoccaggio termico e chimico
124
Nuovi Fluidi Vettori Termici
La necessità di sostituire i Sali Fusi
impone lo sviluppo di soluzioni
alternative compatibili con la
generazione diffusa.
Studi preliminari hanno dimostrato
che è possibile aumentare la
conducibilità termica di un fluido
disperdendo in esso nanoparticelle.
Ad oggi non sono ancora noti gli
effetti
dovuti
a
dispersione
dimensionale,
morfologia
e
proprietà
ottiche
delle
nanoparticelle.
Linee di sviluppo
1. nanoparticelle sferiche di dimensione controllata nel range 3-20 nm;
2. nanoparticelle di forma controllata, in particolare fili con diametro di
qualche nanometro e lunghezza di qualche decina di nanometri;
3. determinazione della conducibilità termica e del coefficiente di
scambio liminare di nanofluidi;
4. determinazione delle proprietà ottiche sia delle particelle che dei
nanofluidi
5. compatibilità con tutti i componenti l’impianto
6. Metodologie di produzione in larga scala
125
Nodi tecnologici da risolvere
• Messa a punto e verifica del processo di
produzione delle nanoparticelle con i materiali
più idonei allo scambio termico su larga scala
• Individuazione delle condizioni che consentano
di ottenere la distribuzione morfologica che
ottimizza lo scambio termico
• Sistemi di monitoraggio e rigenerazione dello
stato di deterioramento e/o agglomerazione
delle nanoparticelle.
Sviluppo di materiali e superfici
emettitori ed assorbitori selettivi
• Ottimizzazione dell’efficienza
del collettore solare tramite il
controllo delle proprietà di
assorbimento e riemissione
spettrale:
– Ricerca su materiali e trattamenti
superficiali in grado di
massimizzare al captazione
solare minimizzando
contemporaneamente la
riemissione nell’infrarosso
126
I Nostri Obiettivi
Progettare e realizzare coating
o materiali emissivi con elevati
coefficienti di assorbimento e
bassi coefficienti di emissione
alle temperature di lavoro.
Le performance richieste
ad un buon assorbitore
emettitore selettivo
riguardano valori dei
coefficienti di assorbimento
superiori a 0.9 e dei
coefficienti di emissione
inferiori a 0.1.
Progettare e realizzare
materiali coibentanti con
coefficienti di conduzione
termica bassi e con proprietà
ottiche dettate dal percorso
imposto alla radiazione solare
dal collettore stesso.
I coefficienti di conduzione
termica richiesti ad un
buon isolante termico sono
dell’ordine di 0,01-0,02
W/mK
Concentratori/colletori solari Innovativi
Riflettori innovativi a basso
impatto ambientale
Specchio
parabolico
Coating
protettivi
per
i
collettori solari con elevati
coefficienti di assorbimento
(>0.9) e bassi coefficienti di
emissione (<0.1)
Rivestimento in
aereogel
Materiali
coibentanti
per
contenere le perdite radiative
dei collettori
Cavità con concentratore
parabolico
Sistema cavità-concentratore
solare con elevata efficienza
(>70%) ottimizzato per l’uso
delle nanoparticelle
127
Sistemi di accumulo dell’energia
Accumulatori di energia termica a calore sensibile e latente:
Gli accumulatori di energia termica a “calore sensibile” sfruttano la
capacità termica di un materiale che funge da serbatoio di
energia termica.
Materiali impiegabili:
- solidi (acciaio, granito);
- liquidi (gallio, sodio, oli termici).
Gli accumulatori di energia termica a “calore
latente” sfruttano l’energia associata al
cambiamento di fase di un materiale.
Sistemi di accumulo dell’energia
Accumulatori di energia chimica:
Un
sistema di accumulo basato sull’idrogeno
prevede un generatore di idrogeno gassoso
alimentato dal sistema ad energia solare con la
potenza prodotta in eccesso rispetto alla
richiesta da parte dell’utenza.
Sarà realizzato un termocatalizzatore indipendente
alimentato con fluidi riscaldati in ricevitori
dedicati integrati con combustore ausiliario per
garantire il funzionamento dell’impianto anche
con energia solare insufficiente.
128
INTERVENTI PROGRAMMATI
Lo stabilimento ILVA di Taranto
Gli investimenti per migliorare la compatibilità ambientale
Ing. Adolfo Buffo
Responsabile Qualità, Sicurezza e Ambiente
L’acquisizione dello stabilimento Ilva di Taranto da parte del Gruppo Riva è stata
accompagnata da un oneroso e imponente piano di ammodernamento tecnologico degli
impianti che ha consentito il recupero ed il rilancio dell’attività produttiva e la progressiva
riduzione dell’impatto ambientale. La questione dell’eco-sostenibilità dello stabilimento è stata
posta al centro di tutte le scelte di investimento.
Nello stabilimento di Taranto, considerato di estrema importanza strategica, l’azienda ha
concentrato più dell’80% degli investimenti realizzati in tutti gli stabilimenti del Gruppo, in Italia
e all’estero. Tutti gli utili sono stati interamente reinvestiti: dal 1995 alla fine del 2009 il
Gruppo Riva ha investito, a Taranto, poco più di 4,2 miliardi di euro (circa ottomila miliardi di
lire). Considerate le risorse impegnate, si è trattato di uno dei più grandi investimenti privati
nella storia dell’industria del Mezzogiorno. Un miliardo di euro, il 25 % del totale, è stato
investito per l’ecologia e la tutela dell’ambiente.
Dal 2004 tutti gli investimenti di ambientalizzazione sono stati realizzati in attuazione di Atti di
Intesa stipulati con le autorità nazionali e territoriali. Nel periodo 2004-2010 lo stabilimento ha
definito un piano di interventi per la prevenzione integrata dell’inquinamento per un importo
pari a circa 500 milioni di euro. La politica seguita si è soprattutto indirizzata verso la
realizzazione di impianti in linea con le Migliori Tecniche Disponibili (MTD) attraverso la
progressiva riduzione delle emissioni in atmosfera e il potenziamento delle prestazioni degli
impianti di depolverazione e di abbattimento delle emissioni, la riduzione del carico inquinante
nelle acque di scarico, la progressiva eliminazione delle sostanze pericolose (primi fra tutti
amianto e PCB), il miglioramento della gestione delle emissioni solide (residui, recuperi,
sottoprodotti e rifiuti).
Gli investimenti effettuati hanno effettivamente migliorato la compatibilità ambientale dello
stabilimento: le emissioni in atmosfera si sono ridotte (con valori che, a seconda dei casi,
vanno dal 50 al 90 %) e la qualità dell’aria è migliorata in maniera significativa: i dati rilevati
dalle centraline di monitoraggio gestite dall’Agenzia Regionale per l’Ambiente (Arpa) dicono
infatti che negli tre anni le polveri sottili PM10 si sono ridotte del 20-30% e rispettano i limiti
normativi. Infine, le classifiche stilate da Legambiente pongono Taranto (nel 2009 e in questa
parte del 2010) fra le città a più basso livello di polveri sottili.
Tutti gli investimenti sono stati realizzati avendo inoltre come obiettivo la riduzione dei consumi
energetici. Lo stabilimento è infatti impegnato anche in un programma di miglioramento dei
cicli produttivi e di incremento dell’efficienza energetica attraverso l’utilizzo di tecniche e di
129
metodologie finalizzate a ridurre i volumi della CO2 emessa, nei prossimi anni, per circa
500.000 tonnellate all’anno. Nel campo della ricerca di nuove tecnologie per la riduzione della
emissione di CO2 durante la fabbricazione della ghisa, il gruppo Riva ha inoltre aderito al
Consorzio ULCOS quale membro costituente insieme ad altre 7 primarie aziende siderurgiche
europee. In ambito siderurgico il Programma di ricerca Ulcos rappresenta, a livello mondiale, la
più significativa realtà di ricerca applicata alla soluzione del riscaldamento globale e si
concluderà, entro la fine del 2010, con la definizione di un processo pilota d’altoforno in grado
di garantire una riduzione degli agenti riducenti e delle emissioni di CO2.
130
INTERVENTI PROGRAMMATI
Energy Efficiency and Environmental Sustainable Policies
in Local Municipalities
Ing. Pasquale Capezzuto
Energy Manager
P.O.S. Energy and Safety Installs - Municipality of Bari
President of Energy Managers Association
Scenario
The theme of the energetic efficiency in the final uses appears as a categorical imperative for
the attainment of the objectives of international character of reduction of the so-called
“greenhouse gases emissions” .
Burning the combustible fossils for the energetic uses we introduce in the atmosphere
substances to various title polluting and more than 40 million tons of carbonic anhydride of
which the contribution is well known to the so-called "GHG” - “ Greenhouse gases emissions "
and the so called Global Warming.
The primary energy consumption for the construction and restructuring of buildings and their
management, reported to the around 190 Mt.e.p.s of the national requirement, constitutes
around 45%, or rather around 84 Mt.e.p.
Besides, while the total national shows rates of increase smaller then 1% annual, the civil
sector, because of the progressive growth of his electric percentage, it increases his own
primary consumptions and the relative emissions of 2% annual (White Book ENEA Energy
Environment Building).
The development of the renewable sources of energy and the efficient use of the energy are
today therefore to the first places in the notebooks of the international organizations.
The due attention to the use of the energy is able to rise from our cities: it is able to revive a
movement that hands to new models of development more careful to the environmental
sustainability.
Beginning from 1993 a strong activity is developed for the protection of the climate to local
level both in Europe and both to international level, mainly through actions of mitigation and
now also of adaptation.
The Local Governments, as level of governance more next to the citizens, must make load of
the leadership within the climate protection actions, develop an Action Plane on Climate with
Gas Inventory.
131
Communities have an inherent responsibility for a healthy and safe environment and
functioning of the society and are usually responsible for primary and secondary education and
have an impact on attitudes and behaviour of the people.
On this important theme, a series of Conferences on the Climate of I.C.L.E.I. have launched
many clear and strong messages in the last years: in May 2006, the Conference on the Climate
in Stockholm has launched a clear message for the cities so that assume the leadership in the
efforts of mitigation and adaptation, fixing objective ambitious and constantly operating for
their attainment.
The Conference in Freiburg on the Renewable Sources of Energy Local, held in June 2007,
had a central importance underlining as the local action is essential, and as the attainment of
the objective of the use of the 100% of renewable energy both already a reality in the
communities model.
To April 2008 to Rovigo is worked departing from practical examples that have been successful
to local level in theme of mitigation and adaptation.
And is necessary a radical change in the administration of our cities and community, of our
resources and in the decisional trial, with the purpose to achieve a real climatic protection.
Toward a local energy policy .
Our Country from years doesn't have an energetic and environmental policy, thinking that the
logic of the market could regulate the development.
The markets are not interested however to environmental and social objectives.
And is necessary a strategic plan for the industrial, economic and social policies of the Country
that points out general addresses and avoids lobbies and harmful regionalisms.
One of the objectives of the energetic policy is to make enjoyable energy from every individual
and to allow an intelligent possibility of access to the compatible energy with the general
objectives of the community.
Problems connected to the energy as the climatic changes are often global.
And is necessary therefore to coordinate the energetic behavior of the many, not only to
inevitably overcome the wastes and the ineffectiveness connected with the micro-management
of the operations, but also because the civil society in her complex, private, small communities
(for es. condomìnia), small firms, can access to the more consistent energy technology for its
demands of use, but consistent with the general principles of the sustainability.
During the years the legislative changes in subject of administrative decentralization have
delegated the management of the energy to the Local Government today.
132
The Local Autorithies , what level of governance more next to the citizens, must make load of
the leadership within the climate protection, and to effect the involvement of the citizens
community and change of their style of life to redefine the standard of quality of life.
The local institutions know local realities and their interactions are able to direct the styles of
life of the citizens toward models more aware and rational, toward an "intelligent" use of the
available energy for everyone.
The Local Autorithies are able to furnish a contribution to the reduction of the energetic
consumptions and the issues to national level to effect the Government of the use of the
energy in the town territory.
From European Conference on Climate Changes Rovigo 2008: EIGHT ARGUMENTS
FOR LOCAL COMMUNITY LEADERS TO USE LOCAL RENEWABLES3
(1) Renewable energy (RE) sources are available locally, with RE technologies ready for use
today.
(2) The use of local resources to produce energy locally ensures a decentralised secure energy
supply, making communities more resilient and less dependent on imported fossil fuels.
(3) Switching to Local Renewables bring financial benefits – saving money and generating an
income over the short to long-term.
(4) It creates jobs and stimulates the local economy.
(5) Local Renewables give an impulse to urban development and encourage technical and
social innovation in communities.
(6) Moving away from fossil fuels, towards Local Renewables, will reduce CO2 emissions and
support climate protection.
(7) Local action is critical in achieving targets – national, regional and international – on
sustainable energy and climate protection.
(8) The local community is key to reaching and involving various stakeholders, including
citizens, business, industry, local researchers, etc.. – a driving force for innovation and change
towards sustainable Energy.
The town energetic policy is realized through an energetic planning to local level , the Town
Energetic Plan effected from a specific “ energy office “ and through a system of management
of the energy or Energy Management.
133
The Energy Manager in the Local Government
The art. 19 of the law n. 10/91 have introduced in the national panorama the figure of the
responsible for the maintenance and rational use of the energy, already institutionalizing the
duty of Energy Manager present in the great structures of the tertiary one or the industry.
They are institutional performed of the energy manager: the institution of an energetic
accounting in form simplified for the anticipated communication of the consumptions by the
law; the analysis of energetic situation of the town patrimony and the predisposition of studies
of feasibility of interventions of energy rationalization on the town patrimony.
The responsible for the maintenance and rational use of the energy, named therefore to the
senses of the art. 19 of the law n. 10/91, is today the Expert in the Energy Management
according to the D.Lgs. n. 115/08 .
The energy town manager in position of Staff in the administration will owe therefore to furnish
the inputs for an effectiveness policy of improvement of the energetic efficiency of the
patrimony building-systems town and of mitigation and adaptation to the climatic changes.
To the institutional assignments go to cooperate those anticipated from the Decree n.192/05
that to the paragraph 15 of the enclosure have introduced, with the finality to effect a control
of the application of the art. 26 of the law n. 10/91, the obligation for the subject to the
dispositions of which to the art.19 of the same law to integrate the relation ex art. 28 law n.
10/91 with an attestation of verification on the application of the norm compiled by the
responsible for the maintenance and rational use of the energy named.
Today there is a wide truancy appointed by parties responsible and what influsice greatly on
the degree of energy efficiency of structures.
The Market of the Energetic Services is estimated at least 5 - 10 million of Euro the year and
in 25 million of Euro in the long period to European level.
From data CONSIP we notice that the demand of heating in Government is equal to over 2.300
mlns / Euro / year [Consip, 2007], the supply combustible: 1.620 + services 718 million of
Euro.
This shows the interest that European Union to a particulary energy consumption sector.
The Energy Services Directive, 2006/32/EC provides that Member States take on long-term
plans for energy efficiency (EEAP) in which the milestones will be established and the strategy
for achieving them.
In Italy the transposition of the Directive 2006/32/CE is happened with the D.Lgs. n. 115 of
May 30 2008.
The Decree n.115/08 "realization of the directive 2006/32/CE related to the efficiency of the
final uses of the energy and the energetic services and abrogation of the directive 93/76/CEE"
Official Gazette n. 154 of July 3 rd 2008 have pointed out what intending for Energy
134
Management System namely the part of the management system that includes the
organizational structure, the planning, the responsibility, the procedures, the trials and the
resources to develop, to implement, to improve, to get, to measure and to maintain the
business energetic policies.
The art. 16 (qualification of the suppliers and the energetic services) of the D.lgs 115/08 of
realization of the Directive 2006/32/CE foresee:
1. to the purpose to promote a process of increase of the level of quality and technical
competence for the suppliers of energetic services, following the emanation of special standard
U.N.I.-C.E.I., the M.S.E. approves a procedure of voluntary certification for the experts in
management of the energy;
2. to the purpose to promote a process of increase of the level of objectivity and reliability for
the measures and the systems finalized to the improvement of the energetic efficiency,
following the emanation of special norm UNI-CEI, the M.S.E. approves a procedure of
certification for the system of management energy.
The same article foresees a qualification of the suppliers and the energetic services and a
procedure of voluntary certification of the experts in management of the energy and the system
of management of the energy following approval of the standard C.E.N. 16001.
The standard U.N.I. C.E.I. 11339 -2009 " Management of the energy. experts in management of
the energy. general for the qualification " and the standard UNI CEI 11352 "the energy's
Management. Society
that furnishes energetic services ESCO- general and list of control for
the verification of the requisite", April 2010 and the Pr E0202C160 "the energy management Expert in the management of energy - Guidelines for the Certification", the Pr E0202C170 " the
energy management - energetic diagnosis, general and details of the service of energetic "
diagnosis they constitute the actual and future normative for the activity of this new figure.
The directive 2006/32/CE ask therefore members to confer to the public sector an exemplary
role to States and also the L.D. n. 115/08 foresees this role for Public Administrations.
The art. 12 “Energy efficiency in the public sector” attributes the obligation to apply the suitable
dispositions to the public administration.
The administrative, managerial and executive responsibility of the adoption of the obligations of
improvement of the energy efficiency in the public sector, of which to the articles 13, 14 and
15, are assigned public owner or user of the asset or service to the administration of which to
the same articles, in the person of the responsible of the realization of the obligations
anticipated .
In the public buildings is obligatory:
a) the resort, also in presence of outsourcing of competences, to the financial tools for the
energy saving for the realization of the interventions of redevelopment , including the contracts
135
of energy efficiency, that foresee a reduction of the consumptions of energy measurable and
predetermined;
b) the energetic diagnoses of the public buildings or to public use, in case of interventions of
restructuring of the thermal plants, understood the substitution of the generators, or of building
restructurings that concern at least the 15 percent of the external surface of the building wrap
that contains the heated gross volume;
c) the energetic certification of the public buildings or to public use, in the case in which the
total useful length overcomes the 1000 square meters and the posting of the certificate of
certification in a place, of the same building, easily accessible to the public, to the senses of the
article 6, paragraph
Procedures of competition:
To the public contracts having to object the trust of the management of the energetic services
and that they together foresee to the execution of an energetic diagnosis, the presentation of
project in conformity to the levels of planning specified by the article 93 of the decree
legislative 12 April 2006, n. 163, as well as the realization of the interventions through the tool
of the financing through third, is applied the criterion of the more advantageous offer at the
article 83 of the decree legislative 12 April 2006, n. 163, also lacking preliminary project
compiled edited by the administration.
The decree foresees some tools for the improvement of the energetic efficiency what the
Contract service energy, the Contract service energy "Plus", the Contract of energy efficiency .
The building energy performance labeling must have effected before the start of the contract
of service energy understanding the need of a preliminary evaluation during the offer and the
possibility during the terms of contract , to arrange further moments of verification.
Insofar for all the public buildings from 1/7/2007 should be available the data of the certified
energy consumptions.
In the public sector we remember that already from 1991 the Italian legislator had predicted
in the law n. 10 9/1/1991 to the art. 26 that ": in the buildings of public ownership or turned to
public use it is obliged to satisfy the energetic requirement of the same resorting to renewable
sources of energy assimilate excepted in case of impediments of technical or economic
nature."
"The planning of new public buildings must foresee the realization of every plant, work and
installation useful to the maintenance, to the saving and the rational use of the energy..".
The DP.R. n. 412 of August 26 1993 and ss.mm.ii.: " for the buildings of public ownership or
turned to public use is made obligation, to the senses of the paragraph 7 of the art. 26 of the
law January 9 th 1991, n. 10, to satisfy the energy requirement favoring the appeal to
renewable sources of energy or assimilate to the senses of the art. 1 paragraph 3 of the law 10
same, excepted impediments of technical or economic nature.
136
As it regards the thermal plants in buildings, such obligation determines in case of new
installation or restructuring .
The D.P.R. n. 59 of 2009 point out to the public sector to develop an exemplary role .
It foresees reduction of the limits of energy performance and trasmittances and global output
of plant for the public buildings.
The Energy Management In the Local Municipality
The Local Municipality expounds their own actions both on the town territory, with actions type
publicist , that on own patrimony, with aspects of privatistic nature .
The publicistic aspects:
- Regulation of the energetic consumptions in the territory town
- Planning and realization buildings
- Control of the Plain thermal plants of the territory urbanistic,
- Rules buildings and traffic plain
- Relationships with concessionaires of services
- Firms participated Information
- Promotion infrastructures territorial
- Regulation installs energetic on the territory you
- Check on the realizations building
Actions on the town territory from the office energy: the control of the observance of the Law n.
10/91 today D.Lgs. N. 311/06 as tool of control and promotion of the quality' housebuilding.
The application of the Decree in the Muncipality of Bari has brought from 1995 to today the
beneficent followings in terms of reduction of the CO2 emissions:
Reduction of the consumptions : from 120 kWh m2 /year to 60 kWh m2/year and
avoids CO2.
20.567
The Municipal Energy Environmental Plan
To general level of the efficient use of the energy in the final uses today the Local Government
must effect an energetic policy or rather the Government of the use of the energy in the town
territory.
The art. 5. paragraph 5 law n. 10/91 foresee the obligation of approval of the "Muncipal plain
related to the use of the renewable sources of energy" for Governments with superior
population to 50.000 inhabitants.
137
Such disposition of law (art. 5 paragraphs 5 of the law n. 10/91) foresees that the energy
manager makes promoter of editing the Muncipal Energetic Plan today more correctly
Municipal Environmental Energy Plan (M.E.E.P.).
The M.E.E.P. provides actions for reduction of energy consumptions in all sectors of the
economic life of the town.
One of the elective sector for interventions of energy efficiency is the residential sector.
In our Europe the 80% of population lives in urban areas. In Italy in nine great metropolitan
regions of the country it assembles more than the 55% of the Italian population.
And the energetic state of the Italian buildings patrimony and particularly of that public:
Global consistence: absence of censuses and respects global
Consistence of some sectors:
- SCHOOLS: 45.000 buildings [MIUR 2006]
- Public Buildings : 20.000 [Agency of the Demanio 2008]
- Partner-sanitary Buildings: 7.500 + 1.300 hospitals [Office of the Health 1990]
The state of building patrimony for energy efficiency:
- up to 1980 (great part): absence of normative on the energetic saving of the buildings
- 1980 -1990: criterions by now inadequate L. 373/1976 - 1990...: missed application L.
10/1991 in the housebuilding public reduction of the limits of energetic performance and
trasmittances and global output of plant for the public buildings.
Total annual expenditure
Fuel for heating + electric energy [respect: Consip 2006] 4.500 million Euro
Respect Index Consumption : Program "BRITA PUBS" UE "energetic Retraining of the public
buildings" 2007 : 200 KWh/m2/year - annual energetic consumption to the m² of heated (well
European middle superior) surface.
The Italian building patrimony therefore strongly "energivorous" in comparison to other
European countries, the tendencies in action show the adoption more and more binding and
drastic of policies and interventions contemplated in the different sectors and particularly in
that of the public buildings.
The national building park, is altogether few efficient and straight the 70% of the buildings are
of anterior epoch to 1976. Analogous percentage has not received extraordinary maintenance
for 20 years.
40% some buildings have more than of 50 years and introduces problems of degrade physical,
functional obsolescence and typological .
138
Two million of families (10% of the population) live in buildings built among 1946 and 1971
under mediocre or bad conditions of maintenance.
The worse buildings have been built among 1945 and 1970 / building techniques of scarce
quality, dispersing wraps, thermal bridges, condensations, etc.).
To face such scenery the Local Government is able today to promote a new sustainable
housebuilding.
The primo report ON-RE - Observatory National Building Rules for the Energy Saving October
2008 allows us to know how much it is happening to the Italian Local Municipalitie for the
development of the energetic efficiency and the renewable sources in the housebuilding.
The investigation realized by Cresme and Legambiente on a champion of 1000 Local
Municipalities has picked up and listed 188 building rules, that, with obligation (104) or with
alone incentives (85), they promote a different way to build that it looks at the environmental
sustainability.
What is emerging is a scenario in which, through a profound innovation in how to design, build and operate
the buildings not only can significantly reduce the demand for electricity and thermal in civil sector , but
even some of the energy will be produced and consumed by buildings or exchanged with the network.
Well, some hundreds of Local Municipalities have already set in motion by decisions that have paved the
way not only the dissemination of solar thermal and photovoltaic, but have made it easier to intervene to
make heating more efficient to have a better insulation buildings, more efficient water management and
resources, thus promoting a truly sustainable building.
These experiences are the starting points for reasoning, looking to the construction sector in Italy, how to
reduce energy consumption and emissions related to civil use.
A goal of sustainability must change our approach to building construction by extending the
concept of life cycle of building products, "from the cradle to the grave”, whereas that is'
measurable impact on the environment in different stages of the cycle of production, use and
disuse.
Sustainability Construction can feed the huge housing problems with the development of 'social
housing that addresses the energy needs and regeneration of the City.
The Public Administration is not able alone to handle the financing and realization of the
necessary works: it must use the contribution of the Privacy and tools of P.P.P. , Public Private
Partnership .
Public Administration have to adopt new normative philosophies that overcome the traditional
conception prescriptive urbanism toward new forms of planning and government that conjugate
the interest of the collectivity with that of the private operators, through plans of urban
retraining, programs of district, etc., it is able to direct and to stimulate the real estate market
of the retraining.
139
We don't forget that the filiera of the sector of the constructions (enterprises of construction,
activity real estate, planners) occupies 4.928.900 people in 2005, equal to 21,8% of the busy
ones in Italy.
Planning Tools as:
- Integrated programs of Intervention (PII),
- Programs of Urban (PRU) Recovery,
- Programs of Urban Retraining for the building recovery and functional of Circles Urban (PRIU)
Contracts of District
- Program of Urban Retraining and of Sustainable Development of the Territory (PRUSST)
- Program URBAN I and II on initiative of the European Fund of Regional (FESR) Development
can constitute tools of energetic policies to local level.
We remember however that the new constructions are the 2% of the park, the 2% of new
lodgings with consumptions 50% meeting places will give only 7% of contribution to the global
objective.
It needs to thickly intervene on the existing building patrimony that introduces the most
elevated borders of improvement performances and to plan the new constructions with
elevated levels of energetic efficiency to low issues.
The market of the recovery has equalized that of new constructions and it overcomes the
market of the ordinary and extraordinary maintenances , up to reach the 70% of that of the
constructions.
The Puglia region is crossing a road toward to live sustainable today, or rather toward a
certification of the quality of the building.
In the region has been promulgates the law "Standards to Live Sustainable " Law n. 13/08,
effected with the deliberation of G.R. August 4 th 2009, n. 1471 “System of evaluation of the
level of environmental sustainability of the buildings in realization of the Regional Law "Norms
to live sustainable" (art. 10, L.R. 13/2008) ".
Building process must take into account at all stages of finality Sustainability Environment
through the use of green building materials and techniques.
Green building techniques provide the proper orientation of the lot, the use of global warming
and green roofs, natural ventilation and forced (with the possible cooling / heating through
ground cooling systems), promotion of natural light ( tubes of light), the shield of the sun, the
integration of renewables such as solar panels and photovoltaic panels (with technology
increasingly pushed towards the architectural integration as translucent panels and thin films),
thermal insulation of walls and through the roof materials and insulation film, reflective
coatings and systems for the coverage of thermal bridges, window frames, high performance
glass with high thermal insulation, building automation, efficient technologies.
140
Renewable sources of energy contribute to the reduction of the consumptions of primary energy
of the building.
The " recasting " of the European Directive 2002/91/CE EPDB , the new Directive 2010/31/CE,
foresees that from 1/1/2021 the new buildings and the restructured buildings are almost to
consumption " zero", " zero net energy", " zero carbon" the whole requirement of primary energy
of any new building must have sustained from renewable energetic sources "on site."
We are there therefore starting toward a conception of the housebuilding what primary
producer of clean energy on local base, that will use the net of electric distribution as
accumulator and that, producing as in the future consumptions, can cover the energy
requirement of the oldest buildings.
Public Administrations will open the road, purchasing or renting only echo-buildings within the
end of 2018 and promoting the transformation of those existing in impact buildings "almost
zero."
The model of the "energy's generation type distributed " has as fundamental pillar the use of
locally available sources and therefore of renewable sources of energy, what that solar.
Municipality of Bari has intended to promote and to stimulate the sustainable housebuilding
inserting in the new rule building incentives of character urbanistic (volumetric) and financial
(reductions of the burdens of urbanization and costs of construction) for buildings that realize
levels of sustainability environmental.
Actions on the town patrimony
Privatistic aspects concern the consumptions of own structures.
The local administration is an actor of the energy policies but is also a consumer of goods and
consumer of energy services.
The Municipality is responsible however in front of the collectivity of the functionality, of the
efficiency, effectiveness, inexpensiveness and sustainability of the management of the
energetic services.
The energetic uses: management of the building patrimony, heating and cooling , illumination,
energy, public illumination, mobilizes urban, participated firms.
The program of improvement of the energetic efficiency and the use of resources must foresee:
- activity diagnostic of the town patrimony for monitor the energy consumptions
- energetic rationalization of the fittings of the town patrimony
- service energy for the thermal fittings of the town patrimony and technological retraining
- rationalization energy plants of public lighting
- rationalization of the contracts of supply of electric energy and the integrated water service.
141
Of primary importance and therefore the institution of the accounting energetic inside the
system of management of the energy or rather the control of the energetic expense, the charge
of the energetic costs for center of expense, the responsibility decentralized of the executives,
the rationalization of the centers of consumption and indicators of efficiency.
In the area of P.A. there are many barriers to energy efficiency improvement:
- The low level of understanding, information from the customer;
- The limited understanding of the opportunities for improving energy efficiency through the use of
performance contracting (EPC) and Third Party Financing (TPF);
- The limited size of projects associated with excessive transaction costs for interventions ESCO;
- The high perceived risk, both technically and business;
- The lack of compatibility of legal frameworks and regulations to investments eff. energy and / or
operations of Performance Contracting;
- Administrative barriers, complex procedures, split incentives;
- The low level of motivation, if energy costs are a fraction of total costs.
- The lack of sensitivity 'to the energy problem by structures, Directors and Councillors.
- Balance the needs and priorities' spending
- The need for visibility 'spending
- The cost of operations
The Market of the energetic efficiency and the expert in management of the energy
The market of the energy efficiency, controlled today by the D.M. 20/7/2004 foresee the issues
of titles of energetic efficiency or certified white to forehead of interventions of improvement of
the energetic efficiency of the systems.
We observe that the DM 21/12/2007 finally have expectation the extension of the right to the
release of T.E.E. to the subjects that have complied to the obligation of nomination of the
energy manager (L. 10/91) that they realize interventions with superior energy savings to a
least threshold individualized by the authority.
Conclusions
Local Governments can contribute to the national trial of improvement of the energy efficiency
and use of renewable sources, it has available the tools, must orchestrate and to involve the
citizens and the interested categories.
142
INTERVENTI PROGRAMMATI
Green Economy e Sviluppo Sostenibile nel fare impresa
Dott. Giovanni Ronco
Confindustria Bari e Barletta-Andria-Trani
Sezione Ambiente, Energia & Utilities
Hanno collaborato: A. Palombo, C. Liscio, L. Ciriello, P. Maniglio
Mi è d’obbligo innanzitutto ringraziare il prof. Dassisti per la possibilità che ci ha dato. Il settore
delle energie rinnovabili presenta in tutto il mondo tassi di crescita molto elevati ed è
considerato uno dei comparti più attraenti della “green economy”.
Nel 2008 in Europa oltre metà della nuova capacità produttiva del settore elettrico è stata da
fonti rinnovabili (13.600 MW su 24.000). Le “nuove” fonti, eolico e fotovoltaico, hanno
contribuito per il 93%, rispettivamente con 8.500 e 4.200 MW.
In Italia, l’eolico ha visto una crescita della capacità del 37% nel 2008, con l’installazione di
1.000 MW e con una produzione di più di 6 TWh (+50% sul 2007); il fotovoltaico ha aumentato
la capacità di sei volte sull’anno precedente, con un incremento di 258 MW. Nel complesso, il
settore italiano delle “nuove rinnovabili” ha una capacità installata di circa 4.000 MW.
Le società quotate alla Borsa Italiana coprono il 45% circa di questa capacità, con 1.861 MW.
Nove di queste società hanno come core business esclusivo o prevalente le energie rinnovabili
e costituiscono la base di calcolo dell’IREX – Italian Renewable Index1.
L’IREX dopo aver toccato il minimo di 9.320 punti il 16 settembre 2008 sta raggiungendo nelle
ultime settimane i suoi valori massimi, perché l’industria delle rinnovabili pare acquisire nuovi
stimoli in seguito alla presentazione del 15 giugno scorso della bozza del piano nazionale
richiesto dalla UE. L’Italia dovrà raggiungere nel 2020 una quota complessiva di fonti
alternative sul consumo finale di energia elettrica del 28,9%, equivalente a un capacità
installata di 45.885MW e a una produzione lorda di 105,950 GWh. Il piano conferma quindi il
target del 17% di energia rinnovabile entro il 20202 (8-10% alla fine del 2009) e ribadisce
l’impegno del Governo a mantenere una politica di incentivi volta a favorire la crescita del
settore. Un messaggio contrastante arriva però dalla recente manovra finanziaria, che
contiene, nell’articolo 45 l’abolizione dell’obbligo per il GSE del riacquisto dei Certificati Verdi.
Tale azione penalizza gli investimenti rischiando di frenare bruscamente la crescita del settore
e di compromettere la possibilità di raggiungere i target.
"Economia Rinnovabile": il primo rapporto IREX Annual Report di Althesys presentato il 14
prile 2010 a Milano.
1
143
Nonostante le contraddizioni generate da un contesto regolamentare incerto, il settore
continua, quindi, a mostrare un comportamento attivo e dinamico, come evidenziato nei mesi
scorsi.
Le tecnologie FER (Fonti di energia rinnovabile) rappresentano un punto cardine della strategia
complessiva dell’Europa per lo sviluppo sostenibile.
Lo sviluppo di tali tecnologie per la produzione di energia concilia un positivo impatto
sull’ambiente con lo sfruttamento di mercati a elevati tassi di crescita, apportando
miglioramenti alla competitività industriale. Segnale evidente della forte e accelerata
dinamicità tecnologica del settore sono: la proliferazione delle attività di registrazione dei
brevetti ed il peso acquisito dai maggiori Paesi industriali sui mercati internazionali,
contribuendo ad un’espansione significativa della produzione e dell’occupazione nell’ambito
dei rispettivi sistemi economici. Ciò è ulteriormente rafforzato dai dati più recenti2
sull’espansione del mercato mondiale delle rinnovabili: nel 2007, con 148 miliardi di dollari di
nuovi investimenti, un incremento di quasi il 60% rispetto al 2006, il 23% della nuova capacità
energetica installata è attribuibile a fonti rinnovabili (pari a circa 10 volte quella relativa al
nucleare) e, sempre a livello mondiale, le imprese operanti nel rinnovabile hanno rappresentato
il 19% di tutto il capitale finanziario addizionale che si è riversato sul settore energetico. Tali
tendenze positive non sono state nemmeno minate dal trend negativo del prezzo del petrolio
né dalla gravità della crisi internazionale.
I Paesi europei si pongono al momento in posizione di leadership rappresentando circa il 30%
del fatturato mondiale del settore, pari al 2,2% del PIL e a 3,4 milioni di posti lavoro. Questa
situazione rappresenta, tuttavia, l’inizio di un percorso piuttosto che un punto d’arrivo. La
domanda si sta espandendo rapidamente tant’è che si stima un raddoppio del relativo mercato
mondiale entro il 2020. Lo sfruttamento delle opportunità poste da tale crescita richiederà
soprattutto un sostanziale incremento degli sforzi d’investimento finora profusi, primo fra tutti
quello relativo alle spese in Ricerca e Sviluppo.
Nel settore dell'energia rinnovabile la tecnologia è la principale risorsa necessaria per stimolare
le potenzialità di crescita dei sistemi produttivi. L’aumentata complessità dei processi
d’innovazione e delle leve capaci di attivarli, comporta la necessità di acquisire competenze
tecnologiche sempre maggiori e consolidate.
L'importanza della tecnologia si riflette sulla natura dei vantaggi competitivi che determinano le
potenzialità di crescita delle singole economie. In particolare la competizione internazionale si
sta giocando sul possesso di competenze tecnologiche che sono ormai divenuti carattere
Rapporto ENEA Energia & Ambiente 2008. Agenzia nazionale per le nuove tecnologie,
l’energia e lo sviluppo economico sostenibile (tutti i dati sensibili e i grafici utilizzati a supporto
del lavoro sono tratti dal suddetto rapporto dell’Enea).
2
144
distintivo. La peculiarità dei vantaggi competitivi è rappresentata dalla loro dinamicità, essendo
centrati sull’innesco di processi legati all’apprendimento ed alla creazione continua di soluzioni
innovative per il sistema produttivo. Proprio per tale motivo si è giunti a considerare la
“strategia dell’innovazione”, come fattore chiave nella sfida al problema ambientale.
Dal 28 gennaio 2004 l'Unione Europea ha adottato un piano d'azione per promuovere le
tecnologie ambientali per ridurre la pressione sulle risorse naturali, migliorare la qualità della
vita degli europei e favorire la crescita economica. Obiettivo del programma è realizzare tutte le
potenzialità delle tecnologie ambientali e mobilitare tutti gli interessati affinché sostengano
questi obiettivi. Tale piano d'azione rappresenta la base per l'avvio di una serie d’iniziative
volte a migliorare la cooperazione europea ed internazionale, non solo nella ricerca ma anche
nella definizione di standard internazionali, nella commercializzazione delle tecnologie
emergenti e nella promozione dell’accettazione sociale delle infrastrutture energetiche.
In genere, lo sviluppo di queste tecnologie tende a rigenerare settori esistenti tendenzialmente
maturi, come nel caso della meccanica varia e della stessa componentistica elettronica, o a
dare origine a veri e propri nuovi settori come nel caso della c.d. edilizia sostenibile.
L'analisi del settore delineata nel presente lavoro si concentra in gran parte proprio
sull'ambiente industriale in cui nascono e operano queste imprese, cogliendo l'esistenza di un
potenziale di sviluppo all'interno dei vari sistemi economici che faccia leva sulle opportunità
offerte dalle tecnologie FER.
L'effettivo stadio di sviluppo delle industrie che producono tecnologie FER, appare
notevolmente differenziato e il relativo mercato risulta frammentato nei vari Paesi, anche nel
contesto dell'Unione Europea. La posizione competitiva delle singole industrie nazionali nei
settori tecnologicamente e commercialmente affini alle produzioni di tecnologie FER può fornire
utili indicazioni sui nuovi modelli di business e sugli eventuali sforzi di politica industriale da
attuare. La struttura preesistente potrebbe, rivelarsi svantaggiata dalle barriere che
caratterizzano le singole società emergenti e dalla loro futura evoluzione, e quindi condizionare
il pieno sfruttamento delle opportunità di crescita. Appare evidente, quindi, che le principali
opzioni strategiche saranno quelle di aggregazioni di capitali, tecnologie e know how volte a
garantire un vantaggio competitivo sostenibile e a superare i limiti dovuti alle ridotte capacità
individuali di competere con le multinazionali. In alcuni casi ciò potrebbe anche riflettere un
processo innovativo sviluppato secondo le logiche dei distretti, delle filiere e delle reti, in cui le
relazioni fra imprese assumono un ruolo fondamentale.
Trascorriamo la maggior parte della nostra vita in edifici (casa, al lavoro o nel tempo libero). E
utilizziamo più energia negli edifici che in qualsiasi altro luogo. In Europa, infatti, questi
consumano circa il 40% dell’energia e l’UE sta per questo compiendo un notevole sforzo per
migliorarne l’efficienza energetica. Attualmente sta riesaminando la propria legislazione per
sollecitare miglioramenti più rapidi in molte costruzioni e rafforzare il ruolo dei certificati di
rendimento energetico.
Questo scenario sta suscitando un forte interesse nei 70 progetti per edifici a maggior
efficienza energetica finora finanziati dal programma Energia intelligente – Europa. Tale
145
programma ha sostenuto finora più di 400 progetti internazionali, coinvolgendo circa 3500
organizzazioni, mirando a creare migliori condizioni per un futuro più responsabile nei confronti
dell’ energia e comprendendo un vasto ventaglio di ambiti tra cui l’edilizia ecosostenibile.
Ogni anno, una parte dei vecchi edifici europei viene ristrutturata da cima a fondo o sostituita
con edifici nuovi offrendo un’opportunità unica di costruire in base ai livelli più avanzati di
efficienza energetica. Naturalmente occorrono specifiche competenze e una grande attenzione
in fase di pianificazione, progettazione e costruzione di questi edifici, in quanto i loro standard
differiscono da quelli delle abitazioni tradizionali.
Il progetto Energy4Life si prefigge il compito di trasmettere il know-how e le competenze
maturate dai partner spingendosi oltre piccoli gruppi di esperti, per raggiungere un’ampia
comunità di professionisti del settore. In particolare si tratta di una rete d’imprese che abbina
la tecnologia fornita da ciascuna alle esigenze e ai fabbisogni di un territorio, puntando molto
sulla dinamicità e sulla sinergia tra piccole aziende che fanno sistema, e che permetteranno di
abbandonare il concetto ormai restrittivo e distretto.
Obiettivo di Energy4Life3 è quello di creare una filiera delle energie rinnovabili - dal produttore
al consumatore - finalizzata ad abbattere i costi energetici grazie all’utilizzo di tecnologie
innovative con grandi vantaggi per il territorio e l’ambiente.
Il progetto, in linea con i dettami di Kyoto, permetterà di ridurre i costi per l'approvvigionamento
energetico del 73% e le tonnellate di anidride carbonica in atmosfera.
Si tratta di un nuovo modo di fare impresa, nessuna New Company, ma lo sviluppo di un
progetto d’integrazione di competenze complementari per fornire soluzioni avanzate di
risparmio energetico per il mercato. Energy4Life è un’iniziativa nata originariamente dalla
collaborazione di quattro aziende nella fase iniziale (da cui prende il nome) fortemente
orientate all’innovazione ciascuna delle quali fornisce la propria tecnologia per garantire alta
efficienza:
- Multiutility Fotovoltaico by ForGreen per il fotovoltaico;
- Linz Electric con il mini eolico;
- ICI Caldaie per la cogenerazione di celle a combustibile idrogeno;
- Esco Europe per la parte finanziaria e amministrativa.
A questo nucleo originario si sono poi aggiunte altre piccole realtà operanti nel settore tra cui
spicca un’impresa pugliese, la Bioenergy Italia, che sviluppa il Progetto per il Centro-Sud Italia
ed area Mediterranea.
Progetto inserito nel Programma “Energia intelligente per l’Europa” 2010 e presentato
all’Expo di Shangai 2009.
3
146
Per rispondere alla pressione competitiva, queste imprese hanno iniziato a discostarsi dal
modello di business tradizionale per orientarsi verso forme di organizzazione produttiva a rete.
Stiamo assistendo al passaggio dalle tradizionali alleanze strategiche e dai distretti territoriali
alle forme di reti d’imprese non localizzate.
Tale progetto, applicato su edifici residenziali o industriali, può garantire energia attraverso
l’impianto fotovoltaico integrato con quello minieolico e termico e sistemi d’illuminazione a
LED.
A livello di gestione dell’investimento opera la Esco Europe, Energy Service Company che,
attraverso il modello del “performance contractor”, vincola il proprio risultato economico alle
performance derivanti dalla gestione ottimale delle tecnologie installate.
Il finanziamento avviene attraverso FTT (Finanziamento Tramite Terzi), garantito dalla Esco,
tramite il risparmio energetico ottenuto. Questo tipo di approccio assicura al cliente una
formula win-win, ovvero una convergenza tra l’interesse economico dello stesso cliente e quello
della Esco.
Il progetto è stato testato su una palazzina di 16 piani e di 80 unità immobiliari, per un'altezza
di circa 50 metri, costruzione ex novo a Verona e vede all'ultimo piano l'installazione di un
impianto fotovoltaico e di alcune microturbine eoliche. L'energia, prodotta sfruttando sole e
vento, passa per gruppi inverter diventando corrente alternata. Una parte viene immessa in
rete, l’altra viene convertita in idrogeno e alimenta il co-generatore che produce energia
termica ed elettrica.
Questa è la dimostrazione di come sia possibile utilizzare tecnologie e proporre servizi per
realizzare un sistema con fonti rinnovabili per la produzione di energia. Il tutto reso possibile
grazie a tecnologie già presenti sul mercato, interlocutori con progettualità e capacità di
gestione, un quadro normativo assai favorevole e da ultimo una forte sensibilità di cittadini e
imprese verso soluzioni ad alta sostenibilità ambientale. Un progetto in cui s’incontrano
business diversi, piani industriali diversi, ma che riescono a trovare un forte punto di contatto
grazie ad un piano di Green Economy come questo. Un ruolo determinante è giocato dalle due
tecnologie che sfruttano le fonti rinnovabili: fotovoltaico e mini eolico, poiché i due produttori
hanno avuto la capacità di investire in Ricerca & Sviluppo per immettere sul mercato nuove
soluzioni che siano in grado di produrre energia “pulita” con livelli di efficienza sempre più alti e
con una forte competitività. Piccole aziende, con importanti tecnologie, ed un sistema ottimale
per la gestione delle stesse, offrono un nuovo modello per l'autoproduzione di energia elettrica
e termica che può garantire risparmi importanti evitando tonnellate di emissioni di CO2 l'anno.
Oggi parlare del 73% di risparmio energetico su un edificio significa sviluppare tecnologie che
potrebbero supportare cittadini e imprese nella ridefinizione del concetto di utilizzo e
produzione di energia.
Il progetto Energy4life, date le sue caratteristiche appena descritte e la sua ambizione, può
essere anche considerato un esempio di “Blu Ocean Strategy” teorizzata da W.Chan Kim e
Renée Mauborgne .
147
Quando ci troviamo di fronte ad un settore con un trend di sviluppo molto attrattivo, al cui
interno sono presenti agenti già molto solidi e organizzazioni minori che da sole non
dispongono di risorse sufficienti per competere direttamente, l'approccio strategico citato,
risulta essere particolarmente efficace, poiché mira a costruire una strategia capace di creare
un nuovo spazio di mercato nel quale operare. E’ evidente come tale situazione rispecchi alla
perfezione quella del settore dell'energia rinnovabile, fortemente attrattivo, ma, nel contempo,
estremamente complesso per le difficoltà di finanziamento e per gli alti costi iniziali. Il business,
al momento, è ancora concentrato nelle mani dei pochi grandi gruppi che già tradizionalmente
operavano nel settore dell'energia primaria, nonostante vi siano anche moltissime realtà di
dimensioni più modeste che stanno cercando di attuare strategie alternative al fine di ritagliarsi
fette importanti.
Proprio a questo mirano i soggetti partecipanti a Energy4life, offrendo al mercato un prodotto
differenziato, ossia un pacchetto di prodotti-servizi integrati che rendono gli edifici
completamente autosufficienti dal punto di vista energetico; ciò risulta altresì vantaggioso, sia
al momento dell'investimento iniziale, sia nel lungo periodo dal risparmio ottenuto.
Vediamo ora nel dettaglio come si articolano nel nostro lavoro le tre value proposition che
devono caratterizzare l'approccio strategico vincente per l'impresa ricostruzionista:
value proposition attrattiva per gli acquirenti: offerta integrata di energia pulita che permette di
ridurre i costi per l'approvvigionamento energetico del 73%;
profit proposition che consenta all'azienda di produrre profitti dalla value proposition: formula
win-win per cui l'impresa lega i propri ricavi alle performance del mpianto energetico lucrando
una percentuale dei risparmi ottenuti dai clienti;
people proposition che permette di motivare coloro che lavorano per l'impresa nell'attuazione
della strategia: l'intera organizzazione è incentivata a produrre performance soddisfacenti
poiché a queste sono legate i ricavi dell'impresa, il tutto nell'ottica del etica sociale
dell'ecosostenibilità.
Grazie all'allineamento delle tre proposte di valore, il programma Energy4life, che ha plasmato
la strategia di tutte le società partecipanti, è riuscito a unificare segmenti di mercato che
sembravano appartenere a imprese diverse, ad espandere il raggio d’azione colmando un
vuoto d'offerta preesistente, ed infine a superare barriere che impedivano la creazione di
un’offerta importante.
In conclusione si può dire che la coopetition tra le imprese è stata la chiave di volta per
sviluppare un'offerta integrata di servizi energetici “verdi” applicati all'edilizia; questa ha
consentito alle singole aziende di non subire passivamente le condizioni dettate dal settore, ma
di provare, tramite lo sforzo congiunto, a ridefinire l'ambiente in cui operano aprendo un nuovo
“oceano” di possibilità.
148
INTERVENTI PROGRAMMATI
Why we must value the "commons"
Giovanni Zurlini
Università degli Studi del Salento
Ecosystems and their services underpin our economic activities, quality of life and social
cohesion but environment, economy and society are unequal partners - for while there are
environments without economies and societies, there are no economies and societies without
environment.
Many of the goods and services provided by ecosystems in our conventional market economy do
not have an explicit value - yet if the resilience of our ecosystems continues to diminish, these
goods and services will become infinitely value and eventually unattainable. There would be
huge consequences for employment, health and the basics of life, stretching far beyond today's
resourc conflicts (e.g. fish for food or feed; crops for food or fuels; water for people or crops).
There is an urgent need of economy-environment accounting techniques to analyse the
relationship between the activities of economic sectors and their impacts on the quantity/quality
of ecosystems' goods and services; accounts of inclusive ecosystem benefits and full costs of
ecosystem maintenance for informing decisions and trade-offs in macroeconomic policies, local
management and market-based actions measurements of societal cohesion and hence welfare
that go 'beyond GDP' - based on a framework of socially cohesive economic entities known as
'socio-ecological systems'.
149
SUPPORTING SPONSORS
“SentireSostenibile”
Nel mese di dicembre 2009 è stato approvato il progetto “SENTIRE SOSTENIBILE” nell’ambito
dell’avviso Pubblico della Provincia di Bari BA/8/2009 – “Informazione e sensibilizzazione in
materia di sostenibilità ambientale”, a valere sul P.O.R. Puglia 2007 - 2013.
Il Consorzio TECFOR, capofila del progetto, intende veicolare temi ambientalmente importanti
relativi alla difesa del suolo, nell'area della provincia di Bari, attraverso un messaggio culturale
di qualità, in stretta collaborazione con il partner di progetto A.N.C.A, Associazione Nazionale
Consulenti Ambientali.
Il progetto “SENTIRE SOSTENIBILE” è sostenuto dal Dipartimento di Ingegneria Meccanica e
Gestionale del Politecnico di Bari, dall’UPSA Confartigianato Bari e dal Consorzio ATO BARI/5.
L’Obbiettivo è quello di concorrere a sensibilizzare gli operatori economici e la popolazione
della provincia di Bari alla salvaguardia e valorizzazione del proprio territorio in un'ottica di
sostenibilità ambientale, attraverso una serie di azioni di educazione permanente che
testimonino, tra l'altro, l'impegno "ambientale" della Provincia di Bari e della Regione Puglia e
che contribuiscano a sviluppare una coscienza comune sull'importanza della protezione
dell'ambiente e del suolo.
Nello specifico le azioni progettuali mireranno a sensibilizzare da un lato il mondo economico
ed aziendale sulla opportunità di utilizzo delle Green Technologies a basso impatto ambientale
nella problematica della difesa del suolo e, dall'altro, a coinvolgere i cittadini con un calendario
di azioni di sensibilizzazione ed educazione permanente volte a promuovere l'educazione
ambientale e soprattutto la cultura della Innovazione tecnologica ecosostenibile.
Il programma delle attività ha visto il notevole successo del progetto con i seguenti risultati:
- Ricerca e analisi sulle tematiche ambientali inerenti alla difesa del suolo
- Realizzazione di una campagna informativa: “La difesa del suolo: salvaguardia e vivibilità del
territorio”
- Visita Guidata
- Mostra fotografica e booklet fotografico
- Infoday sulle Green Tecnologies
- Laboratorio in situ di educazione ambientaleWorkshop finale di diffusione dei risultati.
150
Domenico Pagazzo
Aiutac i a s alvare il m are
Mi è d’obbligo innanzitutto ringraziare il prof. Dassisti per la possibilità che ci ha dato di
partecipare a questo importante evento.
Sono il rappresentante in loco della Presidenza Nazionale della Lega Navale, Ente pubblico che
dal lontano 1897 si dedica non solo a riunire gli appassionati delle attività sportive e ludiche
strettamente connesse al mare, ma anche alla promozione sociale ed alla protezione
ambientale.
Insieme all’Associazione Toto di Bari abbiamo voluto cogliere l’occasione che la Provincia di Bari
ci ha offerto per concretizzare una capillare sensibilizzazione sulle problematiche afferenti il
diporto sostenibile e le sue soluzioni: abbiamo chiamato il nostro progetto “Aiutaci a salvare il
mare”.
Certo non pretendiamo di competere con la cultura dei ricercatori e degli studiosi, ma nel nostro
piccolo vogliamo collaborare per rendere le attività dei diportisti di minore “invasione” per la
natura e sensibilizzarli al rispetto dell’ambiente che vivono ed amano: anche le piccole cose
hanno la loro importanza.
Guardando il comportamento dei bagnanti, dei diportisti e di tutti gli usufruitori del mare e delle
coste, ed ancor più le analisi dei soggetti che verificano lo stato di salute e l’organizzazione degli
approdi e delle strutture a ridosso del mare finalizzata alla tutela dell’ambiente, abbiamo notato
che ben poco viene fatto per evitare piccole “maleducazioni” nel rapporto con l’ambiente
151
marino. Queste “maleducazioni”, moltiplicate e ripetute, partecipano in maniera sostanziale al
deterioramento ed all’inquinamento del mare.
I grandi eventi che devastano l’ambiente mare sono da voi conosciuti ben più che da me: pozzi
di petrolio e petroliere che riversano il loro contenuto nel mare sono sicuramente devastanti, ma
anche il piatto di plastica, la busta, il contenitore d’alluminio, la bottiglietta buttata in mare od
anche lasciata sulla spiaggia inquina ed interagisce con l’ambiente e, se tale azione viene
quotidianamente posta in essere da centinaia i migliaia di persone, l’effetto risulta altrettanto
importante.
Purtroppo poco si valuta e poco si interviene da questo punto, soprattutto nel Meridione d’Italia:
in Puglia solo 8 spiagge hanno avuto la “Bandiera Blu” dal FEE e solo un approdo ha ottenuto
tale riconoscimento per l’anno 2010!
Nonostante la nostra Nazione ed in particolare la Puglia “viva nel mare” sembra che nessuno si
preoccupi di educare i cittadini orientandoli al rispetto del loro ambiente.
I diportisti spesso utilizzano motori vetusti, a benzina o gasolio, e, conseguentemente
fortemente inquinanti; i diportisti generano energia elettrica a bordo quasi esclusivamente
prodotta dallo stesso motore a combustione anziché utilizzare semplici apparecchiature
fotovoltaiche o eoliche; poche sono le strutture a terra in grado di “assistere” il diportista nel
corretto smaltimento dei rifiuti di ogni tipo; solo ultimamente sono stati previsti degli incentivi
governativi per il diportista che intenda sostituire i motori per inquinare meno, ma sono
decisamente esigui.
Molti, troppi, sono ancora oggi i diportisti che utilizzano barche a motore: su circa 78.000 unità
iscritte negli elenchi degli uffici marittimi solo 17.000 sono a vela. Circa il 78% dei diportisti
utilizza barche a motore. E’ indispensabile educare il diportista e guidarlo verso l’utilizzo della
vela e di strumenti poco inquinanti.
Il nostro progetto intende aprire questi discorsi, far si che coloro che si avvicinano ed utilizzano il
mare siano consapevoli del danno che possono creare anche con piccole azioni, ma anche
sensibilizzare le istituzioni e la ricerca sui danni che oggi e negli anni possono essere causati
dall’utilizzo irresponsabile di una risorsa come il mare.
Un breve cenno è anche opportuno a riguardo delle strutture produttrici di energia: per costruire
barche e strumentazione è necessaria energia, così come la barca in banchina utilizza energia
prodotta dalle centrali. Ci risulta che già oggi esistono centrali che recuperano materiale
combustibile, il metano, prodotto dalle discariche. Recuperare tale combustibile ed utilizzarlo
per la produzione di energia può aiutare l’ambiente in maniera concreta. Non siamo all’altezza
di valutare complessivamente la “bontà” del progetto di centrale che vi esponiamo ma
gradiremmo che si facesse tale approfondimento.
Vi ringrazio per il tempo dedicatomi.
152
PRIZE
(Premi)
Preface from Organizer
Innanzitutto un GRAZIE al Prof. Dassisti che mi ha dato la possibilità di partecipare a questo
importante evento internazionale.
La partecipazione è stata abbastanza impegnativa soprattutto nella parte di scelta dei “paper
award” da assegnare: la molteplicità e la vastità dei temi affrontati e discussi nelle varie
sessioni sono stati tali da rendere non semplice la scelta delle presentazioni da premiare; la
vivace e franca discussione avuta alla fine con il team di illustrissimi professori del Politecnico
che mi hanno aiutato in questo difficile compito ha consentito di fare, spero, una giusta scelta.
Per tornare alla conferenza, l’importanza dell’evento è insita nei suoi argomenti e nei suoi
contenuti: tutto ciò che riguarda la produzione sostenibile di energia e la protezione
dell’ambiente non può che essere importante.
Del resto, nel recente passato, ci sono stati numerosi summit internazionali sull’argomento
durante i quali sono state prese importanti decisioni e si sono concordate azioni per contenere
emissioni e per ridurre l’aumento del riscaldamento globale.
Ad essere sincero, non mi sembra che i risultati di questi summit siano stati entusiasmanti:
nel dicembre 1997, il trattato di Kyoto prevedeva l'obbligo dei paesi industrializzati di operare
una riduzione delle emissioni di elementi inquinanti nel periodo 2008-2012 (biossido di
carbonio ed altri cinque gas serra, ovvero metano, ossido di azoto, idrofluorocarburi,
perfluorocarburi ed esafluoruro di zolfo) in una misura non inferiore al 5% rispetto alle emissioni
registrate nel 1990, considerato come anno base;
12 anni dopo, nella conferenza di Copenhagen (dicembre 2009), da molti considerata un mezzo
fallimento, solo l’Unione Europea si presentava con una proposta concreta: la famosa proposta
“20-20-20” e cioè ridurre di almeno il 20% le emissioni di gas serra e portare al 20% la quota di
rinnovabili nel consumo energetico entro il 2020.
Non sono risultati entusiasmanti se si pensa che “se l’umanità intera e quindi tutti i governi
della terra decidessero di applicare da domani tutto ciò che sarebbe necessario applicare per
contrastare realmente inquinamento e riscaldamento dell’atmosfera, trascorrerebbero alcuni
decenni prima di vedere i primi risultati concreti”. Mi scuserà sia l’autore dell’articolo da cui ho
tratto questa frase, sia i lettori che non potranno rileggere l’intero articolo, ma non riesco proprio
a ricordare e quindi indicare la fonte: l’età avanza e la memoria invece …
A questo punto voglio citare un altro noto motto che dovrebbe far riflettere tutti quanti su come
dovrebbero essere affrontati i problemi ambientali: sarebbe bene ricordare sempre che “la terra
153
non è qualcosa che abbiamo ricevuto in eredità dai nostri genitori, ma è qualcosa che abbiamo
avuto in prestito dai nostri figli”.
Non vorrei sembrare pessimista, ma non mi sembra che si stia facendo tutto il possibile per
“restituire” la terra in buone condizioni alle generazioni future e quindi per rendere progresso
scientifico e tecnologico veramente compatibile con l’ambiente che ci circonda; lo dico in un
momento in cui la natura sembra proprio reagire e rivoltarsi contro l’uomo; penso alla “marea
nera” nel Golfo del Messico (anche se in questo caso l’errore umano ha contribuito in maniera
determinante), agli incendi in Russia, alle inondazioni in Pakistan, per parlare solo degli ultimi
avvenimenti di questi mesi estivi del 2010.
In aggiunta, nel momento in cui mi accingo a scrivere queste due righe, leggo dalla prima pagina
di “la Repubblica” del 17 agosto 2010 l’inizio di un articolo di Antonio Cianciullo “Il caso. La
Terra va in riserva, finite la risorse naturali: tra pochi giorni, il 21 agosto, ci saremo giocati tutto il
capitale che il pianeta ha messo a nostra disposizione. Avremo utilizzato l’acqua che si ricarica
spontaneamente nelle falde, l’erba che i pascoli producono, i pesci del mare e dei laghi, i
raccolti delle terre fertili, il frutto dei boschi”. Non è molto incoraggiante!
Voglio però concludere queste brevi considerazioni “estive” con un pensiero positivo e, perché
no, anche un poco campanilistico, facendo riferimento all’esempio virtuoso della nostra Puglia
sulla eco-compatibilità della generazione dell’energia.
Riporto da una scheda apparsa sul sito www.sistema.puglia.it :
L’ENERGIA IN CIFRE AL 7 GIUGNO 2010
Potenza elettrica installata negli impianti rinnovabili.
Eolico: 1.158 megawatt (al 31 dicembre 2009). La Puglia è prima in Italia con il 23,72% di
potenza installata rispetto al totale nazionale (pari a 4.880 megawatt). Fonte Terna.
Fotovoltaico: 231,091 megawatt (al 10 maggio 2010). La Puglia è prima in Italia con il 19% di
potenza installata rispetto al totale nazionale (pari a 1.211,245). Fonte GSE.
Sisto De Matthaeis
154
GENERAL MOTORS
155
BOSCH
Attività dell’azienda
Lo stabilimento BOSCH di Bari rappresenta attualmente la più grande realtà aziendale nel settore
automobilistico presente nel sud Italia. Consiste di due Divisioni produttive: Diesel System per la
produzione di pompe ad alta pressione e Chassis Systems Brakes per la produzione di pinze freno.
Le pompe ad alta pressione hanno il compito di comprimere il carburante (Diesel) portandolo fino alle
altissime pressioni necessarie per una corretta iniezione ed indispensabili per ottenere buone
prestazioni abbinate a ridotti consumi di carburante ed a ridotte emissioni. I prodotti si dividono in due
famiglie: la prima generazione, nota come CP1 (pressione di esercizio 1400 bar), e la seconda nota
invece come CP1H (pressione di esercizio 1600 bar). La sigla CP è l’acronimo di “common(rail)
pump”, mentre la lettera H sintetizza la dicitura “high pressure” ovvero alta pressione. Le pompe CP1
sono state impiegate sin dalla nascita dei motori common rail, e sono tutt’oggi montate su vetture
estremamente diffuse come le Fiat 500, Panda e Punto e la Ford Ka. Le pompe CP1H rappresentano
invece la seconda generazione e sono montate su vetture come le Alfa 159 e Mi.To., la Fiat Croma, la
Renault Megane e in generale sulle vetture delle case automobilistiche Renault, Fiat, Peugeot e Opel
e sui veicoli commerciali.
Nella divisione Chassis Systems Brakes sono prodotti tre tipi differenti di freni a disco: ZOH, ZOH BIR3
e serie V. I freni a disco anteriori ZOH (acronimo di Zero Offset Harmonized) e i freni a disco posteriori
ZOH BIR3 (BIR è acronimo di Ball In Ramp) sono montati su applicazioni Fiat (Bravo, Grande Punto,
Idea, 500 e sua versione Abarth, Multipla, Panda, Lancia Delta e Musa e anche sui furgoni Ducato) e
GME-Opel (Corsa), mentre il freno a disco anteriore serie V è montato sulla Fiat 600 e sulla versione
base della 500.
Tutti i freni prodotti offrono molteplici vantaggi per i clienti, poiché privilegiano bassa rumorosità
durante la frenata, favoriscono consumi contenuti di carburante ed elevate prestazioni funzionali, in
virtù di utilizzo di materiali leggeri e resistenti.
Il sistema produttivo BPS, il costante sviluppo dell'eccellenza del Business, l'eccellente qualità, i
collaboratori competenti che lavorano con passione ed il continuo impegno per la sostenibilità
ambientale rappresentano i punti di forza del sito barese.
Oltre allo stabilimento produttivo nel sito è presente il Centro Studi Componenti per Veicoli (CVIT) ove è
stato progettato il primo sistema Common Rail. Le principali attività del Centro Studi sono la ricerca,
ingegnerizzazione e applicazione per il sistema Common Rail oltre che attività di sviluppo della pompa
di alta pressione con responsabilità mondiale per i prodotti CP1, CP1H, CP3 e CP4 MD/OHW.
Motivazioni del premio
Come azienda impegnata nella produzione e nella ricerca di soluzione sempre più efficienti e
performanti per l’automotive, apprezziamo il lavoro svolto per la creatività e perché, oltre a dare
un contributo in questa direzione, apre la strada a nuove potenziali linee di ricerca e sviluppo
verso un trasporto sempre più efficiente e pulito.
156
157
INTERFLON
Interflon makes specialist lubricants
resulting in superior performance and major cost savings
Interflon makes high performance lubricants for industrial and foodstuff plant equipment and
outdoor machinery. Our innovative technology results in superior performance and major
energy and maintenance cost savings.
Interflon lubricants greatly reduce friction, lubricant consumption rates and lubrication work,
whilst prolonging the service life and availability of machinery. It has never been easier to save
maintenance cost and resolve lubrication issues at the same time.
Lower cost, higher output levels
Looking for savings?
Interflon products offer lubricity and protection well beyond the properties of conventional
lubricants. They promote equipment uptime and factory output whilst reducing maintenance cost
and energy consumption. Here's what our clients achieve:
1. Reduced Lubrication Labour Costs
The high lubricity of Interflon lubricants promote extended lubrication intervals typically our products lubricate up to 5 times longer. This results into considerably
less lubrication labour-work giving your engineers additional allowance for other
maintenance and remedial work.
2. Lower Lubricant Consumption Rates
With extended lubrication intervals, you’ll need less lubricant every time you lubricate. In this way,
you reduce cost and waste of possibly hazardous materials.
3. Extended Component life
Interflon products reduced wear and tear. This results in extended component life and lower
parts exchange expenditure. Most probably the easiest way to extend the charge life of
your chains and other critical components.
4. Less lubricants on Stock
Unlike most conventional lubricants, Interflon products are
engineered for a multitude of lubrication applications, enabling
you to cut down on the number of lubricants that you stock and
use. With Interflon, you reduce lubrication mistakes and free up
storage space.
158
Lubricate by rolling like
miniature ball bearings
5. Reduced Power Consumption
Energy savings resulting from improved lubrication is the most often
overlooked way of saving costs. Interflon lubricants evidently reduce power
consumption and thus reduce your energy costs and climate TAX charges.
6. Less unexpected breakdowns, increased uptime, more output
Reduced wear and tear promotes less maintenance, disruptive malfunctions and remedial work
during unexpected breakdowns. This in turn improves machine availability and increases factory
output.
7. Safer premises due to Reduced Vibrations & Acoustic Emission
With Interflon, machines usually run smoother and quieter. Where recorded,
vibration readings often reduce by 30% - or more, and noise levels taken usually
show reductions of several decibels to prove this.
Low noise
8. Health & Safety; Less bacteria and slip hazard on floors
Operational health and safety improves notably where “Wet” Water/Soap lubrication
is replaced with Interflon dry-film Lubricants or when the intensity of the vibration of
air tools is brought back within the set limits.
9. Environmental Benefits
Less lubricant consumption, less leakages and longer lubrication intervals eventually results into
smaller amounts of lubricant ending up in cooling/ waste water systems and the environment.
This will help you to keep the costs of waste water treatment and pollution tax down whilst
maintaining compliance with environmental permits - something that benefit us all.
159
160
Spinti dalla passione per la Qualità
Operiamo nel settore della meccanica di precisione e controllo di qualità dal 1996.
La professionalità e la continua ricerca, ci permettono di svolgere molteplici attività.
Progettiamo e costruiamo attrezzature per macchine utensili, calibri speciali per attributi e per
variabili, apparecchiature meccatroniche e pneumatiche.
I nostri tecnici altamente qualificati controllano e certificano, in una sala metrologica all’avanguardia,
calibri e attrezzature.
Siamo Centro SIT n. 196 per la taratura dei blocchetti piano paralleli.
Commercializziamo Macchine e Strumenti di misura i nostri Partners:
CARL ZEISS ITALIA - CMF MARELLI MAHR - AFFRI - MODEN - RENISHAW - SCHOLLY - TQM ITACA
Forniamo consulenza per l’implementazione ed il mantenimento del Sistema Qualità secondo
la norma ISO 9001 e dei Sistemi Ambientali secondo la norma ISO 14001 ed EMAS, Sistema di
gestione Etica SA8000, assistenza per l'attestazione SOA, svolgiamo corsi di metrologia e di
disegno tecnico.
Spinti dalla passione per il nostro lavoro e dalla nostra esperienza siamo sempre pronti ad offrirVi
un servizio tempestivo, affidabile, di qualità costante nel tempo.
161
162
163
SPONSORSHIP
164
Valle d’Itria by Yellow.Cat - CC - Flikr.com
MAIN SPONSORS
AUTOMOBILE CLUB BARI
PRIZE SPONSORS
http://seep2010.poliba.it
e-mail: [email protected]